Abstract
DNA methylation (DNAm) regulates gene expression and may represent gene-environment interactions. Using whole genome bisulfite sequencing, we surveyed DNAm in a large sample (n=344) of human brain tissues. We identify widespread genetic influence on local methylation levels throughout the genome, with 76% of SNPs and 38% of CpGs being part of methylation quantitative trait loci (meQTLs). These associations can further be clustered into regions that are differentially methylated by a given SNP, highlighting putative functional regions that explain much of the heritability associated with risk loci. Furthermore, some CpH sites associated with genetic variation. We have established a comprehensive, single base resolution view of association between genetic variation and genomic methylation, and implicate schizophrenia GWAS-associated variants as influencing the epigenetic plasticity of the brain.
One-sentence summary Most genetic variants associated with DNA methylation levels, and implicated schizophrenia GWAS variants in the human brain.
Competing Interest Statement
The authors have declared no competing interest.