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Abstract Cells are home to a wide variety of biomolecular condensates – phase-separated10

droplets that lack a membrane. In addition to nonspecific interactions, phase separation11

depends on specific binding motifs between constituent molecules. Nevertheless, few rules have12

been established on how these specific, heterotypic interactions drive phase separation. Using13

lattice-polymer simulations and mean-field theory, we show that the sequence of binding motifs14

strongly affects a polymer’s ability to phase separate, influencing both phase boundaries and15

condensate properties (e.g. viscosity and polymer diffusion). We find that sequences with large16

blocks of a single motif typically form more inter-polymer bonds which promote phase17

separation. Notably, the sequence of binding motifs influences phase separation primarily by18

determining the conformational entropy of self-bonding by single polymers. This contrasts with19

systems where the molecular architecture primarily affects the energy of the dense phase,20

providing a new entropy-based mechanism for the biological control of phase separation.21

22

Introduction23

Understanding how biological systems self-organize across spatial scales is one of the most press-24

ing questions in the physics of living matter. It has recently been established that eukaryotic cells25

use phase-separated biomolecular condensates to organize a variety of intracellular processes26

ranging from ribosome assembly and metabolism to signaling and stress response (Hyman et al.,27

2014; Banani et al., 2017; Boeynaems et al., 2018). Biomolecular condensates are also thought28

to play a key role in physically organizing the genome and regulating gene activity (Hnisz et al.,29

2017; Sabari et al., 2018; Shin et al., 2018). How do the properties of these condensates emerge30

from their components, and how do cells regulate condensate formation and function? Unlike the31

droplets of simple molecules or homopolymers, intracellular condensates are typically composed32

of hundreds of molecular species, each with multiple interaction motifs. These interaction motifs33

can include folded domains, such as in the nephrin-Nck-N-WASP system for actin regulation (Li34

et al., 2012), or individual amino acids in proteins with large intrinsically disordered regions (IDRs),35

such as the germ granule protein Ddx4 (Nott et al., 2015). While the precise sequences of these36

motifs are believed to play a major role in determining condensates’ phase diagrams and material37

properties, the nature of this relation has only begun to be explored (Brangwynne et al., 2015;38

Alberti et al., 2019; Hicks et al., 2020). As a result, it remains difficult to predict the formation,39

properties, and composition of these diverse functional compartments.40

Previous studies have established important principles relating phase separation to the se-41

quence of nonspecific interaction domains such as hydrophobic or electrostatic motifs (Lin et al.,42
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2016; Das et al., 2018; McCarty et al., 2019; Statt et al., 2020). However, in many cases conden-43

sate formation and function depend on specific interactions which are one-to-one and saturating44

(Banani et al., 2017). These can include residue-residue bonds, bonds between protein domains,45

protein-RNA bonds, and RNA-RNA bonds. Such one-to-one interactions between heterotypic do-46

mains are ubiquitous in biology, and recent studies have enumerated a large number of exam-47

ples in both one-component (Wang et al., 2018) and two-component (Ditlev et al., 2018; Xu et al.,48

2020) systems (e.g. cation-pi bonds between tyrosine and arginine in FUS-family proteins, bonds49

between protein domains in the SIM-SUMO system). Another important example is RNA phase50

separation in “repeat-expansion disorders” such as Huntington’s disease and ALS. There, phase51

separation is driven by specific interactions between nucleotides arranged into regular repeating52

domains, and it has recently been shown that the repeated sequence pattern is necessary for53

aggregate formation (Jain and Vale, 2017). In spite of the biological importance of such specific54

interactions, their statistical mechanical description remains undeveloped. Here, we address the55

important question: what is the role played by sequence when specific, heterotypic interactions56

are the dominant drivers of phase separation?57

Specifically, we analyzed amodel of polymers with specific, heterotypic interactionmotifs using58

