
A Tree of Human Gut Bacterial Species and its
Applications to Metagenomics and Metaproteomics Data

Analysis

Moses Stamboulian1, Thomas G. Doak2, and Yuzhen Ye1*

1Luddy School of Informatics, Computing and Engineering, Indiana
University, 700 N. Woodlawn Avenue, Bloomington, IN 47408.

2Biology Department, Indiana University, Bloomington, IN 47408.
*Corresponding author: Yuzhen Ye, yye@indiana.edu

Abstract

Background: Recent advances in genome and metagenome sequencing have dramatically
enriched the collection of genomes of bacterial species related to human health and diseases.
In metagenomic studies phylogenetic trees are commonly used to depict, describe, and com-
pare the bacterial members of the community under study. The most accurate tree-building
algorithms now use large sets of marker genes taken from across genomes. However, many of
the current bacterial genomes were assembled from metagenomic datasets (i.e., metagenome
assembled genomes, MAGs), and often contain missing information. It is therefore important
to study how well the phylogeny approach performs on such genomes. Further, phylogeny
methods are not perfect and it is important to know how reliable an inferred tree is.
Results: Here we examined the impact of incompleteness of the genomes on the tree re-
construction, and we showed that phylogeny approaches including RAxML (which handles
missing data explicitly) and FastTree generally performed well on simulated collection of 400
genomes with missing information. As RAxML is computationally prohibitive for the much
larger collections of gut genomes, we chose FastTree to build a unified tree of human-gut as-
sociated bacterial species (referred to as gut tree), including more than 3000 genomes, most
of which are incomplete. We developed two downstream applications of the gut tree: peptide-
centric analysis of metaproteomics datasets; and taxonomic characterization of metagenomic
sequences. In both applications, the gut tree provided the basis for quantification of species
composition at various taxonomic resolutions.
Conclusions: The gut tree presented in this study provides a useful framework for taxonomic
profiling of human gut microbiome. Including MAGs in the tree provides more comprehensive
representation of microbial species diversity associated with human gut, important for studying
the taxonomic composition of gut microbiome.
Availability and Implementation: The tree construction pipeline and downstream appli-
cations of the gut tree are freely available at https://github.com/mgtools/guttree.
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1 Background

Phylogenetic trees are by far the most widely accepted approach to represent organisms at
various times throughout history and at various taxonomic levels, by illustrating the nat-
ural hierarchical relationships between different clades. Traditional methods in identifying
and distinguishing between species often relied on morphological and other obvious behav-
ioral characteristics in their classifications1. While such methods allowed for classification
of many macroscopic organisms, it failed when applied to the microscopic world, especially
bacteria and archaea2. With the rapid advancement of sequencing techniques now allowing
for whole genome sequencing and reconstruction3, more systematic methods in (re)defining
phylogenetic trees, based on molecular information, emerged. High-throughput Next Gener-
ation Sequencing methods4 coupled with Metagenomics made it possible to perform culture
free genome sequencing, which removed biases such as sequencing only culturable species or
reference genomes, further revealing the diversity of bacterial species5. These data sets allowed
development of bioinformatics tools that computationally first assembled these (usually short)
sequence reads6,7, binned them to complete or near complete genomes, and then assessed their
quality8–13. All this has allowed for a rapid expansion in the number of unannotated genomes,
many previously unknown, and associated with different environments, human body sites and
geographic locations14–17.

Taking advantage of these developments and the expansion in complete and near complete
genome databases, we focus our efforts on collecting a wide range of human gut bacterial
genomes, in an attempt to characterize and catalogue the proliferation of different species
across different individuals. Microbiomes, especially human gut bacteria, have received growing
attention over the past decade. Numerous studies have been published focusing on human gut
flora, reporting its important role in both human health and disease, most findings claiming its
relationship to some sort of dysbiosis in the composition and functionality of gut microbes18.
Irritable Bowel Syndrome (IBS), a disorder characterized by abdominal pain, bloating, diarrhea
or constipation, is thought to be caused by multiple factors, but variation in the composition
of gut microbiota has been shown to be strongly associated with this syndrome as well19.
Inflammatory Bowel Diseases (IBD)—the most prominent ones being Crohn’s disease and
ulcerative colitis—are characterized by inflammation of different parts of the intestines. It
has been observed that alterations in the abundance and diversity levels of the Firmicutes
phylum in the gut of some individuals contribute to IBD. The Fermicutes phyla in particular
produce short chain fatty acids through fermentation of dietary fibers, and these acids have anti-
inflammatory properties20; patients diagnosed with IBD demonstrate a noticeable reduction
in levels of Firmicutes. Clostridium difficile Infection (CDI) is another gut bacteria-associated
disease, where hosts experience an increase in the gram-positive toxin producing bacteria C.
difficile 21. It has been hypothesized that a dominant (healthy) gut microbiota protects their
host from over-infestation of C. difficile species, through colonization-resistance mechanisms
opposing it’s overgrowth22. These are just a few examples demonstrating the key role played
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by the human gut bacteria in regulating and maintaining the host’s health. Further work is
now finding an interplay between gut microbiota and obesity and other metabolic syndromes23,
allergic reactions24, and even with neurological disorders25. The importance of the human gut
bacteria in health is indisputable, but understanding the mechanisms involved in maintaining
a healthy homeostasis is just beginning.

