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Abstract Protein quantification for shotgun proteomics is a complicated process
where errors can be introduced in each of the steps. Triqler is a Python package that
estimates and integrates errors of the different parts of the label-free protein quantifi-
cation pipeline into a single Bayesian model. Specifically, it weighs the quantitative
values by the confidence we have in the correctness of the corresponding PSM.
Furthermore, it treats missing values in a way that reflects their uncertainty relative
to observed values. Finally, it combines these error estimates in a single differential
abundance FDR that not only reflects the errors and uncertainties in quantification
but also in identification. In this tutorial, we show how to (1) generate input data
for Triqler from quantification packages such as MaxQuant and Quandenser, (2) run
Triqler and what the different options are, (3) interpret the results, (4) investigate
the posterior distributions of a protein of interest in detail and (5) verify that the
hyperparameter estimations are sensible.

Key words shotgun proteomics, label-free quantification, protein quantifica-
tion, Bayesian statistics, probabilistic graphical models, error propagation,
differential expression analysis

1 Introduction

Shotgun proteomics has proven to be a useful technique for identifying and quanti-
fying proteins across multiple samples. The identification process of fragment mass
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2 Matthew The and Lukas Käll

spectra has received ample scrutiny in terms of statistical rigor, with target-decoy
analysis [1] and false discovery rates (FDRs) [2] being widely adopted by the field. In
contrast, as a result of its complexity, error estimation in the quantification process
is often limited to a sequence of, frequently heuristic, thresholds. Application of
these thresholds is often well-intended and does indeed eliminate false discoveries,
but often fails to take into account biases and interactions these create with other
thresholds. As a prime example, consider the common practice of applying a fold
change threshold after obtaining a list of differentially abundant proteins by a t-test.
Whereas the original list of differentially abundant proteins was controlled at, say,
5% FDR, there are no guarantees that this FDR is valid for the list after application
of the fold change threshold, as there could well be an enrichment of false positives
at higher fold changes.

To make matters even more complicated, missing value imputation is an essential
part of data analysis for label-free quantification, as often more than 50% of the
data is missing due to the stochastic nature of data-dependent acquisition. These
imputation methods can introduce many different types of errors [3, 4] which in
turn can have a big impact on the statistical test employed for differential abundance
testing.

To address these issues, we developed Triqler [5], a Python package that uses
a Bayesian model to integrate errors at the different levels of protein quantifica-
tion. Specifically, it combines identification and quantification errors into a single
differential abundance FDR. The Bayesian model propagates and integrates the un-
certainties from feature, PSM, peptide, protein and treatment group level to a final
posterior distribution of the fold change between two treatment groups. This is espe-
cially useful for missing values, for which we can specify a probability distribution
over a range of likely values with a higher likelihood towards lower values. In this
way, missing values are considered less reliable than observed values, as is intuitively
clear.

The input format for Triqler is a simple tab-delimited file (see Subheading 2.6)
and can most easily be obtained by converting output files from MaxQuant [6] (see
Subheading 3.1) or Quandenser [7] (see Subheading 3.2). Alternatively, one can use
any search engine of choice and add quantification information using Dinosaur [8]
(see Subheading 3.3). For this tutorial, we explain how to run Triqler (see Subhead-
ing 3.4), what the individual steps inside Triqler are (see Subheading 3.5) and how
to interpret the output (see Subheading 3.6). Finally, we dive deeper into the results
by looking at posterior distributions for a protein of interest (see Subheading 3.7)
and the hyperparameter estimation (see Subheading 3.8).
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Bayesian protein quantification with Triqler 3

2 Material

2.1 Requirements

Triqler can be run on any system with Python 2 or 3 installed and has been tested on
Windows, Mac OS X and Linux. For typical datasets, only a modest amount of RAM
is required (<2GB) and can, thus, be run on any desktop computer. To accommodate
large-scale dataset analysis, Triqler also supports multicore processing.

For users unfamiliar with the Python environment, we recommend installation of
Python through the Anaconda environment, freely available for all major operating
systems from https://www.anaconda.com/products/individual.

2.2 Software install

Triqler is available through the pip command:

$ pip install triqler

Alternatively, you can clone the GitHub repository and build the package locally:

$ git clone https://github.com/statisticalbiotechnology/triqler.git
$ cd triqler
$ pip install .

These commands will download the latest release of Triqler (currently v0.5). To
update the package, replace $ pip install by $ pip install --upgrade in
either command.

2.3 Data type

Triqler requires a list of PSMs, as well as corresponding information regarding
intensity, sample and experimental condition. Unfortunately, not all search engines
provide intensity information with their PSMs and this information might, thus, have
to be added in a separate step (see Subheading 3.3).

2.4 Data size — Number of samples

As Triqler aims to determine differential abundance, it requires at least 2 experi-
mental conditions (e.g. case and control) and 3 biological or technical replicates per
condition.
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2.5 Data size — Number of proteins

The parameter estimation of the error model of Triqler depends on a background
distribution of proteins that are not differentially abundant. Therefore,we recommend
that the software should only be used in situations where the majority of the proteins
(> 70%) are expected not to be differentially abundant between the conditions and
more than 100 proteins are present (see Note 1).

2.6 Input format

To simplify the creation of input files, we provide a set of converters that take
results from packages such as MaxQuant (see Subheading 3.1), Quandenser (see
Subheading 3.2), Dinosaur (see Subheading 3.3) and Tide (see Subheading 3.3)
search and convert them to the Triqler input format.

