
Title ​: Widespread methylation quantitative trait loci and their role in schizophrenia risk 

 

Short Title ​: Rampant methylation QTLs in schizophrenia risk 

 

 
One-sentence summary​: Most genetic variants associated with DNA methylation levels, and 

implicated schizophrenia GWAS variants in the human brain.  

 

 

 

Authors​: 
Kira A. Perzel Mandell ​1,2​, Nicholas J. Eagles​1​, Richard Wilton ​3​, Amanda J. Price ​1,2​, Stephen A. 

Semick​1​, Leonardo Collado-Torres​1​, Ran Tao ​1​, Shizhong Han ​1,4​, Alexander S. Szalay​3,5​, 

Thomas M. Hyde ​1,4,6​, Joel E. Kleinman ​1,4​, Daniel R. Weinberger​1,2,4,6,7​, Andrew E. Jaffe ​1,2,4,7,8,9,+ 

 

1. Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 
21205, USA 

2. Department of Genetic Medicine, Johns Hopkins University School of Medicine (JHSOM), 
Baltimore, MD 21205, USA 

3. Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD, USA 
4. Department of Psychiatry and Behavioral Sciences, JHSOM, Baltimore, MD, USA 
5. Department of Computer Science, JHSOM, Baltimore, MD, USA 
6. Department of Neurology, JHSOM, Baltimore, MD, USA 
7. Department of Neuroscience, JHSOM, Baltimore, MD, USA.  
8. Department of Mental Health, Johns Hopkins Bloomberg School of Public Health (JHBSPH), 

MD 21205, USA 
9. Department of Biostatistics, JHBSPH, Baltimore, MD, USA. 
+ andrew.jaffe@libd.org 
  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 24, 2020. ; https://doi.org/10.1101/2020.09.24.311878doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.24.311878
http://creativecommons.org/licenses/by/4.0/


Abstract: 

 

DNA methylation (DNAm) regulates gene expression and may represent gene-environment 

interactions. Using whole genome bisulfite sequencing, we surveyed DNAm in a large sample 

(n=344) of human brain tissues. We identify widespread genetic influence on local methylation 

levels throughout the genome, with 76% of SNPs and 38% of CpGs being part of methylation 

quantitative trait loci (meQTLs). These associations can further be clustered into regions that 

are differentially methylated by a given SNP, highlighting putative functional regions that 

explain much of the heritability associated with risk loci. Furthermore, some CpH sites 

associated with genetic variation. We have established a comprehensive, single base resolution 

view of association between genetic variation and genomic methylation, and implicate 

schizophrenia GWAS-associated variants as influencing the epigenetic plasticity of the brain.  
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Main Text: 

Introduction 

DNA methylation (DNAm) plays an important role in the epigenetic regulation of gene 

expression. It varies throughout development and among tissue types, and has been thought to 

be a high-fidelity representation of the interaction between genes and environment. While some 

variation in DNAm can be attributed to developmental and exogenous factors, including diet ​(​1​) 

and cigarette smoking ​(​2​)​, Davies et al. ​(​3​)​ identified some inter-individual variation that is 

consistent across tissue types. This provided evidence that DNA sequence drives DNA 

methylation levels, at sites known as methylation quantitative trait loci (meQTLs). Inter-individual 

DNAm differences have since been confirmed by twin studies ​(​4​, ​5 ​)​. Initial studies found 

methylation association with sequence variants at specific loci ​(​6​)​. These putative epigenetic 

associations extend beyond the role of genetic variation in ablating CpG dinucleotides across 

evolution through deamination of the cytosine base in this genomic context ​(​7​)​. 

 

Genome-wide studies are necessary to fully understand the extent and genomic properties of 

meQTLs. However, so far most large-scale studies have used microarray technologies that only 

measure a small proportion of CpGs ​(​8​– ​10​)​. The largest study to date to test associations 

between genotype and DNAm used MBD-seq, a method lacking single base pair resolution 

(​11​)​. Yet even with limited resolution, these initial studies have found that local genetic influence 

on DNAm is extensive throughout the genome, and meQTLs are enriched at regulatory sites 

(​12​, ​13 ​)​. 

 

Currently, a major puzzle in the field of functional genomics is understanding the molecular 

effects of genetic risk loci and variants identified by genome-wide association studies (GWAS) 
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for many common disorders and traits. This is particularly challenging in tissues like brain that 

are difficult to access or model, leaving little clarity into genetic mechanisms behind psychiatric 

disorders such as schizophrenia. While schizophrenia is highly heritable ​(​14​)​, and GWAS have 

identified a growing number of significant loci ​(​15​, ​16 ​)​, only few loci have been functionally 

resolved ​(​17​)​. Genome-wide gene expression QTL (eQTL) approaches ​(​18​, ​19 ​)​, and their 

extensions ​(​20​– ​22​)​, have prioritized variants and associated genes, but many genomic loci fail 

to associate with nearby gene expression. In contrast, associating schizophrenia risk variants 

with a stable epigenetic mark like DNAm provide clues for potential epigenetic mechanisms of 

action ​(​23​, ​24 ​)​. Indeed, previous meQTL maps using microarray technologies implicated a 

larger number of SCZD risk loci than eQTL maps, while only measuring a fraction of the 

methylome ​(​10​)​. DNAm itself may further reflect the cumulative effects of environmental 

exposures across the lifespan ​(​25​)​, and may represent a surrogate of "E" in GxE interactions 

that contribute to risks for many disorders ​(​26​)​ that can further act as a mediator of genetic risk 

on gene expression.  

 

Unlike microarray technologies, whole genome bisulfite sequencing (WGBS) has the advantage 

of measuring cytosine methylation at single base pair resolution, as well as measuring CpH (H = 

A,T, or C) DNA methylation levels (in addition to CpGs). While CpH sites are generally 

unmethylated in somatic tissues, neurons in the human brain have uniquely high levels of 

CpHm ​(​27​)​. By leveraging this technology, we have created the most extensive genomic 

meQTL map in human postmortem brain tissue to date, and use this information to fine-tune our 

understanding of the molecular mechanisms of genetic and epigenetic risk for schizophrenia . 
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Results 

Components of global variation in large-scale WGBS datasets 

We performed whole genome bisulfite sequencing (WGBS) to gain a comprehensive view of 

genetic influence on DNAm in the adult human brain using two brain regions: the hippocampus 

and the dorsolateral prefrontal cortex (DLPFC). These regions have been prominently 

implicated in the pathogenesis of many psychiatric disorders, particularly schizophrenia ​(​28​)​. 