Availability of genomic sequences dramatically broadens the diversity and resolution of the
tree of life; genomics-based approaches are based on either a small number of marker loci, or use
whole-genome information. Using more phylogenetic marker genes (e.g. a set of 16S ribosomal
protein sequences from each organism)1 gives trees with higher-resolution than the 16S rRNA
gene alone. Using this approach, Hug and colleagues derived a dramatically expanded tree
of life, including over 1,000 uncultivated and often little known organisms1. But marker-
gene based approaches require alignment of marker genes, which becomes difficult when the
genomes are largely draft, each with its own incomplete set of marker genes. Alignment-free
sequence analyses have been applied to problems ranging from whole-genome phylogeny to the
classification of protein families, identification of horizontally transferred genes, and detection
of recombined sequences26. Alignment-free approaches (such as kmer based methods) are more
resilient to compositional biases, complex genetic rearrangements and large insertions/deletions
for whole genome phylogenies27–29. CAFE is an efficient implementation of a fast kmer-based
alignment-free method to calculate distances across genomes29. But alignment-free methods
discard the great deal of information found in protein alignments. On the other hand, alignment
based maximum likelihood or Bayesian approaches such as RAxML, IQ-TREE and Mr. Bayes
can explicitly handle missing information30,31, but are usually computational expensive so
cannot handle large alignments involving many sequences. It was shown that FastTree is more
scalable, yet at the same time retains comparable performance to the slower programs30,31. We
also show that FastTree achieves a similar performance to RAxML on alignments with missing
information, using simulated datasets with missing information (see results).

Recent efforts have focused in collecting gut bacterial genomes from shotgun sequenced
metagenomic samples, representing different states of health and dysbiosis, and a collective
3,301 metagenome assembled genomes (MAGs) were recently32 and33. A tree of these species
will provide valuable information on the biodiversity of gut bacteria, and will be practically
useful for a spectrum of analytic methods that rely on the phylogenetic relationship of the
species, including MetaGOmics34 and Unipept (https://unipept.ugent.be)35. Here we report a
comprehensive alignment-based phylogenetic tree of human gut-related bacterial species using
FastTree over 120 ubiquitous bacterial marker genes, and explore its applications36. These
marker genes have been shown to be present in ≥ 90% of the bacterial genomes, as single
copies in most cases37. The ubiquity and importance of these genes make them less likely to
be subjects of horizontal gene transfers within prokaryotic species38. We show that alignment
concatenation based approaches remain superior and result in better phylogenetic trees as
compared to alignment-free methods, as tested on a subset of simulated species by deliberately
removing part of their genomes. We discuss the challenges in constructing a tree representing
evolutionary distant species, as well as challenges using nearly complete genomes with possible
missing parts. We reflect on certain limitations and disagreements between our tree and the
taxonomic assignment of the genomes based on a lowest common ancestor approach. Finally
we explore applications of the constructed gut tree in the context of representing the most
abundant and dominant species across different samples from metaproteomic and metagenomic
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perspectives and reflecting it on the tree. We believe that the gut tree we built and the
companion tools we developed for using the tree will be beneficial as an initial attempt in
profiling and performing comparative studies across different human subjects coming from
diverse backgrounds and health conditions.

2 Methods

2.1 Gut bacterial genomes and metagenome assembled genomes
(MAGs)

We collected over 3,000 genomes for human gut bacterial species from two recent studies32,33.
These two studies report the largest genomic catalogue for human gut bacteria thus far. Bac-
terial genomes reported in32 were compiled from two sources: a total of 617 genomes obtained
from the human microbiome project (HMP)39, and 737 whole genome-sequenced bacterial iso-
lates, representing the Human Gastrointestinal Bacteria Culture Collection (HBC). These 737
binned bacterial genomes were assembled by culturing and purifying bacterial isolates of 20 fe-
cal samples originating from different individuals32. On the other hand the bacterial genomes
reported in33 were generated and classified from a total of 92,143 metagenome assembled
genomes (MAGs), a total of 1,952 binned genomes were characterized as non-overlapping with
bacterial genomes previously reported, i.e., don’t match with any isolate within UniportKB.
These novel binned genomes were termed as Uncharaterised MetaGenome Species (UMGS).
We were able to retrieve 612 out of 617 RefSeq sequences using the reported RefSeq IDs. Our
final dataset for this study consists of 3,301 genomes and MAGs, inclduing 612 genomes from
the RefSeq database, 737 whole genome-sequenced bacterial isolates from the HBC dataset
and 1,952 UMGS genomes.