Alternatively, it is not too complicated to generate a Triqler input file by yourself.
An example input file is provided in the GitHub repository at https://github.
com/statisticalbiotechnology/triqler/blob/master/example/iPRG2016.
tsv. We will use this example file throughout this chapter to demonstrate several
characteristics of Triqler.

The input format consists of 7 columns separated by tabs (see Fig. 1), indicated
by the following headers: run, condition, charge, searchScore, intensity,
peptide, proteins. Each row consists of a PSM result from a search engine of
choice (charge, searchScore, peptide, proteins), together with the intensity
from the corresponding MS1 feature (intensity) and meta-information regarding
the sample the PSM corresponds to (run, condition). If a peptide is shared between
multiple proteins, the protein names are separated by semicolons (see Note 2).

run condition charge searchScore intensity peptide proteins
A1.ms2 1:A+B 2 0.405342 267860228.2 K.KFIPFSR.V HPRR1010001_poolA
A2.ms2 1:A+B 2 0.407504 251376674.6 K.KFIPFSR.V HPRR1010001_poolA
A3.ms2 1:A+B 2 0.489888 292520251.7 K.KFIPFSR.V HPRR1010001_poolA
B2.ms2 2:B 2 -1.05807 70019480.49 K.KFIPFSR.V HPRR1010001_poolA
C1.ms2 3:A 2 0.372497 565660378.8 K.KFIPFSR.V HPRR1010001_poolA
C2.ms2 3:A 2 0.40337 515010510.4 K.KFIPFSR.V HPRR1010001_poolA
C3.ms2 3:A 2 0.291525 508428331.1 K.KFIPFSR.V HPRR1010001_poolA
A1.ms2 1:A+B 3 -1.78404 9954876.791 K.YFPYRGSLLSLFIVG.- decoy_HPRR4110123_poolB
A2.ms2 1:A+B 3 -1.80667 54937151.14 K.YFPYRGSLLSLFIVG.- decoy_HPRR4110123_poolB
C1.ms2 3:A 3 -1.38149 228980354.7 K.YFPYRGSLLSLFIVG.- decoy_HPRR4110123_poolB
C2.ms2 3:A 3 -1.43683 251341063.8 K.YFPYRGSLLSLFIVG.- decoy_HPRR4110123_poolB
C3.ms2 3:A 3 -1.43252 237306632.5 K.YFPYRGSLLSLFIVG.- decoy_HPRR4110123_poolB

Fig. 1 An example of the Triqler input format.
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Bayesian protein quantification with Triqler 5

3 Methods

As the input to Triqler is unfortunately rather non-standard, we start with 3 different
methods of generating an input file from existing pipelines. This will be followed by
running Triqler itself and interpreting the results, as well as diving deeper into the
results for particular proteins of interest.

Commands on the command line are prepended by the $ character (e.g.
$ python --version), which should be omitted when actually running the com-
mand (e.g. python --version). Command line inputs are written between the <
and > symbols, e.g. <X>, which should be replaced by the user by the relevant value
or file path.

3.1 Generating Triqler input from MaxQuant

Triqler contains functionality to convert a MaxQuant evidence.txt output file into
a Triqler input file [9] (an example is given below, see Subheading 3.1, Step 3):

$ python -m triqler.convert.maxquant --file_list_file <L>
--out_file <OUT_FILE> <IN_FILE>

Explanation of the command line parameters:

<IN_FILE>

the file called evidence.txt present in the combined/txt folder of the MaxQuant
results.

--file_list_file <L>

a simple tab-separated text file with spectrum file names in the first column and
treatment group in the second column (see Fig. 2, left). The spectrum file names
should be the same as in the Raw file column name in evidence.txt without
the preceding path. In the case of fractionated samples, the third and fourth columns
should contain the sample name and fraction respectively (see Fig. 2, right).

--out_file <OUT>

the output of this converter, a Triqler input file.

Below are the step-by-step instructions to process a MaxQuant evidence.txt
file with Triqler:

1. For best performance, we recommended running MaxQuant by setting all FDR
thresholds (PSM, peptide and protein-level) to 100% (see Note 3) and turning off
matches-between-runs (see Note 4).

2. Create a tab-delimited file with the file metadata as described above, e.g.
file_metainfo.txt.
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6 Matthew The and Lukas Käll

A1.mzML A+B
A2.mzML A+B
A3.mzML A+B
B1.mzML B
B2.mzML B
B3.mzML B
C1.mzML A
C2.mzML A
C3.mzML A

A1_frac1.mzML A+B A1 1
A1_frac2.mzML A+B A1 2
A1_frac3.mzML A+B A1 3
A2_frac1.mzML A+B A2 1
A2_frac2.mzML A+B A2 2
A2_frac3.mzML A+B A2 3
B1_frac1.mzML B B1 1
B1_frac2.mzML B B1 2
B1_frac3.mzML B B1 3

Fig. 2 An example of the Triqler file list input format. The simple format (left) only contains the
file name and experimental condition. The extended format (right) also includes columns for the
sample name and fraction number.

3. Run the MaxQuant converter:

$ python -m triqler.convert.maxquant --file_list_file
file_metainfo.txt --out_file triqler_input.tsv evidence.txt

4. MaxQuant uses the decoy prefix REV__ by default, so remember to change this
prefix accordingly:

$ python -m triqler --decoy_pattern REV__ triqler_input.tsv

3.2 Generating Triqler input from Quandenser

Quandenser is a peptide quantification package that employs unsupervised clustering
on both MS1 and MS2 data, without assigning peptide sequences. The benefit is that
one can run the identification part as often as desired, without having to redo the
quantification. The current Quandenser converter relies on that the search results are
post-processed by Percolator [10, 11].