After data processing and quality control (see Methods), we analyzed 165 DLPFC samples and 

179 hippocampal samples from a total of 183 adult donors aged 18 to 96 years (161 donors had 

data from both regions, ​Table S1​). Data were generated across two large diagnosis- and 

region-balanced batches. We assessed 29,401,795 CpG sites across the epigenome, with an 

average post-processing coverage of 17.3 reads per CpG site. 78% of sites were highly (>80%) 

methylated while a minority, were lowly or unmethylated (8% are <20%). While the technical 

effects of measuring DNAm levels using microarrays is well-established ​(​29​)​, particularly in 

human brain tissue ​(​10​)​, corresponding assessments using WGBS data have been limited due 

to available comparisons being relatively small studies. We therefore assessed the contributions 

of different biological and technical variables on genome-wide CpG DNAm levels measured with 

WGBS.  

 

First we performed principal component analysis (PCA) across the raw DNAm levels of the 

million most variable CpGs. The top principal components were associated with 

quantitative/genotype-defined ancestry (PC1: 6.5% variance explained, ​Figure S1​), estimated 

neuronal fraction (PC2: 3.34%), processing batch (PC4: 1.37%) and brain region (PC5: 0.84%). 

The major batch effects resulted from inclusion of ENCODE "blacklist" regions ​(​30​)​, which have 
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been reported to cause problems with mapping and alignment in high-throughput sequencing 

data, particularly epigenomic data. These processing issues are likely further exacerbated in 

WGBS data, where the bisulfite treatment results in lower complexity libraries depleted of 

cytosines, which presumably relates to the influence of blacklist regions and ancestry on DNAm 

levels. Cytosines in these black-listed regions were therefore removed from reported 

site-specific analysis results. Another increasingly-common step in WGBS data processing 

involves "smoothing" local CpG DNAm levels within each sample to improve precision and 

borrow strength across nearby CpGs ​(​31​)​. Smoothing reordered the top components of 

variation (​Figure S2​), and resulted in the top component of variation representing both batch 

and estimated neuronal fraction (both PC1 and PC2, explaining 13.9% and 10% of variance, 

respectively). Previous analyses of Illumina microarray-derived adult homogenate DLPFC data 

suggested that estimated neuronal fraction was the largest component of (CpG) DNAm level 

variation ​(​10​)​. Microarray technology implicitly produces somewhat smooth DNAm levels for a 

large fraction of probes that target multiple CpG sites. While the effects of brain region were 

further magnified with smoothing, the effects of quantitative ancestry were dampened, and 

became associated with PC4 (1% variance explained) rather than PC1 of raw DNAm levels (6% 

explained variance; ​Figure 1(A-E)​).  

 

We further complemented these global analyses using site-specific variance components 

analysis, estimating the percentage of smoothed DNAm level variance explained by technical 

and biological components at each autosomal CpG, excluding the blacklist (N = 26,416,185, 

using ANOVA, see Methods, ​Figure 1F​, ​Data S1​). The factors that explained the largest 

components of site-specific variation were technical batch (median: 9.6% variance explained, 

interquartile range 3.4-19%), and related flow cell (7.9%, 6.3-9.6%) and instrument (2.9%, 
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2.1-3.2%) variables, as well as the more biological brain region (1.5%, 0.3-5.9%), estimated 

neuronal fraction (1%, 0.2-3.8%) variables. Traditionally-considered confounders in postmortem 

human brain studies - including tissue pH and postmortem interval (PMI) - had very little 

influence on site-specific DNAm levels using WGBS (in line with previous microarray-based 

analyses ​(​10​)​). For example, pH and PMI explained more than 1% of variance across only 

approximately 5% of measured sites. Other technical variables hypothesized to influence DNAm 

levels like the sequencing alignment rates and bisulfite conversion rates (estimated with  

spike-in sequences, see Methods) showed little influence in this analysis. Overall, there was 

extensive residual variation of DNAm levels for the majority of sites beyond these technical and 

biological variables.  

 

Local genetic variation has strong effects on CpG DNA methylation levels 

We hypothesized that a large component of this residual DNAm variation was likely captured by 

local genetic sequence. We therefore performed genome-wide methylation quantitative trait 

locus (meQTL) analyses (see Methods) on smoothed DNA methylation levels in each brain 

region separately (across 29,401,795 CpG sites). In the DLPFC, we computed meQTLs 

between each of these CpGs and the subset of common SNPs within 20kb ​upstream and 

downstream​, which identified 341,597,218 significant SNP-CpG pairs (at FDR < 0.01, ​Data S2​), 

representing ​5,971,724 (76%) of the tested SNPs and 11,155,961 (38%) of tested CpGs. Given 

high genomic correlation among both CpGs and SNPs, we performed the same analysis with a 

set of 535,859 LD-independent SNPs (R​2​ < 0.2) to reduce the potential effects of linkage 

disequilibrium (LD) inflating these statistics. This sensitivity analysis found a similar number of 

CpGs identified as meQTLs (8,390,092 CpGs, 29%) with similar properties. Most SNPs 

associated with methylation levels at many nearby CpG sites (mean = 57 CpGs, median = 43 
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CpGs), and the methylation-associated SNPs had varying genomic widths of effect in this local 

window ranging from 1bp to the full 40kb (mean = 14.5kb , median = 12.7 kb). Effect sizes were 

generally small, with a mean of 2.6% change in methylation level per allele (IQR: 1.4%-3.1%), 

but ranging up to 47%. In both analyses we found that SNPs that  disrupt a CpG dinucleotide 

(i.e. a variant at the C or G, which would ablate the capacity for methylation) have a slightly but 

significantly lower width of effect and a slightly higher number of correlated CpGs, meaning they 

have a higher effect density. This may be attributed to the fact that CpGs tend to cluster in the 

genome. Additionally, despite tested SNPs being LD-independent in the second analysis, we 

find that half of CpGs associate with more than one SNP, with a mean and median of 2, in line 

with previous observations in gene expression data ​(​18​, ​32 ​)​. Using information from the 

Roadmap Epigenome ​(​33​)​, most genetically-associated CpGs were in quiescent genomic 

regions, and depleted for enhancer regions, in human brain (​Figure 2A​). 

 

Analogous results were observed in hippocampus samples​, yielding ​360,079,758 significant 

pairs that represented 11,262,526 CpGs (38%) and 6,109,195 SNPs (78%, ​Data S3​). 

Analyses on LD-independent SNPs yielded a similar proportion of SNPs (​403,373 SNPs, 

77%) implicating a similar number of CpGs as seen in the DLPFC (8,566,898). Effect sizes were 

similarly small, with a mean of 2.6% change in methylation level per allele. Hippocampal 

meQTLs have similar width of effect as those in DLPFC with a mean of 15,661 bp and an 

average of 60 CpGs associated with a SNP. These analyses suggested that the global 

properties of meQTLs were highly similar across brain regions.  