2.2 Gene prediction and marker gene assignment

For RefSeq genomes, we obtained their genes from the RefSeq database: a total of 1,907,611
genes were retrieved for all the RefSeq genomes included. For the rest (i.e., the MAGs), we
applied FragGeneScan (FGS), with default settings, to predict protein coding genes from the
contigs40: a total of 2,602,889 genes were predicted from the HBC genomes, and another
4,001,749 genes from the UMGS genomes.

We used a set of a set of 120 marker genes for phylogeny reconstruction. We extracted hid-
den markov models (HMM) for these 120 marker genes from Pfam41 and TIGRfam databases42

(the list of HMM models can be found here). We then applied hmmscan (in the hmmer3 pack-
age) to search against the HMM models, to predict marker genes in the genomes and MAGs,
with an e-value of e−10 as the cutoff.

2.3 Data simulation and performance comparison of phylogeny ap-
proaches

To compare different phylogenetic inference methods (FastTree and RAxML) and clustering
methods (alignment free based), we used a subset of 400 of the 612 gut-associated RefSeq
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genomes sharing 57 pfam domains (see here for a comprehensive list of shared Pfams). Fast-
Tree and RAxML approaches are alignment-based. HMMalign was used to construct sequence
alignments for each of the 57 domains43. G-blocks was used for the final alignment con-
catenation and improvement44. Default settings for RAxML and FastTree were used to infer
phylogenetic trees over this dataset. For the alignment-free approach CAFE, we used two
distance measures, the Manhattan distance and D2S29. Calculating the Manhattan distance
across genomes is computationally less demanding in comparison to the other distance mea-
sures available, and we employed it here mainly to optimize parameters, such as k-mer size,
using whole genomes as opposed to protein coding genes or highly expressed genes. We chose
k-mer size of 8, based on our experimenting, and it is consistent with the authors’ recommen-
dation for computing the evolutionary distances between bacterial genomes29. It should be
noted that whole genome sequences were used in the case of alignment free methods.

Simulation of missing data was performed by uniformly randomly selecting 100 of the 400
genomes (25%) from each of the individual multiple sequence alignment (for each Pfam) and
removing those species from the alignment (by replacing their respective alignments with gaps).
This was done to mimic the absence of some of marker genes in certain genomes due to either
incompleteness of the MAGs, or due to gene loss events in certain lineages, simulating the
effects of genomes with missing marker genes.

Given a phylogenetic tree, pairwise species evolutionary distances were calculated using the
cophenetic function from the APE R package45. We then use the correlation (both Pearson
and Spearman correlations) between the pairwise species evolutionary distances to quantify the
similarity between the different phylogenetic trees built from the same set of species. We didn’t
use tree-based metric such as RobinsonFoulds metric for tree comparison, since it saturates
rapidly so very similar trees can have large distance value46.

2.4 Constructing the tree of gut bacteria

All 3,301 genomes/bins were used to construct a comprehensive bacterial tree. From each
genome or MAG the annotated and predicted protein sequences of the marker genes were ex-
tracted. A total of 73,285, 87,742 and 210,374 proteins from RefSeq genomes, HBC bins and
UMGS bins were extracted respectively. The aligned regions between each protein sequence
and HMM models were extracted. A total of 120 individual multiple sequence alignments were
constructed between sequences extracted by each HMM model using hmmalign43. Gaps were
used in the alignments for genomes with missing marker genes. Individual alignments from
the 120 domains were then concatenated and further refined by removing columns with more
than 50% gaps, columns with a consensus of less than 25% and rows with more than 50% gaps.
A phylogeny was inferred by constructing a species tree from the final concatenated multiple
sequence alignments using FastTree under WAG + GAMMA models36. We used -pseudo, -spr
4, mlacc 2 and -slownni options while running FastTree to increase the accuracy of the tree
inference36. The final tree was rooted using eight genomes belonging to the family Saccha-
rimonadaceae as an outgroup. We chose this clade since they were the only representative
genomes in the Patescibacteria phylum. Branch support values were also calculated by using
100 bootstrapped trees replicates. Bootstraps were calculated using the seqboot function from
PHYLIP tools47.
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2.5 Downstream applications of the gut tree for metagenomic and
metaproteomic data analyses

We developed two downstream applications for tree-based metaproteomics and metagenomics
analyses, providing quantification of the relative abundances of different bacterial species at
different taxonomic resolutions based on the metagenomic or metaproteomic data. For metage-
nomic data analysis, our pipeline applies Bowtie2 to map sequencing reads to the collection of
gut genomes. Based on the reads mapping results, we implemented two methods for genome
abundance quantification. The first method is the Lowest Common Ancestor (LCA) ap-
proach48,49 which assigns reads to the nodes in the tree such that if a read maps to multiple
genomes, it is assigned to their lowest common ancestor. We also implemented an alternative
quantification approach using all mapped reads (uniquely and multi-mapped), such that multi-
mapped reads are assigned to genomes proportionally according to their abundances computed
using only uniquely-mapped reads (called multi-mapped approach)50. We tested our pipeline
using a publicly available gut metagenomic dataset51 and compared our results to those from
MetaPhlAn252 and Kraken248.