Monte Carlo simulations and mean-field theory. We found that motif sequence determines both59

the size of the two-phase region and dense-phase properties such as viscosity and polymer exten-60

sion. Importantly, sequence acts primarily by controlling the entropy of self-bonds. This suggests61

a new paradigm for biological control of intracellular phase separation: when bonds are specific62

and saturating, the entropy of intramolecular interactions can be just as relevant as the energy of63

intermolecular interactions.64

Results65

How does a polymer’s sequence of interaction motifs affect its ability to phase separate? To ad-66

dress this question, we developed an FCC lattice model where each polymer consists of a se-67

quence of “A” and “B” motifs which form specific, saturating bonds of energy � (Fig. 1(a) and 1(b)).68

Monomers on adjacent lattice sites also have nonspecific interaction energy J . For each sequence,69

we determined the phase diagram, which describes the temperatures and polymer concentrations70

at which droplets form. To enable full characterization of the phase diagram including the critical71

point, we used Monte Carlo simulations in the Grand Canonical Ensemble (GCE): the 3D conforma-72

tions of the polymers are updated using a predefinedmove-set, and polymers are inserted/deleted73

with chemical potential �. (See Methods and Materials for details.) For each sequence, we deter-74

mined the critical point (temperature Tc and chemical potential �c). Then for each T < Tc we located75

the phase boundary, defined by the value �∗ for which the dilute and dense phases have equal ther-76

modynamic weight. Around this value of �, the system transitions back and forth between the two77

phases throughout the simulation, leading to a polymer number distribution P (N) that has two78

peaks with equal weights (Fig. 1(c)) (Panagiotopoulos et al., 1998). The dilute and dense phase79

concentrations �dilute and �dense are the means of these two peaks. Multicanonical sampling was80

employed to adequately sample transitions (Methods and Materials).81

We first constructed phase diagrams for polymers with the six sequences shown in Fig. 1(a), all82

with L = 24 motifs arranged in repeating domains, and all with equal numbers of A motifs and B83

motifs (a = b = 12 where a and b are the numbers of A and B motifs in a sequence). Each simula-84

tion contains polymers of a single sequence, and the sequences differ only in their domain sizes85

l. Figure 2(a) shows the resulting phase diagrams, which differ dramatically by domain size, e.g.86

the Tc values for l = 2 and l = 12 differ by 20%. The absolute magnitude of the effect depends on87

the interaction energy scale �, but we note that if the Tc for l = 12 were in the physiological range88

around 300K, the corresponding 60K difference would render the condensed phase of l = 2 inac-89

cessible in most biological contexts. Despite this wide variation, Fig. 2(b) shows that rescaling by Tc90

and �c causes the curves to collapse. This is expected near the critical point, where all sequences91

share the behavior of the 3D Ising universality class (Panagiotopoulos et al., 1998), but the con-92
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Figure 1. Lattice model for phase separation by polymers with one-to-one interacting motifs. (a) Each
polymer is defined by its sequence of motifs, which come in types “A” (red) and “B” (blue). The class of
sequences shown consists of repeated domains of As and Bs, labeled by their domain size l. (b) In lattice
simulations, an A and a B motif on the same lattice site form a specific, saturating bond (green) with binding
energy �. Monomers of any type on adjacent lattice sites have an attractive nonspecific interaction energy
J = 0.05�. A-A and B-B overlaps are forbidden. (c) Polymer number distribution P (N) at the phase boundary
of the l = 3 sequence (�� = 0.9287, � = −9.9225�). At fixed � the system fluctuates between two phases. Inset:
Snapshots of the GCE (fixed �) simulation at �dilute and �dense.

tinued nearly exact data collapse indicates that (Tc, �c) fully captures the sequence-dependence of93

the phase diagram.94

Why does the sequence of binding motifs have such a strong effect on phase separation? Im-95

portantly, sequence determines the entropy of intra-polymer bonds, i.e. the facility of a polymer96

to form bonds with itself. This is quantified by the single-polymer density of states g(s): for each se-97

quence, g(s) counts the number of 3D conformationswith s self-bonds. For short polymers, g(s) can98

be enumerated, whereas for a longer polymers, it can be extracted from Monte Carlo simulations.99

Figure 2(c) shows g(s) for each of the domain sequences, obtained from Monte Carlo simulations.100