 

We performed a series of secondary analyses to better characterize the determinants of such 

extensive genetic regulation of DNA methylation. First, due to the mixed ethnicities of our 
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samples, and the potentially large differences in allele frequencies between ancestry groups 

(​34​)​, we ran post-hoc meQTL analysis on a subset of meQTLs identified in full genome analysis 

in the DLPFC, separating samples into two groups by self-reported race. African Americans 

(AAs) made up 67% of our total sample, and thus were more likely to drive the results. Using 

significant meQTLs on chromosome 1, analyses using only African American samples (N=112) 

showed that  99.97% of the meQTLs were directionally consistent with the full analysis, with 

97% marginally significant (p < 0.05) and 83% genome-wide significant (FDR < 0.01) in the 

smaller sample size and an overall sharing of  = 0.997. In the European ancestry samples 

(N=53), 97% of meQTLs were directionally consistent, with 57% marginally significant and 21% 

genome-wide significant with an overall sharing of ​ = 0.854. These decreased proportions 

compared to AA-specific analyses at least partially relate to the smaller sample size and 

resulting decreased statistical power (​Figure S3​). We also found that in general, differences in 

minor allele frequencies across ancestry groups did not associate with differences in meQTL 

effect magnitude (​Figure S4​), indicating that differences in ethnicity composition of our samples 

were likely not driving our combined ancestry analyses above. We further explored the 

robustness of the selected meQTL window size (20kb) using heritability analysis (see Methods) 

on the methylome ​(​35​)​ with different window sizes (20kb, 100kb, 500kb).  DNA methylation 

levels were highly heritable using a 20kb window size, with 38% of tested CpG sites showing 

significant heritability (FDR < 0.01). These heritability results were further consistent with the 

above meQTL analyses, with similar proportion of CpGs showing genetic association (39% were 

meQTLs) and 95% of significantly heritable CpGs were meQTLs (and conversely, 86% of 

meQTL CpGs were heritable). Larger window sizes in heritability analysis actually identified 

fewer CpGs with significantly​ ​heritable methylation, implying that most genetic control of 

methylation acts in ​cis​ and confirming that our meQTL testing window was comprehensive. We 
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therefore identified widespread genetic control of CpG methylation levels. Understanding the 

details of this landscape may help elucidate the functional significance of SNPs highlighted by 

GWAS. 

 

Widespread meQTLs among schizophrenia risk variants 

DNA methylation previously has been shown to play a role in mediating genetic risk for 

neuropsychiatric (and other common) disorders ​(​10​, ​36 ​– ​38​)​, but all previous meQTL analyses 

have utilized microarray, not sequencing-based, methylome data. We performed extensive 

meQTL analyses on SNPs associated with genetic risk for schizophrenia in these large WGBS 

datasets. We specifically performed chromosome-scale meQTL analysis using each of the 

"index" SNPs for loci associated with schizophrenia from the most recent GWAS study of 

schizophrenia, i.e. PGC2+CLOZUK ​(​15​)​. We assessed index SNPs with high-quality genotype 

data in each region - 152 SNPs in DLPFC and 153 in the hippocampus. Each SNP was tested 

against every CpG site in the genome, considering a distance of <250kb ​cis ​and everything else 

trans​. In DLPFC we found 25,382 significant (FDR < 0.01, ​Table S2​) SNP-CpG pairs, 

representing 147 SNPs and 25,303 CpGs, showing that most PGC loci contain SNPs that 

associate with local DNA methylation levels (as only 107 SNP-CpG pairs were in ​trans​). 

Schizophrenia risk-associated SNPs on average associated with 172 CpGs (median = 104), and 

in this ​cis​ window had an average genomic width of effect of 177kb (median = 147kb). 

 

We further performed functional validation of these associations using corresponding gene 

expression data. Using RNA-seq data from the same regions and donors (see Methods), we 

assessed whether methylation at these CpGs correlated with neighboring expression levels. 

Using previous eQTL analyses on these same PGC loci ​(​18​, ​39 ​)​, we assessed the mediation of 
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expression by mCpG (see Methods). Eleven of 127 loci had a correlation between gene 

expression and the methylation with which they are associated. Importantly, 10 of these 

associated with at least one CpG that mediated expression by at least 25%. The same analyses 

on the exon and junction levels picked up subtler effects, detecting 18 and 27 loci mediating 

expression levels via methylation, respectively. We found that overall, methylation mediation 

was most potent on the exon level (median = 40%), then the junction level (median = 32%), and 

least potent on the full gene level (median = 23%), in line with the putative role of DNAm in 

promoting gene splicing ​(​40​)​. 

 

The same meQTL analysis was performed in the hippocampus WGBS data, revealing 48,023 

significant SNP-CpG pairs (​Table S3​), representing 139/153 tested SNPs. There were 15,119 

trans​-meQTLs, many more than in DLPFC. Within the subset of significant DLPFC meQTLs, 

hippocampal meQTLs had an overall sharing of = 0.97, indicating that our findings are very 

consistent between brain regions.  

 

These results indicated that meQTL effects, at least in the context of GWAS associations with 

schizophrenia, have much broader effects than traditionally considered, and much wider than 

the 20kb window examined at the full genome level. In order to see if schizophrenia-associated 

meQTLs are comparable to non-disease-associated meQTLs, we took 5000 random SNPs 

representing all levels of MAF and ran meQTL analysis with a 250kb window. Again we found 

that the majority of SNPs (93%) are meQTLs. We also find that neither MAF nor 

population-MAF differences associate with any meQTL characteristics. Interestingly, we found 

that these random meQTLs had significantly lower width of effect than schizophrenia-associated 

meQTLs in both regions (DLPFC p = 8.9e-5, Hippocampus p = 1.1e-11), and a significantly 
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fewer number of affected CpGs in hippocampus (p = 0.002). This combined with the chromatin 

state enrichment analysis below may indicate that these PGC-meQTLs are particularly 

functional, and potentially involved in disease processes, as opposed to just being standardly 

representative of the whole genome.  

 

Risk-associated meQTL effects cluster in the genome 

We then proceeded to cluster our meQTL CpGs into differentially methylated regions (DMRs) 

for better functional characterization. Using a CpG-specific t-statistic cutoff of 5 (see Methods), 

these sites could be clustered into 1277 DMRs (​Figure 3​, ​Table S4 ​). The majority of SCZD 

index SNPs had such DMRs, and most had more than one (mean = 9.5, median = 6). The 

overall span of effect for each SNP was much larger than the 20kb ​cis​ window we tested above 

for meQTL analyses across the full genome, ranging up to 240 Mb on a single chromosome, 

with a median of 95 kb (mean = 17.5 Mb). Using Roadmap Epigenome ​(​33​)​ data, these SCZD 

risk-associated DMRs were enriched over the background of genome-wide LD-independent 

meQTLs for transcriptional and weak transcriptional chromatin signatures (​Figure 2B​). They 

were also comparatively depleted for weak repressive polycomb and quiescent chromatin 

signatures. Overall, these DMRs were in or near genes enriched for GO terms related to 

synapse and membrane potential (​Figure S5​). 20 DMRs overlapped with psychENCODE 

enhancers, and 142 overlapped with promoter regions. The genes connected to these 

promoters were enriched for GO terms related to acetylcholine, ion channels, and 

neurotransmitters.  