For metaproteomic data analysis, given identified peptides, our pipeline first maps the
peptides to the proteomes of the gut genomes, and then applies the LCA approach to infer
the relative species abundances at various taxonomic levels (the multi-mapped approach isn’t
applicable due to the low throughput of metaprotomics approaches). We applied our pipeline
to analyze sample peptides identified from a human gut microbiome available on Unipept’s
website, and compared our results to the results from Unipept (version 4.3)53.

2.6 Availability of the tree and companion tools

The gut tree and companion tools are available at https://github.com/mgtools/guttree. Data
required for the applications of our tools, including the genome sequences (for reads map-
ping and following taxonomic assignment and quantification from metagenomic data) and
protein sequences (for peptide-centric metaproteomics analysis) are available for download at
http://omics.informatics.indiana.edu/guttree/.

3 Results

We first report the comparison of tree reconstruction methods using simulated datasets with
missing information. We then report the tree of human gut bacteria built using the selected
approach. Finally we demonstrate applications of the tree in two downstream analyses.

3.1 Testing different phylogeny approaches on simulated datasets
with missing information

To evaluate the efficacy of different phylogeny approaches for tree reconstruction using incom-
plete genome information, we used 400 RefSeq genomes as described in the methods section.
We simulated datasets from these 400 RefSeq genomes with missing data by removing genes
from them. On average, the gut genomes each miss 7% of their marker genes (see Supplemen-
tary Figure 1, but some may be more incomplete. We therefore chose to randomly remove

6

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 25, 2020. ; https://doi.org/10.1101/2020.09.24.311720doi: bioRxiv preprint 

https://github.com/mgtools/guttree
http://omics.informatics.indiana.edu/guttree/
https://doi.org/10.1101/2020.09.24.311720
http://creativecommons.org/licenses/by-nc-nd/4.0/


a significant fraction, 25% of the sequences from the MSA to simulate genomes with missing
information. FastTree, RaxML and CAFE (alignment-free approach) were applied to build
trees of these genomes with and without missing information using different approaches. For
CAFE, two distance measures, Manhattan and D2S, were tested.

Results show that FastTree and RAxML gave similar trees, and they outperformed the
alignment-free approaches. Figure 1A and 1B show comparisons between FastTree and RAxML,
on complete genomes, and missing genomes, respectively. Species pairwise phylogenetic dis-
tances were highly correlated between the two approaches over the complete genomes (Pearson
correlation of 0.983 and Spearman correlation of 0.942). Surprisingly, an almost perfect cor-
relation was achieved when both of these algorithms on the dataset with simulated missing
markers (Pearson correlation of 0.996 and Spearman correlation of 0.989). For alignment-free
approaches, the D2S measures outperformed the Manhattan distance, which is consistent with
previously reported results29. Pearson and Spearman rank correlations of 0.569 and 0.219 re-
spectively were observed between the D2S k-mer based distances and the pairwise distances
between species computed from FastTree phylogenetic tree (see Figure 1C); by contrast, the
correlations marginally dropped to 0.513 and 0.250 respectively when Manhattan distance was
used to compute the k-mer based distances (see Supplementary Figure 2). Similar trends were
observed when we repeated the experiments by comparing the alignment-free approaches to
the “ground truth” constructed using RAxML instead. Detailed results of this experiment
are summarized in Supplementary Figure 3. On the other hand, when comparing correlation
coefficients between the distance matrices calculated from FastTree trees with and without
missing data, we obtained a near perfect Pearson’s correlation of 0.982 and a significantly
higher Spearman rank correlation of 0.940, as shown in Figure 1D.

3.2 Tree of human gut bacteria

Based on our simulation results (above) and also the computational efficacy of the methods,
we chose FastTree as the method to reconstruct a comprehensive tree of gut bacteria—most
of which have incomplete genomes—using all the available sequences with significant hits to
the Pfam and TIGRfam domains for gene alignments from each genome: this resulted in the
largest and most representative human gut-associated bacterial tree by far, to the best of our
knowledge. All but eight genomes participated in the final tree construction: we removed eight
MAGs from participating in the final tree construction, due to their poorly aligned regions,
which did not meet the multiple sequence alignment criteria used to construct this tree (see
Methods for more details). Distributions of the completeness and the contamination levels of
the bins participating in constructing our gut-tree are summarized in Supplementary Figure 4.