Sequences with small domain sizes have many more conformations available to them at all values101

of s. Intuitively, a sequence like l = 2 allows a polymer to make many local bonds, whereas a102

sequence like l = 12 cannot form multiple bonds without folding up globally like a hairpin. Such103

hairpin states are thermodynamically unfavorable at these temperatures due to the low confor-104

mational entropy, so it is more favorable for polymers like l = 12 to phase separate and form105

trans-bonds with others, leading to a high Tc value. Even when T < Tc so that low-energy states106

with many bonds are favored, large-domain sequences have large two-phase regions because g(s)107

is small for all s. Thus, polymers with large domains form condensates over a much wider range108

of temperatures and concentrations.109

This intuition can be captured by a simple mean-field theory that incorporates only single-110

polymer properties, namely g(s) and the number of A and B motifs per polymer, a and b. We111

calculate the free energy density of a state where each polymer forms s self-bonds and t trans-112

bonds (bonds with other polymers). We make two mean-field simplifications: 1) every polymer113
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Figure 2. The sequence of binding motifs strongly affects a polymer’s ability to phase separate. (a) Binodal
curves defining the two-phase region for the six sequences of length L = 24 shown in Fig. 1(a). Stars indicate
the critical points and the solid curves are fits to scaling relations for the 3D Ising universality class. Mean ±
SD for three replicates. (Uncertainties are too small to see for most points.) Color key applies to all panels. (b)
When rescaled by the critical temperature Tc and critical density �c, the phase boundaries in (a) collapse, even
far from the critical point. (c) The tendency to phase separate is inversely related to the density of states g(s),
i.e. the number of ways a given sequence can form s bonds with itself. Inset: Snapshots of l = 3 polymer with
s = 5 (top) and s = 10 (bottom). Black lines show the polymer backbone. (d) Phase boundaries from
mean-field theory using g(s) (Eq. 1).

has the mean number of trans-bonds t, and 2) each polymer interacts with the others through a114

mean-field background of independent motifs. In contrast, the self-interaction is described by the115

full density of states g(s) extracted from single-polymer simulations. This leads to the following116

free energy density (see Appendix 1 for derivation):117

f (s̄, t̄) ≡ F
kBTV

= fsteric(s, t) + ftrans(s, t) + ���2 −
�
L

(

log
∑

s
g(s)ews

)

+
�
L
ws −

�
L
��
(

s + t
2

)

, (1)

where V is the number of lattice sites, � is the nonspecific-interaction parameter,118
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and119

ftrans ≡
�
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(

y(a) + y(b) + t
2
log t

2
+ t
2
(

1 − log
�
L
)

)

,

y(x) ≡ (x − s − t∕2) log(x − s − t∕2) − (x − s) log(x − s).
(3)

fsteric is the translational contribution from the number of ways to place polymers without overlap120

and ftrans is the entropy of forming t trans-bonds given s self-bonds, derived from the combinatorics121

of pairing independent motifs. The fourth term in Eq. 1 accounts for the self-bonding entropy,122

where w is the self-bond weight chosen to self-consistently enforce ∑

i si∕N = s. The next term is123

the Legendre transform compensating for w . (This allows us to estimate the entropy of s without124

assuming that si = s ∀ i. The procedure is akin to introducing a “chemical potential” w which fixes125

themean number of self-bonds.) In the thermodynamic limit the partition function is dominated by126

the largest term, so weminimize Eq. 1 with respect to s and t at each � to yield f (�) and determine127

the phase diagram.128
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Figure 2(d) shows themean-field phase diagrams. In spite of the theory’s approximations, it cap-129

tures the main patterns observed in the full simulations. Specifically, sequences with larger motif130

domains have larger two-phase regions and these extend to higher temperatures. (Themean-field131

Tc values differ from the simulations, but these could be tuned by the nonspecific-interaction pa-132

rameter � . Density fluctuations make it difficult to map � to J , so we use the mean-field relation133