 

Overall, results of clustering meQTL CpGs were quite similar between regions. In the 

hippocampus there were 1408 DMRs (​Table S5​), more than half (853) of DMRs directly 
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overlapped with a DMR in the DLPFC. Furthermore, 95.1% of  DLPFC-identified DMRs showed 

marginal p < 0.05 significance among hippocampal meQTL effects (based on the average 

p-value each DMR). In general, allelic association with methylation in the hippocampus 

correlated with association in DLPFC DMRs (r​2​ = 0.69, ​Figure S6 ​). A strong majority of DMRs 

were located inside introns. Again we found that most SNPs have multiple associated DMRs 

(mean = 10, median = 7) and have a wide total genomic width (mean = 15,447,206 bp, median 

= 122,887 bp). Only 16 of these DMRs contain the actual GWAS index SNP, suggesting that 

these effects are more than just local consequences of genomic variations. Overall the genes 

represented by these DMRs have enrichment for GO terms related to synapses, membrane 

potential, and inositol triphosphate (IP3), a second messenger signalling molecule. In both 

regions, a handful of DMRs had correlation to expression of some gene (see Methods), and a 

few correlated to many genes, but most of these gene-DMR pairs were on different 

chromosomes, making results difficult to interpret. Most pairs were negatively correlated though, 

which fits with the traditional understanding of the suppressive effect of methylation on gene 

expression ​(​41​, ​42 ​)​. 

 

These SCZD risk-associated DMRs were further used as input to partitioned LDSC analysis 

(see Methods) to illuminate their clinical relevance ​(​43​)​. As a baseline, we ran partitioned LDSC 

analysis on the LD blocks of the schizophrenia GWAS loci used in meQTL analysis. These 

GWAS loci explained 15% of the additive genetic heritability explained by SNPs ( ), with a 

10-fold enrichment over the full genome (p = 8e-16), in line with being the top ranked loci in the 

GWAS. We then considered two sets of DMRs defined by two different statistical thresholds: a 

more liberal t-statistic > 3.5 cutoff (which corresponded roughly to controlling an FDR < 0.01 in 

cis​ meQTL analysis), termed  and the subset of entirely-contained DMRs defined by t 
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> 5 (from above), termed . The  were generally larger and more distant from 

each index SNP than the , with the majority of  distal (in ​trans​). We further 

divided these DMR sets into those ​cis​ (  and ) and ​ trans​ (   and 

) relative to the PGC loci, i.e. those that were within the GWAS LD blocks, and 

those outside these blocks (​Figure 4​). First, by comparing the heritability estimates from ​cis 

versus ​trans​ DMRs at both cutoffs (i.e.  versus ),we found that the 

majority of schizophrenia heritability and enrichment was driven by ​cis​ regions. For example, 

among the , the subset that were ​cis​ ( ) explained 12% of , with a 

156-fold enrichment over the whole genome (p = 1.3e-14), and were further highly enriched 

compared to the background of the overall GWAS-significant LD blocks. Approximately 80% of 

all ​cis​  of the GWAS significant loci (LD blocks) were captured by  ( 12% versus 

15%), even though only they contained 3% of loci sequence (1.65Mb vs 56.5Mb). In contrast, 

 only explained 1.7% of , and were not significantly enriched for 

schizophrenia risk (p = 0.14); ​Figure 4​). Despite representing a very small portion of the 

genome (658kb), the more stringent ​cis​ DMRs still explained 8.7% of , with very strong 

enrichment (243-fold, p = 1e-10). At only 48kb, the stringent ​trans​ DMRs were not wide enough 

to effectively detect enrichment, and only explained 0.5% of . These results together 

suggest that the majority of significant schizophrenia genetic risk specifically localizes among 

small subsets of genomic regions associated with proximal/nearby DNAm levels.  

 

Genetic regulation of CpH DNAm levels in homogenate brain tissue 

While non-CpG (CpH) DNA methylation predominantly occurs in neuronal cells in the human 

brain ​(​27​)​, we could nevertheless observe detectable levels in homogenate/bulk tissue (which 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 24, 2020. ; https://doi.org/10.1101/2020.09.24.311878doi: bioRxiv preprint 

https://www.codecogs.com/eqnedit.php?latex=%7BDMRs%7D%5E5#0
https://www.codecogs.com/eqnedit.php?latex=%7BDMRs%7D%5E%7B3.5%7D#0
https://www.codecogs.com/eqnedit.php?latex=%7BDMRs%7D%5E5#0
https://www.codecogs.com/eqnedit.php?latex=%7BDMRs%7D%5E%7B3.5%7D#0
https://www.codecogs.com/eqnedit.php?latex=%7BDMRs%7D%5E5_%7Bcis%7D#0
https://www.codecogs.com/eqnedit.php?latex=%7BDMRs%7D%5E%7B3.5%7D_%7Bcis%7D#0
https://www.codecogs.com/eqnedit.php?latex=%7BDMRs%7D%5E5_%7Btrans%7D#0
https://www.codecogs.com/eqnedit.php?latex=%7BDMRs%7D%5E%7B3.5%7D_%7Btrans%7D#0
https://www.codecogs.com/eqnedit.php?latex=%7BDMRs%7D%5E5_%7Bcis%7D#0
https://www.codecogs.com/eqnedit.php?latex=%7B%20DMRs%7D%5E5_%7Btrans%7D#0
https://www.codecogs.com/eqnedit.php?latex=%7BDMRs%7D%5E%7B3.5%7D#0
https://www.codecogs.com/eqnedit.php?latex=%7BDMRs%7D%5E%7B3.5%7D_%7Bcis%7D#0
https://www.codecogs.com/eqnedit.php?latex=h_%7BSNP%7D%5E2#0
https://www.codecogs.com/eqnedit.php?latex=h_%7BSNP%7D%5E2#0
https://www.codecogs.com/eqnedit.php?latex=%7BDMRs%7D%5E%7B3.5%7D_%7Bcis%7D#0
https://www.codecogs.com/eqnedit.php?latex=%7BDMRs%7D%5E%7B3.5%7D_%7Btrans%7D#0
https://www.codecogs.com/eqnedit.php?latex=h_%7BSNP%7D%5E2#0
https://www.codecogs.com/eqnedit.php?latex=h_%7BSNP%7D%5E2#0
https://www.codecogs.com/eqnedit.php?latex=h_%7BSNP%7D%5E2#0
http://sciwheel.com/work/citation?ids=653626&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=653626&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=653626&pre=&suf=&sa=0
https://doi.org/10.1101/2020.09.24.311878
http://creativecommons.org/licenses/by/4.0/


contains 20-40% neuronal cells ​(​44​)​). We analyzed ​64,806,159 ​ CpH sites in the DLPFC and 

34,909,109 CpH sites in the hippocampus, after filtering to only sites which had at least 

moderate coverage and non-zero methylation levels across samples (see Methods). These 

numbers of observable sites in homogenate tissue from adult donors were much larger than in 

prenatal donors, as CpH methylation occurs in post-mitotic neurons ​(​45​)​, and comparable to 

smaller studies of neuronal nuclei sorted with the NeuN antibody and subjected to WGBS ​(​46​)​. 