Out of the 120 Pfam/TIGRfam marker profiles used, astonishingly, only three marker pro-
files were shared across all the genomes, which were leucine tRNA ligase, translation initiation
factor and GTPase domains. We categorized these 120 protein functional domains into three
general groups: ribosomal proteins, enzymes and transcription related proteins with quantities
30, 61 and 29 domains respectively. On average, each genome/MAG had about 26 different
ribosomal protein domains, 58 enzyme domains and 27 transcription related proteins. These
distributions fluctuate greatly between the three different sources of genomes. Individual statis-
tics for NCBI, HBC and UMGS genomes are summarized in Figure 2. While the distributions
of these categories across the three genome sources loosely follow similar trends, with small
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Figure 1: Correlations of pairwise species distances derived by different approaches. (A)
RAxML and FastTree on 400 RefSeq genomes. (B) RAxML and FastTree on simulated genomes
with missing marker genes. (C) Alignment free method using D2S distance and FastTree using
complete genomes. (D) FastTree trees on complete genomes vs genomes with missing marker
genes.

fluctuations, it varies significantly when comparing them to those of the UMGS genomes: the
number of the different protein domains found in UMGS genomes varies more and on average
is lower than that of NCBI and HBC genomes, further suggesting that the UMGS genomes are
more incomplete than the other sources. On average each genome contains over 93% of these
domains (a complete summary for the number of genomes containing each of the pfams can
be found in Supplementary Figure 1). After removing poorly aligned columns and rows with
the above mentioned criteria, a multiple sequence alignment of 3,293 rows (species) and 33,182
columns was used to infer a phylogeny using FastTree. The resulting tree is summarized in
Figure 3.

The tree was then used to derive taxonomic annotations for gut species using the least com-
mon ancestors approach implemented in GTDB-toolkit54. All 3,293 genomes were assigned up
to class level taxonomic assignments. These genomes were classified into 13 groups at the phy-
lum level. These phyla are, in the order of their size: Firmicutes (1,831 genomes), Actinobac-
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Figure 2: Boxplots showing the distribution of the presence of ribosomal protein, enzyme and
transcription related protein pfam markers in genomes three different sources.

Table 1: Comparison of the taxonomic distribution of the gut genomes from different resources
collection kingdom phylum class order family genus species

NCBI 614 614 614 614 614 614 564
HBC 736 736 736 736 734 726 647

UMGS 1943 1943 1943 1936 1876 1554 421

teria (550), Bacteroidota (511), Proteobacteria (184), Campylobacterota (74), Fusobacteriota
(39), Cyanobacteriota (35), Verrucomicrobiota (25), Desulfobacterota (21), Patescibacteria (8),
Spirochaetota (6), Elusimicrobiota (5) and Synergistota (4). Quantities of the top four phyla
is in agreement with previous work55. Figure 3 shows the phylum level classifications. A more
detailed classification into different taxonomic levels is summarized in Table 1. In total, we
were able to classify 1,638 genomes/MAGs at the species level, resulting in a total of 856 unique
species. Of the remaining 1,661 bins that lack species level taxonomic assignments, 1,522 were
from the UMGS MAGs. Nearly 87% (1,447 out of 1,661) of the taxonomically unassigned
MAGs at the species level come from 5 classes, Clostridia, Coriobacteriia, Bacteroidia, Bacilli
and Negativicutes, in decreasing order of their contribution. In total, there were 22 class level
taxonomic classifications representing all of 3,293 genomes. The distribution of these genomes
among these 22 classes is shown in Figure 4. A significant proportion of the genomes belonging
to the 5 classes have no species level assignments, especially for the class Coriobacteriia, where
most of its genomes could not be identified at the species level. This reflects the diversity
of gut bacteria and how some of the taxonomic classes in the current reference databases are
underrepresented.

Our gut tree was in complete agreement with the taxonomies assigned by the GTDB
toolkit54 up to class level annotations. There were however a few cases of disagreements at
the order level between the placement of certain genomes within the tree and the annotations
received by them. The major conflict was within the order Bacilliales. Our constructed gut
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Figure 3: Phylogeny of 3,293 gut genomes, including 2,678 MAGs (736 HBC and 1,943 UGMS),
and 614 RefSeq genomes. The phylogenetic tree was constructed from an alignment combining
alignments of 62 marker Pfams (see Methods for details). All these genomes were assigned to
16 phyla.