The interface for this converter is as follows (an example is given below, see
Subheading 3.2, Step 4):

$ python -m triqler.convert.quandenser --file_list_file <L>
--psm_files <TARGET>,<DECOY> --out_file <OUT> <IN_FILE>

Explanation of the command line parameters:

<IN_FILE>

the file calledQuandenser.feature_groups.tsv in theQuandenser results folder.

--file_list_file <L>
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Bayesian protein quantification with Triqler 7

a simple tab-separated text file with spectrum file names in the first column and
condition in the second column. In the case of fractionated samples, the third and
fourth columns should contain the sample name and fraction respectively (see Fig. 2).

--psm_files <TARGET>,<DECOY>

the target/decoy PSMoutput files from Percolator, separated by commas. Both output
files from stand-alone Percolator as well as from crux percolator are supported
(see Note 5).

--out_file <OUT>

the output of this converter, a Triqler input file.

Below are the step-by-step instructions to process the Quandenser output files
with Triqler (see Note 6).

1. RunQuandenser on your input files. Thiswill produce afile calledQuandenser.feature_groups.tsv
as well as one or more consensus spectra files in the consensus_spectra folder.

2. Search all consensus spectra files with a search engine of choice, preferably one
supported by Percolator (see Note 7).

3. RunPercolator on the search results files,make sure to use both the--results-psms
and --decoy-results-psms to obtain results on PSM level with both targets
and decoys reported.

4. Convert the search results

$ python -m triqler.convert.quandenser --file_list_file
file_metainfo.txt --out_file triqler_input.tsv
--psm_files percolator.target_psms.txt,percolator.decoy_psms.txt
Quandenser.feature_groups.tsv

5. Run Triqler:

$ python -m triqler triqler_input.tsv

3.3 Generating Triqler input from Dinosaur

Triqler also provides functionality to do quantitative analysis on search results from a
search engine of choice, post-processed by Percolator (seeNote 8), by usingDinosaur
to add MS1 quantification information to the MS2 spectra.

The interface for this converter is as follows (an example is given below, see
Subheading 3.3, Step 4):

$ python -m triqler.convert.dinosaur --file_list_file <L>
--psm_files <TARGET>,<DECOY> --out_file <OUT> <IN_FILES>
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8 Matthew The and Lukas Käll

The command line parameters are the same as in Subheading 3.2, with the
exception that the input files now are feature-to-spectrum mapping files, most easily
produced by using our Dinosaur adapter for Python (see Note 9).

Below are the step-by-step instructions to obtain quantification information with
Triqler using a search engine of choice. (see Note 10).

1. Run the Dinosaur adapter for Python on your input mzMLfiles (seeNote 11). This
will produce several files named dinosaur/<file_name>.feature_map.tsv,
and, optionally, spectrumfiles nameddinosaur/<file_name>.recalibrated.<spectrum_format>.

2. Search your input mzML files or the recalibrated MS2 spectrum files (see Note
12) with a search engine of choice, preferably one supported by Percolator (see
Note 13).

3. RunPercolator on the search results files,make sure to use both the--results-psms
and --decoy-results-psms to obtain results on PSM level with both targets
and decoys reported.

4. Convert the search results

$ python -m triqler.convert.dinosaur --file_list_file
file_metainfo.txt --out_file triqler_input.tsv
--psm_files percolator.target_psms.txt,percolator.decoy_psms.txt
dinosaur/*.feature_map.tsv

5. Run Triqler:

$ python -m triqler triqler_input.tsv

3.4 Triqler interface

To verify that Triqler was installed correctly and to get an overview of the command
line parameters, run the following command:

$ python -m triqler --help

This should produce the following help text. The individual command line argu-
ments are explained further below:
Triqler version 0.5.0
Copyright (c) 2018-2020 Matthew The. All rights reserved.
Written by Matthew The (matthew.the@scilifelab.se) in the
School of Engineering Sciences in Chemistry, Biotechnology and Health at the
Royal Institute of Technology in Stockholm.
Issued command: triqler.py --help
usage: __main__.py [-h] [--out_file OUT] [--fold_change_eval F]

[--decoy_pattern P] [--min_samples N] [--num_threads N]
[--ttest] [--write_spectrum_quants]
[--write_protein_posteriors P_OUT]
[--write_group_posteriors G_OUT]
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[--write_fold_change_posteriors F_OUT]
IN_FILE

positional arguments:
IN_FILE List of PSMs with abundances (not log transformed!)

and search engine score. See README for a detailed
description of the columns.

optional arguments:
-h, --help show this help message and exit
--out_file OUT Path to output file (writing in TSV format). N.B. if

more than 2 treatment groups are present, suffixes
will be added before the file extension. (default:
proteins.tsv)

--fold_change_eval F log2 fold change evaluation threshold. (default: 1.0)
--decoy_pattern P Prefix for decoy proteins. (default: decoy_)
--min_samples N Minimum number of samples a peptide needed to be

quantified in. (default: 2)
--num_threads N Number of threads, by default this is equal to the

number of CPU cores available on the device. (default:
6)

--ttest Use t-test for evaluating differential expression
instead of posterior probabilities. (default: False)

--write_spectrum_quants
Write quantifications for consensus spectra. Only
works if consensus spectrum index are given in input.
(default: False)

--write_protein_posteriors P_OUT
Write raw data of protein posteriors to the specified
file in TSV format. (default: )

--write_group_posteriors G_OUT
Write raw data of treatment group posteriors to the
specified file in TSV format. (default: )

--write_fold_change_posteriors F_OUT
Write raw data of fold change posteriors to the
specified file in TSV format. (default: )

A detailed description of the command line arguments follows below:

<IN_FILE>

tab-separated input file with the format described previously (see Subheading 2.6).