We first performed full genome meQTL analysis on CpH sites, and found robust presence of 

CpH-meQTLs in the DLPFC, with ​25,584,299 SNP-CpH pairs​ representing ​5,805,754 SNPs, 

947,073 of which were not significant meQTLs for CpG sites (​Data S4​). These CpH-associated 

SNPs further had CpG sites nearby, including in the testing window, suggesting potentially 

independent or complementary effects of CpH and CpG genetic associations. Unlike 

widespread CpG associations to genotype, there were far fewer unique CpH sites associated 

with genotype - only 976,094 CpHs associated with genotypes, corresponding to just 1.5% of 

tested sites. Generally, genetic control on CpH methylation appeared to have a narrower effect 

than on CpG methylation, with each SNP associating with a mean of 4 CpH sites over a mean 

width of 12,570 bp. The effect sizes of genotypes on methylation levels were much larger than 

they were for CpGs, with a mean of 27% change in methylation level per allele, and more than 

half (57%) of these CpH sites were inside genes. The landscape of CpH meQTLs in the 

hippocampus were similar to DLPFC, identifying 25,043,471 SNP-CpH pairs, representing 

5,853,364 SNPs and 781,490 CpHs (​Data S5​). A large majority (90%) - but not all - of these 

SNPs and 63% of these CpH sites were also meQTLs in the DLPFC. Similarly, CpH-meQTLs 

had much larger effect sizes (mean = 29%) and most represented CpH sites (58%) were inside 

genes. These effects in each brain region presumably represent neuronal-specific genetic 

regulation of DNAm levels.  
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We also performed more focused CpH-meQTL analyses on the PGC SNPs described above 

and found 1444 significant ​cis​-meQTLs and 48 ​trans​-meQTLs in the DLPFC (​Table S6 ​). Again, 

a majority of PGC SNPs were represented (141/152). Some of these CpH sites were near 

CpG-meQTLs, but many were not (mean distance = 120kb, median = 2798bp), suggesting 

potential independent effects of genotype on different sequence contexts of DNAm. Like with 

CpGs associated with genotype, CpHs meQTLs were also enriched for transcriptional and weak 

transcriptional chromatin states over full genome CpH-meQTLs, and depleted for repressor 

polycomb and quiescent states (Figure 2C) ​(​33​)​. Most CpHs were  inside genes that were 

subsequently enriched for neuronal GO terms related to neurons, synapses, and channels, 

further validating the neuronal contribution of CpH DNAm levels. We similarly observed much 

larger effect sizes of risk alleles in CpHs compared to CpGs in line with genome-wide analyses 

above, with a mean of 27% compared to 2% respectively. In hippocampus, we found 1588 

cis​-CpH-meQTLs and 92 ​trans​-CpH-meQTLs (​Table S7​), representing 148/153 tested SNPs. 

Similar to all previous analyses we see that these sites are mostly inside genes and have much 

larger effect sizes than CpGs. The genes represented by these CpHs are enriched for GO terms 

related to neuronal anatomy, synapses and IP3. Again, distance to the nearest CpG-meQTL is 

highly variable, ranging from 1 to 4,217,747 bp (mean = 24,374, median = 2,761). Results were 

overall similar between both brain regions, and 1219 CpH-meQTLs were in common between 

both regions, though again, there were unique associations across regions. 

 

Age associations to DNAm levels  

While there was extensive evidence of meQTLs in our WGBS data, there were a subset of CpG 

sites that showed high percentages of variance explained by age (​Figure 1F​). We therefore 
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more formally modeled methylation over age in both brain regions, as DNA methylation has 

been shown to globally accumulate with age ​(​47​, ​48 ​)​. We found extensive association with age, 

across approximately 2 million CpG sites in each region (at FDR < 0.05, ​Data S6​) . The majority 

of these sites were age-associated in both regions, with a sizable fraction of sites showing some 

regional specificity (700,000 sites in the DLPFC and 800,000 sites in hippocampus). The 

majority (94%) of sites increase in methylation with age, with half of sites in promoter regions, 

and a quarter in CpG islands or shores. Only 9% of genes represented by these differentially 

methylated promoters had significant correlation to gene expression levels in these samples 

(see Methods). In contrast, there was very little CpH association with age, with only 5,136 and 

445 significant sites in hippocampus and DLPFC respectively (at FDR < 0.05). These results 

suggest that CpH methylation may be more stable across adulthood and aging after 

establishment in postnatal life. 

 

Given the large extents of meQTL- and age-associated sites, we asked whether any CpG sites 

showed dynamic meQTL effects across the adult lifespan. Despite age being associated with 

methylation at many sites throughout the genome, we found there were practically no changes 

in meQTL effects across the adult lifespan (i.e. statistical interaction between age and 

genotype), and, if anything, sites that were differentially methylated by age were depleted (p < 

2.2e-16) for being associated with local genetic variation (i.e. being meQTLs).  

 

Minimal illness-state associated differential methylation levels 

We lastly modeled methylation differences between patients with schizophrenia and 

neurotypical controls. These associations are typically more subtle - fewer with smaller effect 

sizes - than age or genotype effects in microarray data ​(​10​)​ and more likely to represent cohort- 
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or dataset-specific findings ​(​49​)​. ​In these WGBS data, we found very few FDR-significant CpG 

sites - none in DLPFC and 70 in hippocampus. This is not surprising based on previous studies 

and the high multiple testing burden, almost two orders of magnitude more than microarray 

platforms. We saw similar lack of signal at CpH sites, with no significant hits in DLPFC and 1293 

in hippocampus, with most (70%) of the hippocampal hits being in or nearby genes. These 

results suggest rather subtle effects of schizophrenia diagnosis on the methylome, particularly in 

the contexts of much stronger genotype- and age-associated effects.  