tree suggests certain orders to be polyphyletic, in particular the Lactobacillales and Bacillales
clades. Some initiative has already been taken by the authors of GTDB-tk54, in dividing the
order Bacillales into two clades, Bacillales and Bacillales A. Our tree suggests further divisions
of the Bacillales clade. Moreover there were two species from the Lactobacillales order that
do not share the same immediate parent as the remaining members of this order, suggesting
the polyphyletic nature of this order as well. These inconsistencies are depicted with detail in
Supplementary Figure 3. To understand further the reasons behind these inconsistencies we
isolated the problem by focusing on the clade where they arise. The latter clade was the class
bacilli, where we had a total of 414 genomes. After extracting this subset of genomes we in-
ferred a phylogeny in a similar fashion as described above and quantified branch support values
by a 100 bootstrapped aggregates. The bootstrapped tree is summarized in Supplementary
Figure 4. A more focused view over the branches where the splits lead to these inconsistencies
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alongside their bootstrap supports can be seen in Supplementary Figures 5 and 6. These fig-
ures show that the branches leading to these inconsistencies have relatively high support over
the bootstrap datasets, with the lowest branch having a support of 89%. Such high support
values suggest the polyphyletic nature of Lactobacillales and Bacillales clades and that the
annotation received by the underlying genomes might be prone to some errors. Despite the
high support values for these problematic branches, the branch lengths between those splits
and their immediate parents are relatively small, indicating certain limitations of the inferred
tree and the molecular information arising from the marker genes used to group those species
together.
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Figure 4: Barplot representing the number of genomes found in the different class level taxo-
nomic classifications. Total number of genomes in each class is given in red, and total number
of genomes that do not have species level taxonomic assignments are given in blue. The subplot
within the main plot is zoomed in over classes with fewer genomes in them.

Finally we quantified the distributions of evolutionary distances between genomes at differ-
ent taxonomic levels. Species pairs were defined for each taxonomic level as pairs of genomes
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whose most recent common ancestor is at the specified level (i.e. if we’re enumerating class
level pairwise relationships, then the common ancestor of any genome pair within this group is
at the class level). We used only the genomes/MAGs with species annotation for this analysis.
Figure 5 summaries the distribution of phylogenetic distances at different taxonomic relation-
ships, which shows discrete boundaries between the different levels of taxonomic relationships.
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Figure 5: Boxplot representing the distribution of phylogenetic distances between pairs of
genomes at different level of evolutionary relations.

3.3 Application of the gut tree to peptide-centric metaproteomics
studies

Having an annotated comprehensive bacterial species tree, one useful application is to identify
prominent species in different metaproteomics samples. For demonstration purposes we used a
sample metaproteomics data set from Unipept’s website35, obtained from a human gut through
shotgun mass spectrometry56. Since we are only interested in Bacterial species in this study,
Eukaryoteic and Archaeal mapped peptides were removed. A total of 1,150 peptides were
explained by the species present in the Unipept pipeline; the number of identified peptides
increased by 35% when searching the same sample against our bacterial tree, resulting in a
total of 1,558 peptides mapped to at least one species within the tree. All of the peptides
identified by Unipept were also identified by our tree, in addition to 408 new peptides not
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identified by the latter. Figure 6 summarises these results, in which we collapsed the clades
in our gut tree to “class” level for clarity (links to iTOL57 are provided in the Supplementary
Material for users to explore the gut tree interactively).

Figure 6: Comparison of the tree coverage of peptides derived from metaproteomics data.
Results obtained from Unipept are on the left (A), and those obtained using out tree are to
the right (B). Numbers in parentheses indicate the number of peptides mapped to each clade.
Clades are collapsed to class level for clarity.

3.4 Application of the gut tree to metagenomics studies

Here we demonstrate that the gut tree can be used for taxonomic profiling given a metagenomics
dataset. We used this metagenomic dataset51 (accession: SRR769523) as an example. We
applied Bowtie2 to map the reads onto the big collection of gut bacterial genomes as well
as a smaller collection with only 47 representative species51 for comparison. We also applied
MetaPhlAn252 and Kraken248 to analyze this dataset. Only 13.80% of the raw reads were
mapped to the 47 representative species; by contrast, this number increased (by more than 6
fold) to 85.39% when all genomes on our gut tree were included for reads mapping. Kraken2
mapped 64.1% of the total number of reads (MetaPhlAn2 only considers marker genes for reads
mapping so this number is not reported for MetaPhlAn2). Table 2 summarizes the number
of unique species identified by each method when different minimum relative abundances were
applied. While kraken2 reports an extremely large number of unique species without relative
abundance constraint (5,265 species, which is likely an overestimation of the species diversity),
all three methods report similar results when only species of minimum relative abundance
(0.1% or 1.0%) were included, as seen in Table 2.
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Figure 7: A summary of the species diversity of a metagenome dataset on the gut tree. The
circles on the tree represent number of fragments (paired end reads) mapped to each clade
using the LCA approach. Their sizes are proportional to the count. Clades are collapsed to
class level in this case for clarity.