--out_file <OUT>

tab-separated results file on protein-level. If more than 2 treatment groups are speci-
fied, multiple output files are generated, where the comparison is inserted before the
.tsv extension. For example, if the output file is specified as proteins.tsv, then
the output files will be named proteins.1vs2.tsv, proteins.1vs3.tsv, etc.

--fold-change-eval <F>

the log2 fold change used for evaluation of differential abundance. Specifically, we
integrate the probability of the fold change distribution outside the region [−F, F]
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10 Matthew The and Lukas Käll

as the probability that the protein is differentially abundant (see Subheading 3.7,
Step 9). Note that this test is quite different from the t-test, and setting F = 0 to
supposedly obtain all differentially abundant proteins regardless of the fold change
will result in nonsensical results (see Subheading 3.7, Step 10).

--decoy_pattern <P>

prefix for decoy proteins used by the search engine. For MaxQuant searches, this is
typically REV__. This pattern is used to recognize which of the PSMs are targets and
decoys.

--min_samples <N>

this flag controls which peptides are discarded because they have too many missing
values. For example, if N = 3 and a total of 10 samples are provided, all peptides
with more than 7 missing values are discarded (see Note 14).

--num_threads <N>

this flag controls how many threads are used to calculate the posterior distributions
(see Note 15).

--ttest

specifying this flag computes a t-test based on the expected values of the protein
abundances instead of using the Bayesian posterior calculation. This is only meant
for comparison purposes and we do not claim or support any validity of these results.

--write_spectrum_quants

specifying this flag produces an extra intermediate output very similar to the pep-
tides output specifically for Quandenser input. Instead of outputting the peptide
abundances across all runs, it outputs the abundances for an MS1 feature group
across all runs.

--write_protein_posteriors <P_OUT>

writes the raw results of the posterior distributions of the relative protein abundance
for each protein. How to visualize these results is described later (see Subheading 3.7,
Step 7).

--write_group_posteriors <G_OUT>

writes the raw results of the posterior distributions of the treatment group mean
abundance for each protein. How to visualize these results is described later (see
Subheading 3.7, Step 8).

--write_fold_change_posteriors <F_OUT>

writes the raw results of the posterior distributions of the fold change for each protein.
How to visualize these results is described later (see Subheading 3.7, Step 9).
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3.5 Running Triqler

1. Download the example file from our GitHub repository: https://github.com/
statisticalbiotechnology/triqler/blob/master/example/iPRG2016.
tsv (see Note 16).

2. Run Triqler, keeping all parameters at their default values:

$ python -m triqler iPRG2016.tsv

Below, the internal steps of Triqler and the produced outputs are explained section
by section.

3. Boilerplate welcome message, including the specified command line parameters
for easy future reference:

Triqler version 0.5.0
Copyright (c) 2018-2020 Matthew The. All rights reserved.
Written by Matthew The (matthew.the@scilifelab.se) in the
School of Engineering Sciences in Chemistry, Biotechnology and Health at the
Royal Institute of Technology in Stockholm.
Issued command: triqler.py iPRG2016.tsv

4. Triqler parses the input file and recalculates q-values and posterior error proba-
bilities (PEPs) using a Python re-implementation of qvality [12].
Parsing triqler input file
Reading row 0

Calculating identification PEPs
Identified 12113 PSMs at 1% FDR

5. Some peptides may have been assigned to multiple MS1 features in a single run,
each with a different XIC intensity (see Note 17). In this step, Triqler selects
the best MS1 feature based on the search engine score and, if available, the
feature-match error probability.
Selecting best feature per run and spectrum
featureGroupIdx: 0

6. Triqler divides the XIC intensities by a power of 10 while preserving 2 significant
digits for the smallest observed intensity. This does not affect subsequent analysis
nor the content of the output files but serves to increase the readability of the
intermediate files (see Note 18).
Dividing intensities by 100000 for increased readability

7. Peptide-intensity pairs from the different runs are grouped based on sequence and
charge state. Subsequently, the FDR and PEPs of the unique peptides are calcu-
lated [13]. The grouped peptide-intensity pairs are then written to an intermediate
file, in this case iPRG2016.tsv.pqr.tsv (see Note 19).
Calculating peptide-level identification PEPs
Identified 1988 peptides at 1% FDR

Writing peptide quant rows to file: iPRG2016.tsv.pqr.tsv

8. Protein inference is executed using the best peptide score as the protein’s score,
together with the picked protein approach [14].