 

 

Discussion 

Here we present one of the most comprehensive whole genome bisulfite sequencing (WGBS) 

studies to date, particularly in human brain tissue, to better understand technical and biological 

factors that contribute to genome-wide DNA methylation levels at both CpG and CpH sites. We 

first demonstrated, at a single base pair resolution, that meQTLs are highly abundant 

throughout the entire genome at a breadth and scope previously unseen. Not only can common 

SNPs associate with CpG methylation, but they also uniquely and independently associate with 

CpH methylation levels in adult neurons. Furthermore, we demonstrated clinical relevance of 

these single base resolution meQTL maps to identify the functional significance of loci identified 

by GWAS in human brain. Using schizophrenia as an example, we found DNA methylation 

associations to nearly every genome-wide significant variant that clustered into many local 

differentially methylated regions (DMRs) that explained significant proportions of disease 

heritability.  
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Due to the expense and computational intensity, WGBS is challenging for epigenomic studies. 

With our large scale study, we were able to identify the effects of technical and potential 

biological variables on our data. This has been less well characterized than microarray studies, 

and we found that batch and ancestry cause much variance in the data, and their effects are 

exacerbated and alleviated, respectively, by the smoothing process. We also found that 

ENCODE blacklist regions are unreliable in WGBS data, due to the increased difficulty of 

alignment ​(​30​)​. 

 

Previous studies have identified a genomic presence of meQTLs, but not at a single base pair 

resolution. Our findings are largely consistent with previous work, in that meQTLs are indeed 

extensive throughout the genome, and that most of their regulation occurs locally. However, 

while earlier estimates reported that 15% of CpGs were under genetic control ​(​11​)​, we greatly 

increased this fraction to 38%. Like Smith et al. ​(​8​)​, we showed that overlap was generally high 

between the two brain regions we surveyed, though clearly, there are differences as well. 

Studies have also found that functional meQTLs are enriched for active chromatin states ​(​11​) 

and that meQTLs appear to impact alternative splicing ​(​12​)​, further agreeing with our results 

and supporting the idea that schizophrenia risk associated loci are functional meQTLs. With our 

large sample and high genomic breadth, we are able to expand on all of these earlier findings at 

an in-depth genomic level.  

 

These results further implicate DNAm as perhaps the most proximal molecular correlate of DNA 

sequence variation. The most comprehensive eQTL resource constructed in brain tissue, using 

over 1400 individuals, identified that approximately 25% of common genetic variants associated 

with nearby gene expression levels ​(​50​)​ and our meQTL maps here implicated three times as 
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many SNPs (76%) with a much smaller number of donors. Similarly, the recent GTEx v8 eQTL 

efforts - performed across 838 donors and 17,382 RNA-seq samples across 49 tissues - 

implicated 43% of tested SNVs with gene expression in at least one tissue.  

 

These meQTLs further refined our understanding of the functional significance of schizophrenia 

genetic risk loci. By leveraging WGBS data combined with genotype data from the same 

samples, we identified molecular phenotypes associated with individual risk variants. This 

process could more generally filter GWAS findings to regions of the genome that could impart 

functional consequences of these risk variants. We found that regions that are differentially 

methylated by risk-associated genotypes explained most of the heritability imparted by the 

genome-wide significant schizophrenia risk loci, despite spanning a much smaller fraction of the 

genome (1.6Mb vs 56.5Mb). We also found that for some of these risk loci which have been 

previously identified as eQTLs ​(​39​)​, DNA methylation acts as a mediator of eQTL effects, 

refining the potential mechanism by which genetic risk variants may affect brain function. We 

note that the strongest mediation effects were seen among exons, indicating that differences in 

methylation may be key to alternative splicing, as has been previously hypothesized ​(​51​)​.  While 

our data do not show that DNAm mediates expression for the majority of the meQTLs, this must 

be viewed with some caution. Our brain samples represent a moment in time in the lifespan of 

any given brain, and the data are from bulk tissue. At different life stages, perhaps in specific 

cell populations, mediation effects may be more prominent, particularly in the developing brain 

(​28​)​.  

 

WGBS also gives the unique ability to examine CpH methylation, an often overlooked mark, 

particularly in brain. We found that DNAm levels at specific CpH sites were also associated with 
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genetic variation, which presumably reflected neuron-specific genetic regulation of DNAm 

levels. It is interesting that the genetic control of CpH methylation seems to have a much larger 

effect size than that on CpGm, particularly given the fact that the fraction of neurons in our 

homogenate tissue were uniquely driving these associations. This mark is particularly 

interesting to examine in relation to psychiatric disorders because it is specific to neurons, so we 

can point to the cell type of interest at these sites. Understanding which CpHs are under control 

of risk loci even further refines our understanding of the risk loci’s functions because of this. It is 

also interesting that despite CpHs being abundant throughout the genome, most meQTL-CpHs 

are inside genes, possibly further pointing to functional significance. Large-scale analyses in 

sorted neuronal cell populations can further refine these associations, particularly in different 

subpopulations of neurons (i.e. inhibitory and excitatory) ​(​52​)​. 

 

Overall we have established a comprehensive landscape of genetic control of genomic 

methylation in the human brain. Based on previous findings that many meQTLs are stable 

across tissue types, a large fraction of this meQTL map could apply to other tissues and cell 

types. It is clear that genotype has a robust role in determining local methylation levels, not only 

at CpG sites but at CpH sites as well. These findings can further be applied to understand the 

functional significance of genetic risk loci identified in GWAS. 
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Methods 

 

Study Samples 

Brain specimens were donated through the Offices of the Chief Medical Examiners of the 

District of Columbia and of the Commonwealth of Virginia, Northern District to the NIMH Brain 

Tissue Collection at the National Institutes of Health in Bethesda, MD, according to NIH 

Institutional Review Board guidelines (Protocol #90-M-0142). Audiotaped informed consent was 

obtained from legal next-of-kin on every case.  Details of the donation process are described 

previously ​(​53​, ​54 ​)​. All adult neurotypical controls were free from psychiatric and/or neurologic 

diagnoses and substance abuse according to DSM-IV, and had toxicology screening to exclude 

for acute drug and alcohol intoxication/use at time of death.  

 

Data Generation 

Genomic DNA was extracted from 100 mg of pulverized dorsolateral prefrontal cortex (DLPFC, 

corresponding to BA46/9) or hippocampus tissue (dissected as previously described ​(​39​)​) with 

the phenol-chloroform method. DNA was subjected to bisulfite conversion followed by 

sequencing library preparation using the TruSeq DNA methylation kit from Illumina. Lambda 

DNA was spiked in prior to bisulfite conversion to assess its rate, and we used 20% PhiX to 

better calibrate Illumina base calling on these lower complexity libraries. Resulting libraries were 

pooled and sequenced on an Illumina HiSeq X Ten sequencer with paired end 150bp reads 

(2x150bp), targeting 90Gb per sample. This corresponds to 30x coverage of the human genome 

as extra reads were generated to account for the addition of PhiX.  