We compared the taxonomic profiling results from the different approaches. As MetaPhlAn2
and Kraken2 do not provide a tree visualization, we summarized all of the taxonomic profiling
results at the class level for demonstration purpose. Table 3 shows that our approaches and
MetaPhlAn2 gave more similar taxonomic profiles as compared to Kraken2. MetaPhlAn2 and
our approaches reported similar relative abundances for the top two most abundant classes;
the discrepancy of the relative abundances of Bacilli and Erysipelotrichia is a result of the
discrepancy of the taxnomic assignments of the genomes (MetaPhlAn2 uses NCBI taxonomy
which has Erysipelotrichia as a class, whereas our approaches use GTDB taxonomy which has
Erysipelotrichia as an order under the Bacilli class); and for Negativicutes, we note that al-
though the same number of reads were mapped to genomes belonging to Nagativicutes (mostly
to Dialister invisus and Veillonella parvula) by our approach and MetaPhlAn2, our gut tree
has expanded collections of genomes in other clades so the relative abundance of this clade is
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Table 2: A summary of the number of unique species identified by Metaphlan2, Kraken2 and
our gut-tree based approach as a function of different relative abundance cutoffs (metagenomic
sample SRR769523).

Minimum relative abundance (%) MetaPhlAn2 kraken2 Gut-tree (LCA)

0 (no filtering) 73 5,265 336
0.1 43 64 78
1.0 21 24 29

decreased in our analysis. The relative abundance for Bacteroidia reported by Kraken2 was
significantly higher than the ones reported by MetaPhlAn2 and our approaches. For Kraken2,
we only show the top 20 classes it reported, which explain 98.9% of the mapped reads; we
observed that beyond these classes, Kraken2 started to report clades that are likely to be false
positives, including Flavobacteria (which is known to be found in marine and freshwater en-
vironments) and Mollicutes (previously found in respiratory and urogenital tracts). We note
that our gut tree doesn’t include archaea genomes so our analysis doesn’t report the abundance
of Methanobacteria.

Our approaches provide quantification of the species at the different taxonomic levels sum-
marized in a tree, which can be visualized using iTOL57 for example. Figure 7 shows the
results using the LCA approach to assign reads to the nodes in the gut tree. Supplementary
Figure 9 shows the results using the multi-mapped approach for quantification.

4 Discussion

In this study, we present a comprehensive human gut bacterial tree, aiming to provide a more
complete view for metagenomic applications related to human gut, as the ones highlighted here.
The majority of the genomes used here were derived computationally as metagenome-based as-
sembled genomes, leading to a certain extent of incompleteness and contamination. We showed
that although alignment free methods—developed to cope with such case—had a significantly
inferior performance compared to traditional multiple sequence alignment-concatenation-based
approaches (Figure 1), when we attempt to cluster these genomes. Our choice of FastTree as an
alignment-oriented phylogeny inference tool was purely based on computational considerations.
Our final alignment had 3,293 rows and 33,182 columns, which is too large for the more rig-
orous maximum likelihood and Bayesian-based tree inference methods, including RAxML30,31.
When comparing FastTree to RAxML over our simulated data set of 400 species, we show
both tools gave similar results (Figure 1 (A)). Furthermore when comparing these two tools
over a data set with missing genes—which is the case presented here—the results from the two
methods correlate almost perfectly (Figure 1 (B)). Similar results were also observed when Fast-
Tree was compared to RAxML over large datasets in54, suggesting differences resulting from
using FastTree as opposed to the computationally more demanding tools can be considered
insignificant.

Our annotation of the final gut tree is based on the GTDB-tk annotation, since it provides
a consistent annotation, standardized over all genomes. We notice some biases in annotations
when comparing proportions of number of genomes found across different taxonomic clades
to the number of genomes receiving a complete annotation (up to species level annotation,
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Table 3: A summary of the percentage of reads mapped to different taxonomic units using
MetaPhlAn2, Kraken2 and our gut tree based approach (metagenomic sample SRR769523).

Class MetaPhlAn2 kraken2 Gut-tree (multi-mapped) Gut-tree (LCA)

Clostridia 56.87% 42.05% 58.31% 50.07%
Bacteroidia 24.35% 48.98% 25.86% 38.08%

Bacilli 0.1% 1.37% 11.18% 6.69%
Erysipelotrichia 10.44% 1.15% N/A N/A%
Negativicutes 3.64% 0.15% 1.6% 1.04%
Coriobacteriia N/A 1.23% 0.89% 1.97%

Methanobacteria 2.76% 1.33% N/A N/A%
Actinobacteria 0.92% 0.81% 0.26% 0.10%

Deltaproteobacteria 0.56% 0.29% N/A N/A
Betaproteobacteria 0.23% 0.29% N/A N/A
Verrucomicrobiae 0.07% 0.30% 0.75% 0.78%

Alphaproteobacteria N/A 0.42% 0.04% 0.43%
Gammaproteobacteria 0.02% 0.69 % 0.56% 0.34%

Desulfovibrionia N/A NA 0.36% 0.44%
Vampirovibrionia N/A NA 0.04% 0.03%

Spirochaetia N/A N/A 0.08% 0.005%
Saccharimonadia N/A N/A 0.001% 0.001%
Fusobacteriales N/A N/A 0.003% 0.002%