� = −V Jz∕2 for simplicity.) Rescaling by Tc and �c also causes the mean-field phase boundaries134

to collapse (Appendix 4). Intriguingly, the mean-field theory does not correctly place the l = 1 se-135

quence in the Tc hierarchy. The single-polymer density of states g(s) suggests that l = 1 should be136

similar to l = 2, but its Tc is closer to to l = 4. We trace this discrepancy to trans-bond correlations137

in the dense phase: the l = 1 sequence tends to form segments of multiple bonds rather than138

independent bonds (see Appendix 2 for details). Overall, the success of the theory demonstrates139

that motif sequencemainly governs phase separation through the entropy of self-interactions. We140

capture this dependence, as well as corrections due to dense-phase correlations, in a simple “con-141

densation parameter” described below.142

Figure 3. Ability to phase separate is determined by the sequence of binding motifs for polymers of different
lengths, patterns, and motif stoichiometries. (a) Tc and �c for L = 24 polymers with scrambled sequences and
domain sequences of various lengths. Mean ± SD over three replicates. (Temperature uncertainties are too
small to see in (a) and (c).) (b) Tc as a function of motif stoichiometry a∕L. The solid curve corresponds to l = 3
sequences where a number of B motifs are randomly mutated to A motifs, and the dashed curve shows
scrambled sequences. Mean ± SD over four different sequences. (c) Tc from Monte Carlo simulations versus
mean-field theory (blue) and condensation parameter (orange) for domain sequences, scrambled sequences,
and sequences with unequal motif stoichiometry, all L = 24. Mean ± SD over three replicates for simulation
Tc. (d) Distribution of Tc values for 20,000 random sequences of length L = 24 with a = b, calculated from Ψ
values and the linear Tc versus Ψ relation for domain sequences. Domain sequence Tc values are marked.

Do these conclusions still hold if the motifs are not arranged in regular domains, and how do143

polymer length and motif stoichiometry affect phase separation? To address these questions, we144

located the critical points for three new types of sequences: 1) Length L = 24 sequences with a =145

b = 12 in scrambled order, 2) domain sequenceswithL ≠ 24, and 3) sequenceswithL = 24 but a ≠ b.146

Each simulation contains only polymers of a single sequence. We find that the Tc hierarchy with147

respect to domain size l is preserved across sequence lengths, so domain size is a robust predictor148

of phase separation (Appendix 4, Fig. 12). Figure 3(a) shows Tc and �c for the scrambled L = 24149

sequences and for domain sequences of various lengths. Tc and �c are negatively correlated across150
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all sequences because for low-Tc sequences, trans-bonds – and consequently, phase separation –151

only become favorable at higher polymer density.152

The dashed curve in Fig. 3(b) shows Tc for scrambled sequences with unequal motif stoichiom-153

etry. Tc decreases as the motif imbalance grows because the dense phase is crowded with un-154

bonded motifs, making phase separation less favorable. How does this crowding effect interplay155

with the previously observed effect of g(s)? Scrambled sequences are clustered near the l = 3156

sequence in (Tc, �c) space (Appendix 4, Fig. 11), so we generated sequences by starting with l = 3157

and randomly mutating B motifs into A motifs (Fig. 3(b), solid curve). The l = 3mutants follow the158

same pattern as the scrambled sequences, indicating that self-bond entropy and stoichiometry are159

nearly independent inputs to Tc. This arises because motif flips have a weak effect on g(s) but a160

strong effect on dense phase crowding, giving cells two independent ways to control condensate161

formation through sequence.162

The mean-field theory of Eq. 1 also captures the behavior of these more general sequences, as163

shown in Fig. 3(c). The critical temperatures from theory (blue markers) correlate linearly with the164

simulation Tc values. (The magnitude differs, but this is tuned by the strength of nonspecific inter-165

actions.) This agreement reinforces the picture that Tc is mainly governed by the relative entropy166

of intra- and inter-polymer interactions. The former is captured by g(s) and the latter depends on167

the motif stoichiometry. To capture these effects in a single number, we propose a condensation168

parameter Ψ which correlates with a sequence’s ability to phase separate (see Appendix 3 for a169

heuristic derivation):170

Ψ ≡ − log
(

1
(rA)b(rB)a

∑

s

g(s)
(4⟨Pcorr⟩)s∕2

)