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 25, 2020. ; https://doi.org/10.1101/2020.09.24.311605doi: bioRxiv preprint 

 https://github.com/statisticalbiotechnology/triqler/blob/master/example/iPRG2016 .tsv
 https://github.com/statisticalbiotechnology/triqler/blob/master/example/iPRG2016 .tsv
 https://github.com/statisticalbiotechnology/triqler/blob/master/example/iPRG2016 .tsv
https://doi.org/10.1101/2020.09.24.311605
http://creativecommons.org/licenses/by/4.0/


12 Matthew The and Lukas Käll

Calculating protein-level identification PEPs
Identified 349 proteins at 1% FDR

9. Triqler makes use of the empirical Bayes method to estimate hyperparameters
from the input data. We fit distributions to naive estimates of peptide and protein
abundance values (see Subheading 3.8).
Fitting hyperparameters
params["muDetect"], params["sigmaDetect"] = 1.056334, 0.372395
params["muXIC"], params["sigmaXIC"] = 3.276315, 0.953023
params["muProtein"], params["sigmaProtein"] = 0.066437, 0.239524
params["muFeatureDiff"], params["sigmaFeatureDiff"] = -0.013907, 0.149265
params["shapeInGroupStdevs"], params["scaleInGroupStdevs"] = 1.027176,

0.089433

10. The hyperparameters are now used in the probabilistic graphicalmodel to estimate
posterior distributions for the relative protein abundances, as well as for the fold
change between the treatment groups.
Calculating protein posteriors
50 / 422 11.85%
100 / 422 23.70%
150 / 422 35.55%
200 / 422 47.39%
250 / 422 59.24%
300 / 422 71.09%
350 / 422 82.94%
400 / 422 94.79%

11. Finally, the protein identification PEP and the probability that the fold change
exceeds the fold change threshold specified by the --fold_change_eval pa-
rameter are combined. This combined PEP can then be used to compute the
differential abundance FDR (see Note 20). For each comparison, Triqler then
reports the number of differentially abundant proteins at 5% FDR and outputs the
final results to one file per comparison (e.g. proteins.1vs2.tsv).
Comparing 1:A+B to 2:B
output file: proteins.1vs2.tsv
Found 204 target proteins as differentially abundant at 5% FDR

Comparing 1:A+B to 3:A
output file: proteins.1vs3.tsv
Found 216 target proteins as differentially abundant at 5% FDR

Comparing 2:B to 3:A
output file: proteins.2vs3.tsv
Found 352 target proteins as differentially abundant at 5% FDR

Triqler execution took 22.869995618006214 seconds wall clock time

In this particular dataset, there are a total of 383 truly differentially abundant
(spiked-in) proteins. However, in the A + B vs A and A + B vs B comparisons,
the expected log2 fold change coincides with the chosen --fold_change_eval
parameter of 1.0, which makes it hard for about half of these proteins to be called
differentially abundant (see Note 21).
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3.6 Interpreting the Triqler output

The protein output files can be opened in Excel, or another spreadsheet package of
choice. For an explanation of the columns see Table 1.

Table 1 Triqler protein output format.

Column name Description

q_value Differential abundance FDR. Includes identifi-
cation and quantification error probabilities. Is
the cumulative average of the sorted column
posterior_error_prob.

posterior_error_prob Differential abundance PEP. Combines identi-
fication and quantification error probabilities
from protein_id_posterior_error_prob
and diff_exp_prob_1.0.

protein Protein identifier, as specified in the input file.
num_peptides Number of unique peptides for this protein (with-

out applying an FDR filter).
protein_id_posterior_error_prob Identification PEP, based on the best scoring

PSM for this protein.
log2_fold_change Expected value of the posterior distribution of

the log2 fold change.
diff_exp_prob_1.0 The integrated probability of the fold change dis-

tribution outside the region [−F, F] specified
by the fold_change_eval parameter (see Sub-
heading 3.7, Step 9). The 1.0 refers to the default
value of the fold_change_eval parameter and
will change accordingly.

1:A+B:A1.ms2 Expected value of the posterior distribution of
the relative protein abundance relative for
each sample. Here, relative means relative to
the mean across all samples (see
Subheading 3.7, Step 3) (see Note 22).

1:A+B:A2.ms2
1:A+B:A3.ms2
2:B:B1.ms2
2:B:B2.ms2
2:B:B3.ms2
3:A:C1.ms2
3:A:C2.ms2
3:A:C3.ms2
peptides All peptides mapped to this protein, disregards

shared peptides.

To help understand the output better, we will look at a specific example in the
proteins.1vs2.tsv file.

1. Search for the protein HPRR3730445_poolB, which should be around the 174th
line.

2. In the 1st column, the q-value for this protein is shown to be 0.006985 (the
exact value may vary in newer versions), meaning that the list of proteins up
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to this position has an FDR of 0.7%, meaning that we expect approximately
173 × 0.006985 = 1.2 false positives in this list of 173 proteins. This q-value
combines the error probabilities of the identification and the quantification pro-
cess, which improves on the typical practice of separately reporting identification
and quantification FDRs.

3. In the 2nd column, we can see that the posterior error probability is 0.1302. This
value, again, combines both identification and quantification error probabilities.
Practically speaking this value means that this particular protein has a probability
of 87% to be both correctly identified and differentially abundant.

4. In the 4th column, we see that we have found 3 unique peptides for this protein.
However, this does not tell us howmany were identified at 1% peptide-level FDR.

5. In the 5th column, the identification posterior error probability is listed as
0.0001162. Meaning that the protein has a probability of only 0.01% to be
incorrectly identified.

6. In the 6th column, we see that the expected log2 fold change between the groups
A+B and B for this protein is −1.522. This means that we expect that this protein
is present in group A+ B at a concentration of 2−1.522 = 0.34 relative to group B.
According to the spike-in ratios, this value should have been 0.5.

7. In the 7th column, the probability that the log2 fold change between the A+B and
B treatment group is larger than 1.0 (the default value for the fold_change_eval
parameter) is given as 0.1301, meaning that there is a 13% chance that the absolute
fold change was in fact below 0.5. If we would have specified a lower value for
the fold_change_eval parameter, this probability would have increased, as we
would be integrating a larger part of the posterior distribution of the fold change.
This in turn will affect the combined posterior error probability and FDR in the
first and second columns.