 

Data Processing 
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The raw WGBS data was processed using FastQC to control for quality of reads, Trim Galore to 

trim reads and remove adapter content ​(​55​)​, Arioc for alignment to the GRCh38.p12  genome 

(obtained from 

ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/001/405/GCA_000001405.27_GRCh38.p12/GC

A_000001405.27_GRCh38.p12_assembly_structure/Primary_Assembly/assembled_chromoso

mes/) ​(​56​)​, duplicate alignments were removed with SAMBLASTER ​(​57​)​, and filtered with 

samtools ​(​58​)​ to exclude all but primary alignments with a MAPQ >= 5. We used the Bismark 

methylation extractor to extract methylation data from aligned, filtered reads ​(​59​)​. We then used 

the bsseq R/Bioconductor package (v1.18) to process and combine the DNA methylation 

proportions across the samples for all further manipulation and analysis ​(​31​)​. After initial data 

metrics were calculated, the methylation data for each sample was locally smoothed using 

BSmooth with default parameters for downstream analyses. CpG results were filtered to those 

not in blacklist regions (DLPFC N = 26,155,085, Hippocampus N = 26,301,249), and those 

which had coverage >= 3. CpHs were filtered to sites which had >3 coverage and non-zero 

methylation in at least half the samples. Due to an unidentifiable primary source of variance, 11 

samples in the DLPFC were dropped before analysis. 

 

Assessment of technical and biological variation 

Principal component analyses (PCA) were performed on the 1e6 most variable autosomal CpG 

sites using the prcomp() function in R. We calculated the percentage of variance explained by 

biological and technical variables using the anova() and lm() functions in R.  

 

meQTL Analysis 
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We used R package Matrix eQTL ​(​60​)​ in all meQTL analyses. For full genome analysis, we set 

the maximum ​cis​ SNP to “gene” distance to 20kb. We approximated the p-value equivalent to 

FDR = 0.01 and used this as the p-value cutoff. We used only SNPs which were common (with 

minor allele frequencies, MAF > 5%) across the donors in each dataset separately that were in 

Hardy-Weinberg equilibrium (at p > 1e-6) with high non-missingness (>90% present), leading to 

analysis of ​7,897,043 SNPs in the DLPFC and 7,865,986 SNPs in the hippocampus. The model 

adjusted for 28 covariates, which were the top 28 principle components of the methylation data. 

For PGC analyses, we set  the ​cis​ distance to 250kb, and considered everything else in trans. 

We set the p-value cutoff to 1 so that we had statistics for every SNP-CpG pair in this analysis. 

meQTL interaction with age, neuronal composition, and MDS1 was assessed using the 

modelLINEAR_CROSS parameter. meQTLs were then organized into DMRs by using the 

bumphunter R/Bioconductor package (v1.30) ​(​61​)​ function regionFinder, to create clusters of 

adjacent meQTLs which all had an association statistic of t >= 5. These were filtered to DMRs 

containing at least two adjacent CpGs. We used the cleaningY() function from the jaffelab 

package ​(​62​)​ version 0.99.20 to regress out adjustment covariates to visualize the DNAm levels 

in subsequent plots.  

 

Heritability Analysis 

We estimated the SNP-heritability of DNAm for each CpG site using the GCTA software ​(​35​)​. 

We removed seven samples of DLPFC and eight samples of HIPPO so that all pairs of retained 

samples (DLPFC 158, HIPPO 171) had a genetic relatedness less than 0.025 and were 

included for heritability estimation. Genetic relationship matrix (GRM) was calculated using 

SNPs around each CpG site at three different window sizes (40 kb, 200 kb, and 1 Mb). We 

included the same set of covariates as we used in meQTL analysis in heritability estimation. 
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Functional Significance Analysis 

We annotated our data using Gencode v. 29 on hg38. We performed gene ontology and gene 

set enrichment using clusterProfiler (v3.12) ​(​63​)​ with a p-value cutoff of 0.01 and q-value cutoff 

of 0.05. We performed LD score regression as described by Finucane et al ​(​43​)​ and with data 

from recent GWAS ​(​64 ​, ​65 ​)​. To assess mediation of gene expression, we identified SNPs which 

were both eQTLs ​(​39​)​ and meQTLs, and which had some correlation (cor > 0.3) between gene 

expression and methylation levels. For every CpG-gene pair generated by this, we modeled the 

effect of genotype on expression, then added in the effect of methylation, and examined the 

difference in the effect size/coefficient for genotype.  

 

Age and Diagnosis differential methylation modeling 

Differential methylation analyses for both diagnosis and age were performed using linear 

regression modelling, accounting for sex, estimated neuronal fraction, batch, and the top 3 MDS 

components from genotype data. The regression analyses above were formed using limma 

(v3.30) ​(​66​, ​67 ​)​ which employed empirical Bayes and returned moderated T-statistics, which 

were used to calculate p-values and estimate the false discovery rate (FDR, via 

Benjamini-Hochberg approach ​(​68​)​).  
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Figure 1: Variance in smoothed methylation data, post-QC. ​ PCA was performed on all sites 

excluding the sex chromosomes and ENCODE’s blacklist. ​(A,B) ​We find that the top principal 

components of smoothed methylation data associate with both batch and neuronal composition. 

(C) ​We see that the third principal component is associated with brain region, and no longer 

associated with batch. ​(D)​ In smoothed methylation data, ethnicity is reduced to the 4th principal 

component. ​(E)​ Age associates with the fifth principal component. ​(F) ​Variance explained was 

analyzed using ANOVA by each individual CpG site. We see that brain region and batch effects 

explain a large deal of variance, while biological factors such as PMI and pH explain very little.  
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Figure 2: Chromatin State of meQTLs and DMRs. ​We assessed the chromatin state of sites 

identified as meQTLs and DMRs using data from various tissues from the Roadmap 

Epigenomics Project. Data for brain tissues are highlighted in red. Chromatin states are defined 

as follows. 1: Active TSS 2: Flanking Active TSS 3: Transcription at gene 5’ and 3’ 4: Strong 

transcription 5: Weak transcription 6: Genic enhancers 7: Enhancers 8: ZNF genes & repeats 9: 

Heterochromatin 10: Bivalent/Poised TSS 11: Flanking Bivalent TSS/Enhancer 12: Bivalent 

Enhancer 13: Repressed PolyComb 14: Weak Repressed PolyComb 15: Quiescent/Low ​(A)​ In 

genome-wide meQTLs, assessing a set of LD-independent SNPs, we see that the vast majority 

of meQTL-CpGs are in quiescent chromatin regions. ​(B) ​We see that compared to genomic 