, (4)

where rA = a∕L is the fraction of motifs that are A (and likewise for rB) and ⟨Pcorr⟩ is a simple met-171

ric for trans-bond correlations (See Appendix 2). A sequence with large Ψ has a high Tc because172

the dense phase is relatively favorable due to low self-bonding entropy, strong dense-phase cor-173

relations, or balanced motif stoichiometry. As shown in Fig. 3(c) (orange markers), this accurately174

captures the phase separation hierarchy of Tc, including the correlation-enhanced Tc of the l = 1175

sequence.176

Are domain sequences special? The space of possible sequences is much larger than can be ex-177

plored via Monte Carlo simulations. However, we can use the condensation parameter to estimate178

Tc for any sequence without additional simulations. First, we estimate g(s) analytically and use this179

to approximate Ψ for new sequences. Then we use a linear fit of Ψ to the known Tc values for the180

domain sequences to estimate the critical temperature (details in Appendix 3). Figure 3(d) shows181

the distribution of critical temperatures calculated in this way for 20,000 random sequences with182

a = b = 12. Strikingly, the distribution is sharply peaked at low Tc, similar to the domain sequences183

with l = 2 or l = 3. If particular condensates with high Tc are biologically beneficial, then evolution184

or regulation could play an important role in generating atypical sequences like l = 12 with large185

two-phase regions.186

The sequence of specific-interaction motifs influences not only the formation of droplets, but187

also their physical properties and biological function. Figure 4(a) shows the number of self-bonds188

in the dense phase relative to scaled temperature |T −Tc|∕Tc. Density fluctuates in the GCE, so each189

point is averaged over configurations with � within 0.01 of the phase boundary, and this density is190

indicated via the marker color (marker legend in 4(c)). The sequence ordering of self-bonds in the191

dense phase matches the sequence ordering of the single-polymer g(s), indicating that sequence192

controls intrapolymer interactions even in the condensate. Figure 4(b) shows the number of trans-193

bonds in the dense phase, plotted as in (a). Larger domains lead tomore trans-bonds, even though194

the droplets are less dense. As temperature is reduced – and thus density is increased – the number195

of trans-bonds increases. Interestingly, even though the phase boundaries collapse to the same196

curve (Fig. 2(b)), different sequences lead to droplets with very different internal structures.197

These structural differenceswill affect the physical properties of the densephase. The timescales198

of a droplet’s internal dynamics will determine whether it behaves more like a solid or a liquid. We199
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Figure 4. The structure of the dense phase depends on the motif sequence. (a) Number of self-bonds s in the
dense phase as a function of reduced temperature for domain sequences (symbols as in (c)). Each point
shows s (mean ± SD) over all configurations with |� − �dense| ≤ 0.01. Color bar: droplet density. (b) Number of
trans-bonds t (bonds with other polymers) versus temperature as in (a). (c) “Viscosity” (Eq. 5) of the dense
phase, shown as in (a). Symbol key applies to all panels. (d) Radius of gyration Rg of polymers in the dense
phase (shown as in (a)) and in the dilute phase. Dilute-phase points show Rg (mean ± SD) over all
configurations with |� − �dilute| ≤ 0.01. They share reduced temperatures with the dense phase points but are
shifted for clarity. Color bar: dilute phase density.

might expect denser droplets to have slower dynamics, so the l = 1 and l = 2 sequences would200

be more solid-like. However, the extra inter-polymer bonds at large l will slow the dynamics. To201

disentangle these effects, we estimate the viscosity and polymer-diffusivity by modeling the dense202

phase as a viscoelastic polymer melt with reversible cross-links formed by trans-bonds. Then the203

viscosity is expected to scale as (Rubinstein and Semenov, 2001)204

� ∼ G� =
(

kBT
�
m3L

)(

�bt
2
)