8. In the 8 − 16th column, we can see the individual expected protein abundance
value per sample, as obtained from the posterior distributions for the relative
protein abundance (relative to the mean over all samples, which would itself be
represented by the value 1.0, also see Subheading 3.7, Step 3). For example, we
see that in A3.ms2 the expected value for the relative protein abundance is 5.475,
meaning that it is 5.5 times higher than the average protein abundance across all
samples. In B2.ms2 this value is 13.64, meaning that we expect the abundance in
this sample to be 13.64

5.475 = 2.5 times higher than in A3.ms2.
9. In the 17th column and beyond, the 3 peptides that were used to identify and

quantify this protein are listed.

3.7 Visualizing and interpreting posterior distributions

In some cases, one would like to have a closer look at how Triqler arrived at the
conclusion of differential abundance for a particular protein. For this, Triqler provides
functionality for extracting the relevant data for a protein of interest and plotting the
posterior distributions at different levels (protein, treatment group, fold change).
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1. Generate the posterior distribution plots for our protein of interest (we need to
increase --plot_max_fold_change from its default value of 2.0, since we have
extreme fold changes in this particular sample):

$ python -m triqler.distribution.plot_posteriors --protein_id
HPRR3730445_poolB --plot_max_fold_change 10.0 iPRG2016.tsv

Three plot windows will be opened, which we will examine shortly. First, we will
look at the command line output.

2. After the boilerplate text and hyperparameter estimation, the peptides for this
protein are listed in descending order of confidence. First, the “raw” intensity
values are listed in the same order as in the regular protein output (see Table 1),
note that these have been divided by the power of 10 as mentioned previously (see
Subheading 3.5, Step 6) compared to the original Triqler input. Missing values
are indicated by nan values. These are followed by the combinedPEP, which is a
combination of the identification and feature-match error probability. In this case,
since the latter is not included, combinedPEP just reflects the identification PEP.

Peptide absolute abundances
760.43 509.03 1028.25 842.80 1610.55 1289.44 nan nan nan
combinedPEP=3.4e-06 peptide=R.WTAQGHANHGFVVEVAHLEEK.Q
99.93 166.59 3184.98 1868.59 6260.46 5909.35 nan nan 59.71
combinedPEP=2.2e-05 peptide=R.LVNQNASRWESFDVTPAVMR.W
10064.52 12531.44 nan 27429.83 26226.20 23061.53 nan 242.17 19.53
combinedPEP=0.0023 peptide=R.WESFDVTPAVMR.W

Here, we can see that all 3 peptides are identified with high confidence. There
are many missing values in the group A samples (the last three columns of each
row), and one missing value in the third A + B sample (third column).

3. The values from above are repeated, but now divided by the geometric mean
across all samples, resulting in “relative” peptide abundances.
Peptide relative abundances
0.81 0.54 1.09 0.90 1.71 1.37 nan nan nan
combinedPEP=3.4e-06 peptide=R.WTAQGHANHGFVVEVAHLEEK.Q
0.12 0.21 3.96 2.32 7.78 7.34 nan nan 0.07
combinedPEP=2.2e-05 peptide=R.LVNQNASRWESFDVTPAVMR.W
2.70 3.37 nan 7.37 7.05 6.20 nan 0.07 0.01
combinedPEP=0.0023 peptide=R.WESFDVTPAVMR.W

4. The above information (peptide intensities and identification PEPs) are then pro-
cessed by Triqler’s probabilistic graphical model, resulting in several posterior
distributions. First, the protein-level results are printed as expected values of the
protein abundance posterior distribution. For comparison purposes, also the re-
sults of a regular t-test (2 treatment groups) or ANOVA test (3 or more treatment
groups) on these expected values is shown.
Protein abundance (expected value) and p-value
3.27 2.97 5.48 7.66 13.64 11.55 0.01 0.07 0.02
p-value: 3.282253815003453e-05

5. Next, Triqler calculates the probability that the log2 fold change is below the
specified --fold_change_eval parameter. By default, this is 1.0, but we will
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16 Matthew The and Lukas Käll

explore how these probabilities change for different values, see Subheading 3.7,
Step 10. We can see that for the A+B vs B comparison, there is a 13% probability
that the log2 fold change is below 1.0, whereas for the other two comparisons,
this probability is practically 0. This also makes sense, as in group A, this protein
is in fact not present.
Posterior probability |log2 fold change| < 1.00
Group A+B vs Group B: 0.130072
Group A+B vs Group A: 0.000000
Group B vs Group A: 0.000000

6. Finally,we also summarize the posterior distributions of the groupmeans byfitting
normal distributions to them. These values are, again, relative to the mean across
all group abundances. Note that these values are based on the log10 transformed
values, rather than log2 as is the case for the values reported for fold changes.
The standard deviations reflect the uncertainty in the estimates. In this case, the
standard deviation for group A is the largest, which reflects the fact that the
missing values cause a higher degree of uncertainty.
Normal distribution fits for posterior distributions of treatment
group relative abundances:
Group A+B: mu, sigma = 0.472918, 0.114328
Group B: mu, sigma = 0.918317, 0.071100
Group A: mu, sigma = -1.782820, 0.269253

7. Now, we can examine the 3 posterior distribution plots, starting with the relative
protein abundance distributions in Fig. 3. Note that the abundance values are,
again, log10 transformed. The distributions for the samples in the group A+B and
B are relatively narrow, due to the high number of observed values, in contrast to
the samples in group A, which have a large number of missing values combined
with very low intensities.