Synergistia N/A 0.04 % 0.001% 0.003%
Lentisphaeria N/A N/A 0.003% 0.003%
Peptococcia N/A N/A 0.001% 0.001%

Flavobacteria N/A 0.14% N/A N/A
Cytophagia N/A 0.09% N/A N/A
Mollicutes N/A 0.06% N/A N/A
Mammalia N/A 0.06% N/A N/A

Epsilonproteobacteria N/A 0.05% N/A N/A
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Figure 4). Certain species classes such as Clostridia and Coriobacteriia are both relatively
large clades and almost entirely annotated up to species levels, whereas there are those such as
Lentisphaeria and Saccharimonadia that are smaller clades with no species level annotations.
The latter suggests the presence of a noticeable bias in the scientific community, which has so
far only focused on specific parts of the bacterial tree of life, leaving a large proportion yet to
be uncovered. With the increase in sequencing throughput and culture free binning methods
becoming more and more standardized we should expect to shed more light over the microbial
dark matter in the near future.

Although our gut tree is significantly smaller than that presented by the GTDB-toolkit, it
contains more gut bacteria. We note that the majority of the genomes participating in the gut
tree are novel, and therefore many of the novel bacteria didn’t receive family to species level
annotation by GTDB-tk, but they are still useful for presenting the diversity and complexity
of human gut microbiome. We observed some disagreements between the inferred taxonomies
using GTDB-tk and the inferred phylogeny using our tree, and we think it is important to
report these disagreements so users can be aware of them.

We note that a tree with expanded list of bacteria species, many unseen, may suggest
evolutionary relationship that disagree with previously proposed taxonomic assignments for
some species. Polyphyletic clades were proposed to deal with such cases, for example, the order
Bacillales was divided into two clades, Bacillales and Bacillales A54. Our tree suggests further
divisions of the Bacillales clade. Moreover there were two species from the Lactobacillales
order that do not share the same immediate parent as the remaining members of this order,
suggesting the polyphyletic nature of this order as well. We believe that changes to taxonomic
annotations more drastic than proposing polyphyletic clades will be needed in the future when
even more diversity of species are expected. Nevertheless, we showed that using a diverse and
comprehensive tree helps improve the analysis of metaproteomics and metagenomics data, as
demonstrated in the two applications we presented.

5 Conclusions

In this study we constructed a comprehensive human gut bacterial tree, containing a large num-
ber of metagenome assembled genomes (MAGs), and developed two downstream applications
of the tree for metagenomic and metaproteomic data analysis. We showed that the perfor-
mance of RAxML, which is usually regarded as a more profound and accurate tree inferring
tool compared to FastTree, was comparable to that of the latter when we inferred trees using
a relatively large set of species. Including MAGs in the tree provides more comprehensive rep-
resentation of species diversity associated with human gut microbiome, important for studying
the taxonomic composition of gut microbiome. Furthermore we provide an automated pipeline
allowing users to infer phylogeny starting from any set of genomes, MAGs or both.
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Figure Legends

Figure 1: Correlations of pairwise species distances derived by different approaches. (A)
RAxML and FastTree on 400 RefSeq genomes. (B) RAxML and FastTree on simulated genomes
with missing marker genes. (C) Alignment free method using D2S distance and FastTree using
complete genomes. (D) FastTree trees on complete genomes vs genomes with missing marker
genes.

Figure 2: Boxplots showing the distribution of the presence of ribosomal protein, enzyme and
transcription related protein pfam markers in genomes three different sources.

Figure 3: Phylogeny of 3,293 gut genomes, including 2,678 MAGs (736 HBC and 1,943
UGMS), and 614 RefSeq genomes. The phylogenetic tree was constructed from an alignment
combining alignments of 62 marker pfams (see Methods for details). All these genomes were
assigned to 16 phyla.

Figure 4: Barplot representing the number of genomes found in the different class level taxo-
nomic classifications. Total number of genomes in each class is given in red, and total number
of genomes that do not have species level taxonomic assignments are given in blue. The subplot
within the main plot is zoomed in over classes with fewer genomes in them.

Figure 5: Boxplot representing the distribution of phylogenetic distances between pairs of
genomes at different level of evolutionary relations.

Figure 6: Comparison of the tree coverage of peptides derived from metaproteomics data.Results
obtained from Unipept are on the left (A), and those obtained using out tree are to the right
(B). Numbers in parentheses indicate the number of peptides mapped to each clade. Clades
are collapsed to class level for clarity.

Figure 7: A summary of the species diversity of a metagenome dataset on the gut tree. The
circles on the tree represent number of fragments (paired end reads) mapped to each clade
using the LCA approach. Their sizes are proportional to the count. Clades are collapsed to
class level in this case for clarity.
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