, (5)

where G is the elastic modulus, � is the relaxation time of the polymer melt, and m is the monomer205

length. � depends on the trans-bonds per polymer t and the bond lifetime �b = �0 exp(��), where �0 is206

amicroscopic timewhich we take to be sequence-independent. Figure 4(c) shows the dense-phase207

viscosity calculated using in Eq. 5 the t̄ and �dense obtained from simulation. We find that sequences208

with large domains have more viscous droplets due to the strong dependence on inter-polymer209

bonds, in spite of their substantially lower droplet density. By the same arguments leading to210

Eq. 5, diffusivity scales as 1∕t, so polymers with large domains will also diffuse more slowly within211

droplets (Appendix 4, Fig. 13). Thus trans-bonds are the main repository of elastic “memory” in the212

droplet.213

The motif sequence also affects the polymer radius of gyration in both phases (Fig. 4(d)). In the214

dense phase, polymers with large domains adopt expanded conformations which allow them to215

form more trans-bonds. Polymers of all sequences are more compact in the dilute phase, where216

there are fewer trans-bonds and nonspecific interactions with neighbors. Thus self-bonds cause217

polymers to contract, while trans-bonds cause them to expand.218

Discussion219

In summary, we developed a simple lattice-polymer model to study how the sequence of specific-220

interaction motifs affects phase separation. We found that motif sequence determines the size221

of the two-phase region by setting the relative entropy of intra- versus inter-molecular bonds. In222

particular, large domains of a single motif disfavor self-bonds and thus favor phase separation.223
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This is consistent with recent experimental (Pak et al., 2016) and theoretical (Lin et al., 2016; Mc-224

Carty et al., 2019) studies on coacervation (phase separation driven by electrostatics) where small225

charge-domains lead to screening of the attractive forces driving aggregation. However, electro-226

static interactions (generic, longer-range, promiscuous) are qualitatively very different from the227

interactions in our model (specific, local, saturating). This points to a different underlying mech-228

anism: in the former, sequence primarily influences the electrostatic energy of the dense phase,229

but in the latter, sequence controls the conformational entropy of the dilute phase. Thus specific230

interactions provide a distinct physical paradigm for the control of intracellular phase separation.231

While our dilute phase concentrations are large relative to experimental values due to weak non-232

specific interactions and the discrete lattice, we expect these sequence-dependent patterns to be233

quite general. If anything, the self-bond entropy will be even more important at low �dilute.234

We then analyzed how sequence influences condensates’ physical properties such as viscos-235

ity and diffusivity. We found that motif sequence strongly affects both droplet density and inter-236

polymer connectivity, and, in particular, that sequences with large domains form more viscous237

droplets with slower internal diffusion. All sequences expand in the dense phase to form more238

trans-bonds, and small-domain sequences are the most compact. This contrasts with results for239

single polyampholyte chains, where “blocky” sequenceswith large domains aremore compact (Das240

and Pappu, 2013; Sawle andGhosh, 2015). The difference arises because our system includesmany241

polymers interacting with each other and because hairpins are less favored by specific bonds than242

by longer-range electrostatic interactions.243

Taken together, these results suggest that motif sequence provides cells with a means to tune244

the formation and properties of intracellular condensates. For example, motif stoichiometry could245

be an active regulatory target – a cell could dissolve droplets by removing just a few binding motifs246

per polymer through post-translational modifications. The negative correlation between Tc and �c247

provides another regulatory knob: if a particular condensate density is required at fixed tempera-248

ture, this can be achieved by either tuning the binding strength or modifying the sequence. How-249

ever, the physics also implies biological constraints: the same trans-bonds that drive condensation250

for high-Tc sequences also lead to high viscosity, which may not be functionally favorable. Key pre-251

dictions of our model may be tested experimentally using synthetic biopolymers with interaction252

motifs arranged in domains of different sizes (e.g. using the SIM-SUMO or SH3-PRM systems), then253

quantifying the relationship between domain size, Tc or �dilute, or viscosity/diffusivity.254