SNPs, CpGs associated with PGC schizophrenia risk SNPs are enriched for regions of active 

transcription and depleted for regions of quiescent chromatin. ​(C) ​We see that CpH sites 

associated with PGC schizophrenia risk SNPs are often in regions of active transcription.  
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Figure 3: Schizophrenia-risk associated DMRs. ​ Two examples of regions where methylation 

levels are associated with genotype at a schizophrenia risk associated phenotype.   
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Figure 4: LDSC results for schizophrenia heritability. ​(Top) LDSC analysis outputs for each 

category of DMRs explained in Figure 4. Results showed that most of the enrichment for 

schizophrenia heritability in our DMR sites was in ​cis​. (Bottom) Visual description of LDSC: we 

performed LDSC analysis on the GWAS-identified loci as a background, and two sets of DMRs, 

one with a cutoff of t > 3.5 and one with a more stringent cutoff of t > 5. We further divided these 

DMR sets into ​cis​ DMRs - those within the GWAS loci - and ​ trans​ DMRs - those outside the 

GWAS loci. 
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Supplementary Material 

 

Figure S1: PCA on raw methylation values, excluding sex chromosomes ​. Principal 

components of variance are plotted against their most associated factor. ​(A)​ The top component 

of variance in raw methylation data corresponds with the top multidimensional scaling (MDS1) 

component of the genotype data, which is a representation of ethnicity. ​(B)​ The second principal 

component aligns with estimated neuronal fraction. Here we also see 11 DLPFC samples with 
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unexplained variance, so they are dropped from analysis. ​(C) ​The third principal component 

strongly associates with processing batch. ​(D)​ The fourth principal component correlates with 

brain region.  
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Figure S2: Comparison between top 20 PCs of raw and smooth methylation data. ​ We see 

that smoothing methylation data alters the principal components of variants, mitigating the 

effects of ethnicity and increasing the effects of batch and cell composition. 
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Figure S3: Ethnicity Differences in meQTL t-statistics. ​ For meQTLs identified on 

chromosome 1, we ran post-hoc meQTL analysis on the samples divided by self-reported 

ethnicity. ​(A)​ There are some differences between meQTL strengths between ethnicities, but 

they are largely correlated and directionally consistent. ​(B)​ meQTL statistics in AA only were 

very similar to the overall findings, likely because the majority of our samples were AA. ​(C) 

meQTL statistics compared to t-statistics from all samples. 
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Figure S4 ​: ​Lack of association between population MAF differences and meQTL strength. 

Though some differences in meQTL strength can be seen between ethnicities, meQTL strength 

does not associate with SNP MAF or MAF differences between ethnic populations.  
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Figure S5: GO Enrichment of schizophrenia risk associated DMRs. ​ We find that DMRs 

associated with schizophrenia risk variants are in or near genes enriched for synapse related 

GO terms. 
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Figure S6: Comparison of Hippocampus association statistics to the statistics of DMRs 

identified in DLPFC. ​meQTL association statistics are highly correlated between brain regions. 
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Supplementary Tables 

Table S1: ​Sample Demographic Data 

 

Table S2 ​: DLPFC CpG meQTLs to SCZD risk SNPs. snps: SNP identifier; cpg: location of CpG 

meQTL site (hg38); statistic: t-statistic for meQTL association between SNP and CpG; pvalue: 

P-value for meQTL association; FDR: Benjamin-Hochberg corrected p-value; beta: regression 

coefficient, or the change in DNAm levels per minor allele copy; snpChr: chromosome of 

genome where the SNP lies (hg38); snpPos: position on the chromosome where the SNP lies 

(hg38); snpRsNum: rs number of the genetic variant; snpCounted:the counted/minor allele of 

the meQTL variant (`beta` is relative to this); snpAlt: the reference allele for the variant; 

disruptCpG: whether the SNP disrupts any CpG dinucleotides (even one different than the 

meQTL); methChr: chromosome where the CpG lies (hg38); methPos: position where the CpG 

lies (hg38); distMethToSnp: genomic distance between SNP and CpG. 

 

Table S3 ​: HIPPO CpG meQTLs to SCZD risk SNPs. See Table S2 for field descriptions.  

 

Table S4 ​: DLPFC DMRs formed by SCZD "index" SNPs. chr: chromosome where the 

differentially methylated region (DMR) lies (hg38); start: start position of the DMR (hg38); end: 

end position of the DMR (hg38); value: mean meQTL t-statistic within the DMR; area: sum of the 

meQTL t-statistics within the DMR; cluster, indexStart, and indexEnd are internal indices for 

rows of the methylation matrix; L: number of CpGs in DMR; clusterL: number of nearby CpGs 

considered for DMR finding; width: genomic width of DMR; snpPos: position of the 

schizophrenia index SNP used to find DMR; disruptCpG:  whether the SNP disrupts any CpG 
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dinucleotides; distStart: distance of SNP to start of DMR; distEnd: distance of SNP to end of 

DMR; location: location of DMR relative to genes 

 

Table S5: ​HIPPO DMRs formed by SCZD "index" SNPs. See Table S4 for field descriptions.  

 

Table S6: ​ DLPFC CpH meQTLs to SCZD risk SNPs. See Table S2 for field descriptions.  

 

Table S7: ​HIPPO CpH meQTLs to SCZD risk SNPs. See Table S2 for field descriptions.  
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Supplementary Datasets 

 

Data S1​: Variance of smoothed DNA methylation levels explained by technical and biological 

variables across all tested CpGs: 

https://mandell-wgbs-meqtl.s3.us-east-2.amazonaws.com/suppData_smooth_variance_explaine

d_annotated.csv.gz  

 

Data S2: meQTLs across DLPFC using smoothed DNAm values. Statistics from all significant 

SNP-CpG pairs are provided: 

https://mandell-wgbs-meqtl.s3.us-east-2.amazonaws.com/suppData_smooth_dlpfc_CpG_

meqtls_fdr.csv.gz  

 

Data S3: meQTLs across HIPPO using smoothed DNAm values. Statistics from all significant 

SNP-CpG pairs are provided: 

https://mandell-wgbs-meqtl.s3.us-east-2.amazonaws.com/suppData_smooth_hippo_CpG

_meqtls_fdr.csv.gz  

 

Data S4: CpH-meQTLs across DLPFC. Statistics from all significant SNP-CpH pairs are 

provided: 

https://mandell-wgbs-meqtl.s3.us-east-2.amazonaws.com/suppData_smooth_dlpfc_CpH

_meqtls_fdr.csv.gz 

Data S5: CpH-meQTLs across HIPPO. Statistics from all significant SNP-CpH pairs are 
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provided: 

https://mandell-wgbs-meqtl.s3.us-east-2.amazonaws.com/suppData_smooth_hippo_Cp

H_meqtls_fdr.csv.gz 

Data S6: Associations between smoothed DNAm values and age across the DLPFC for all 

significant sites: 

https://mandell-wgbs-meqtl.s3.us-east-2.amazonaws.com/suppData_smooth_dlpfc_CpG 

_age.csv.gz  
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