-4 -3 -2 -1 0 1 2
0.00

0.02
Group A+B

A1.ms2
A2.ms2
A3.ms2

-4 -3 -2 -1 0 1 2
0.00

0.02

Group B
B1.ms2
B2.ms2
B3.ms2

-4 -3 -2 -1 0 1 2
log10(rel. protein quant)

0.00

0.01

Group A
C1.ms2
C2.ms2
C3.ms2

Posteriors for protein abundances

Fig. 3 Posterior distributions for the relative protein abundance of HPRR3730445_poolB in each
of the 9 samples.
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8. For the posterior distributions of the group means, we can clearly see the effect
of the individual samples from the previous step (Figure 4). Here, we can also
verify that the distributions do resemble normal distributions, as was assumed
earlier (see Subheading 3.7, Step 6).

-3 -2 -1 0 1 2
0.00

0.02

Group A+B
posterior
normal fit

-3 -2 -1 0 1 2
0.00

0.05
Group B

-3 -2 -1 0 1 2
log10(rel. protein quant)

0.00

0.01

Group A

Posteriors for treatment group abundances

Fig. 4 Posterior distributions for the relative mean group abundance of HPRR3730445_poolB in
each of the 3 groups.

9. Finally, for each pair of groups, we “subtract” one group mean posterior distri-
bution from the other to obtain a fold change posterior distribution (Figure 5) .
Again, note the logarithm change from log10 to log2 compared to the previous
step. In these violin plots, we show the distribution on the y-axes. The green dis-
tributions represent the Triqler estimations and, for comparison, we also display
the estimate that would have been given by a naive method (Top 3, mean row
imputation) in blue.

10. To show the effect of the --fold_change_eval parameter, we now change this
to 0.5 instead of the default value of 1.0.

$ python -m triqler.distribution.plot_posteriors --protein_id
HPRR3730445_poolB --plot_max_fold_change 10.0
--fold_change_eval 0.5 iPRG2016.tsv

All of the command line output stays the same, except for the second to last block,
where the A+ B vs B comparison now also shows a very low probability of being
below the lowered --fold_change_eval.:

Posterior probability |log2 fold change| < 0.50
Group A+B vs Group B: 0.010441
Group A+B vs Group A: 0.000000
Group B vs Group A: 0.000000
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Fig. 5 Posterior distributions for the log2 fold changes of HPRR3730445_poolB for each of the 3
group comparisons.

From the new fold change posterior distribution plot (Figure 6), we can also see
that the distribution for the A+ B vs B comparison now is practically completely
outside of the red fold change region. At the same time, this demonstrates the
danger of using a too low value for --fold_change_eval, as the full width of the
green distribution is now larger than the red region. Even if the green distribution
would be centered around 0, there would still be some probability outside of
the red region, which would then be reported as a non-negligible probability of
the protein being differentially abundant even though no actual difference can be
seen.

3.8 Visualizing and interpreting hyperparameter estimation

A common concern for using Bayesian methods is the dependence on the prior
distributions. Triqler employs the Empirical Bayes method to estimate the hyper-
parameters for the prior distributions (see Note 23) for the probabilistic graphical
model. To check if these hyperparameter estimations are reasonable, Triqler provides
functions to investigate these through graphical inspection (see Note 24).

1. Generate the fits for the hyperparameter estimations:

$ python -m triqler.distribution.plot_hyperparameter_fits iPRG2016.tsv

2. To estimate the probability of a missing value as a function of the XIC, Triqler
postulates that the log10(XIC) of all peptides across all samples can be modeled
as a left-censored normal distribution (Fig. 7). Here, the left-censored normal
distribution (green) is a normal distribution (cyan) with some “mass” missing
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Fig. 6 Same as Fig. 5 but with the log2 fold change evaluation threshold changed to 0.5 instead of
the default value of 1.0.

for low XICs due to a sigmoidal censoring function (purple). Note that the XIC
values have been divided by a power of 10 (see Subheading 3.5, Step 6). Note
that, in this particular example, the influence of the sigmoidal censoring function
is not very apparent, likely due to the design of the study with many actually
missing values.
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Fig. 7 Estimating the hyperparameters for the missing value probability as a function of XIC by a
left-censored normal distribution.
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3. To estimate the prior distribution for the relative protein abundances we fit a
hyperbolic secant function (see Note 25) to naive estimations (simple average of
relative peptide abundances) of the protein abundances (Fig. 8).
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Fig. 8 The prior for the mean of the relative protein abundance is estimated with a hyperbolic
secant distribution.

4. To estimate the distribution of the difference between the true and observed XIC,
we fit a hyperbolic tangent distribution to the difference between the observed
XICs and the expected XIC based on the relative protein abundance estimated in
the previous step and the estimated ionization efficiency (see Note 26). (Fig. 9).
This can be seen as an estimate for the measurement uncertainty which will then
propagate through the graphical model.

5. Finally, we estimate the distribution of the standard deviation between protein
abundances of samples within the same treatment group using a Gamma distri-
bution (Fig. 10). This serves to capture the biological and/or technical variance
within a group.