We have used a simple model of biological condensates to show how the sequence of specific-255

interaction motifs affects phase separation, thus linking the microscopic details of molecular com-256

ponents to the emergent properties relevant for biological function. What lessons are likely to257

generalize beyond the details of the model? When nonspecific interactions dominate, forming a258

dense droplet has a large energetic payoff. When interactions are specific and saturating, however,259

the energy change is limited and the conformational entropy is expected to play a bigger role. For260

example, in two-component systems the conformational entropy of small oligimers can stabilize261

the dilute phase (Xu et al., 2020; Zhang et al., in press). Here, we have shown that the conforma-262

tional entropy of self-interactions can play a similar role, and we use the density of states g(s) to263

connect sequence and entropy. Can this framework be extended to other molecular architectures264

where specific self-interactions are important? For example, mRNA secondary structure can con-265

trol whether a transcript remains in the dilute phase or enters a protein condensate (Langdon et al.,266

2018). RNA self-interactions could also drive aggregation in disease. Transcripts with nucleotide267

repeats phase separate more readily than scrambled sequences (Jain and Vale, 2017), and it will268

be interesting to ask how this relates to the robust phase separation of large-domain sequences269

in the present work. Understanding the general role of the entropy of self-interactions will prove270

useful if it allows us to gain insight into biomolecular phase separation by simply analyzing the271

properties of single molecules or small oligomers rather than necessarily tackling the full many-272

body problem. Many open questions remain, however, and we hope our work encourages further273

research across a range of theoretical and experimental systems.274
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Methods and Materials280

WeperformedMonte Carlo simulations in theGrandCanonical Ensemble on a 30×30×30 FCC lattice,281

corresponding to a volume of V = 303 lattice sites, with periodic boundary conditions. When “A”282

and “B” monomers occupy the same site, they form a bond with energy �. Other overlaps are283

forbidden. When two monomers of any type occupy adjacent lattice sites, they have an attractive284

nonspecific interaction energy J . Thus each lattice site i has a bond occupancy qi ∈ [0, 1] and a285

motif occupancy ri ∈ [0, 1, 2]. The Hamiltonian for our system is therefore286

H = −�
∑

i
qi − J

∑

{i,j}
rirj , (6)

where the brackets indicate summation over adjacent lattice sites. Each simulation has fixed con-287

trol variables � = 1∕kBT and polymer chemical potential �. We use simulated annealing to cool the288

system to the final temperature, and after reaching that temperature to ensure the system has289

thermalized we only use data from the last 80% of steps. The total number of Monte Carlo steps290

varies, but is around 4.5 ⋅108 for critical point simulations. In each Monte Carlo step, we update the291

system configuration by proposing a move from the move-set defined in Fig. 5. Moves (a-c) are292

standard polymer moves. We include contraction and expansion moves (Fig. 5(d) and (e)) which293

allow contiguous motifs to form and break bonds. The FCC lattice has coordination number z = 12,294

so there are 12 states that can transition into any one contracted state. Thus it is necessary to295

propose expansions at 12 times the rate of contractions to satisfy detailed balance. We also allow296

clusters of polymers connected by A-B overlap to translate by one site so long as no overlap bonds297

are formed or broken.298

Figure 5. The polymer moves used to update Monte Carlo simulations at each step. We also allow translation
of connected clusters of polymers and insertion/deletion of polymers. (a) End move. (b) Corner move. (c)
Reptation. (d) Contraction. (e) Expansion.

To include insertions and deletions of polymers, we assume the existence of a reservoir of poly-299

mers of chemical potential �, which we can adjust. Because inserting a polymer tends to increase300

the configurational entropy of the system, we adopt the common convention of shifting � by the301

entropy of an ideal polymer: � ≡ �0 + ln(z + 1)L−1, where the “+1” in z + 1 comes from allowing the302

“walk” to remain on the same site and form a contiguous bond (see Fig. 5(d)-(e)). We then remove303

the shift with a prefactor in the acceptance probabilities (Eq. 12). This convention allows us to304

simulate the dilute phase without setting � to a large negative value.305

In our Monte Carlo move set, we allow for the deletion of any polymer, and require that in-306

sertion moves satisfy detailed balance with respect to deletions. This still allows for considerable307

freedom in the insertion algorithm. Naively, we might insert polymers as random walks, but for308

a dense system most such random walks will be disallowed because of forbidden overlaps. For309
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Figure 6. Multicanonical sampling makes it possible to determine the phase boundary at temperatures
substantially below Tc. (a) The polymer number distribution P̃ (N) produced in a multicanonical simulation
with H̃ = H + ℎ(N). Domain sequence with l = 2, �� ≈ 0.94, J = 0.05�. (b) The true distribution P (N), obtained
by reweighting P̃ (N) from (a) to remove ℎ(N). (c) The distribution at the phase boundary, obtained by
reweighting (b) to the chemical potential �∗ at which both peaks have equal weight.