Notes

1. We have, however, observed that Triqler still is able to correctly distinguish
between changing and unchanging proteins in engineered datasets if the former
requirement is violated.
2. Currently, shared peptides are not considered for identification and quantifica-

tion. However, we expect to include functionality to include shared peptides in the
near future.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 25, 2020. ; https://doi.org/10.1101/2020.09.24.311605doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.24.311605
http://creativecommons.org/licenses/by/4.0/


Bayesian protein quantification with Triqler 21

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
log10(imputed xic / observed xic)

0.0

0.5

1.0

1.5

2.0

2.5

re
la

tiv
e 

fre
qu

en
cy

Curve fit for muFeatureDiff sigmaFeatureDiff
hypsec fit
normal fit (for comparison)
observed distribution

Fig. 9 The measurement uncertainty distribution is estimated with a hyperbolic secant distribution.
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Fig. 10 The within-group standard deviation distribution is estimated by a Gamma distribution.

3. For some test datasets, the results look reasonable for the default thresholds of
1% FDR aswell, but as the error estimates are likely unreliable we do not recommend
running Triqler in this way.
4. We have verified the validity of the results without MBR on several test datasets.

Triqler will work with match-between-runs turned on, but we cannot guarantee the
validity of the results. In a future version, wewill try to incorporate the error estimates
from MaxQuant’s MBR step, similar to what we have done with Quandenser (see
Subheading 3.2).
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5. If the output from crux percolator is used, make sure that the order of
the files processed by crux tide-search is the same as in the file specified at
--file_list_file.
6. A more detailed example of how to run Quandenser and obtain search re-

sults from the consensus spectra can be found here: https://github.com/
statisticalbiotechnology/quandenser/wiki/Example:-Quandenser-followed-by-Tide-and-Triqler
7. Currently, this list includes SEQUEST [15] (Comet [16], Tide [17]),MSGF+ [18],

X!Tandem [19]. CustomPython scripts are available forMODa [20],MSFragger [21]
and Andromeda [22] upon request to the authors.
8. see Note 7.
9. This can be installed through$ pip install simsalabim. Also, seeNote10.
10. A more detailed example of how to run the dinosaur adapter and obtain search
results can be found here: https://github.com/MatthewThe/simsalabim/
wiki/Example:-Dinosaur-followed-by-Tide-and-Triqler
11. see Note 10.
12. We strongly recommend searching the recalibrated MS2 spectrum files, which
now have accurate MS1 precursors assigned. This generally improves the identifica-
tion rate and allows for multiple identifications per spectrum for chimeric spectra. In
the dataset we used as an example in this manuscript (iPRG2016), we could increase
the number of identified peptides by 34%.
13. see Note 7.
14. We have observed in [7] that even for low values of N , e.g. N = 3, the differential
abundance FDR remains under some form of control, but advise users to be careful
with setting this value so low, as the number of false positives does increase.
15. On some systems, the python multiprocessing module causes issues. Setting
N = 1 will bypass this multiprocessing module at the cost of longer runtimes.
16. This dataset is described in [23]. Briefly, this dataset was designed to test
how well protein identification and quantification pipelines can deal with shared
peptides, by using two pools of synthesized proteins which are similar to human
proteins (PrESTs). Each of the pools contained one out of a pair of proteins that
share a number of peptides. In the first 3 samples, both pools were mixed in equal
parts into a background of E. Coli lysate, in the second 3 samples, only the B pool
proteins were mixed in, and in the last 3 samples, only the A pool proteins were
added.
17. This can, for example, be a result of problems with MS1 feature detection or
due to false positives in the MS2 spectrum identification
18. Specificallyexample/iPRG2016.tsv.pqr.tsv, the output of the--write-spectrum-quants
file, example/iPRG2016.tsv.sqr.tsv and the command line output of the
plot_posteriors commands.
19. This file summarizes the Triqler input file by grouping the rows by combinations
of peptide and charge. The format consists of a column called combinedPEP, which
combines the peptide-level identification PEP and the feature-match PEP. In the
absence of the latter, it is just the identification PEP. After the charge column and
two columns specific to Quandenser (feature group index and consensus spectrum
scan number), there are three groups of N columns, where N is the number of
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samples. The first group contains the feature-match PEPs, the second group the
intensity values (divided by the power of 10 as mentioned earlier) and the last group
contains the identification PEP. The last two columns contain the peptide sequence
and protein identifier respectively.
20. This is done by sorting the PEPs in ascending order and taking the cumulative
average [24]. This works because the PEP is the derivative of the FDR, and is
therefore sometimes called the local-FDR.
21. The 192 poolA proteins and 191 poolB proteins are present at half the concen-
tration in the A + B samples compared to the A and B samples respectively. The
posterior distribution therefore, ideally, centers around a log2 fold change of 1.0.
Here, half of the probability distribution would indicate a log2 fold change below
1.0 resulting in a posterior error probability of 0.5. In practice, the log2 fold change
posterior distributions should include the true log2 fold change of 1.0, but do not
necessarily center around 1.0. Therefore, some of these proteins will have a fold
change posterior distributions centered above 1.0 and a posterior error probability
< 0.5, which might result into them being called significantly differentially abundant
at 5% FDR.
22. Another way to consider these values is as the regular protein abundance values
(e.g. summed intensity) divided by the mean over all samples.
23. For a short introduction for non-statisticians into the basics of Bayesian statistics,
including priors, hyperparameters, posteriors and some simple examples, see [25].
24. See the Supplemental Data of [5] for more examples of fitted hyperparameter
distributions for a range of datasets
25. The hyperbolic secant distribution (green) has heavier tails than the normal
distribution (red) and is, thus, better able to deal with outliers that are common in
real-world data.
26. The ionization efficiency is estimated as the average across all samples of theXIC
divided by the relative peptide abundance, where missing values are not considered.
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