efficiency, we therefore implemented a form of Configurational-Bias Monte Carlo (CBMC)(Frenkel310

and Smit, 2002). Specifically, we insert the head of a polymer at a randomly chosen site, and then311

perform a biased walk along an allowed path, keeping track of the number of available choices at312

each step to generate a “Rosenbluth weight” R:313

R =
L−1
∏

k=1
Wk, (7)

whereWk is the number of allowed sites for monomer k+1 starting from the position of monomer314

k. The probability of this insertion move is therefore315

Pinsert =
1
V
1
R
. (8)

The CBMC algorithm satisfies detailed balance so long as the net flow of probability between316

any two configurations x1 and x2 is zero. In words, this imposes the condition317

P (being in x1) × P (proposing x2) × P (accepting x1 → x2) =

P (being in x2) × P (proposing x1) × P (accepting x2 → x1).
(9)

In our system, if configuration x1 has polymer numberN and energy EN and x2 has polymer num-318

ber N + 1 and energy EN+1, Eq. 9 becomes319

P (EN , N) × Pinsert × Pacc(ΔN = +1) = P (EN+1, N + 1) × Pdelete × Pacc(ΔN = −1), (10)

where P (E,N) = exp(−�E + ��N)∕Z is the equilibrium probability of the state. CBMC leads to the320

Pinsert in Eq. 8. Pdelete = 1∕(N + 1), because polymers are chosen randomly for deletion. This leads to321

the following condition on the acceptance probabilities:322

Pacc(ΔN = +1) = V R
N + 1

exp
(

− �(EN+1 − EN − �)
)

Pacc(ΔN = −1). (11)

The acceptance probabilities given below in Eq. 12 satisfy this condition and also incorporate the323

multicanonical sampling described next.324

We determine the phase diagram using histogram reweighting (Panagiotopoulos et al., 1998)325

of P (N,E), where N is the polymer number and E is the total system energy. This allows us to326

extrapolate a histogram P (N,E) obtained at �0, �0 to P̃ (N,E) at nearby �1, �1. First we determine327

the approximate location of the critical point, then run a sufficiently long simulation to obtain a328

converged P (N,E). We determine the exact location of the critical point by finding the �c, �c where329

P̃ (N,E)matches the universal distribution known for the 3D Ising model (Tsypin and Blöte, 2000).330

(Because polymer models lack the symmetry of the Ising model, we also must fit a “mixing parame-331

ter” xwhich determines the order parameterN−xE (Wilding, 1997).) In principle, we could find the332
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binodal at temperature T < Tc (� > �c) by determining P�(N,E), then reweighting the histogram to333

the �∗ at which P�(N) has two peakswith equal weight. The phase boundaries�dilute and�dense would334

then be themeans of these peaks, whichwe could find by fitting P�(N) to aGaussianmixturemodel.335

However, determining the relative equilibriumweights of the two phases requires observingmany336

transition events, which are very rare at temperatures substantially below Tc. To circumvent this dif-337

ficulty, we usemulticanonical sampling (Wilding, 1997): Once we have P�c
(N,E) at the critical point,338

we use reweighting to estimate P̃�1 (N,E) at a slightly lower temperature �1. When we perform the339

new simulation at �1, we use a modified Hamiltonian H̃ = H + ℎ(N), where ℎ(N) = 1
�1
log P̃�1 (N).340

(Note that ℎ(N) is only defined over the range of N between the two peaks.) This yields P̃�1 (N),341

which is unimodal and flat-topped with respect to N rather than bimodal, and thus allows rapid342

sampling of the full range of relevant values ofN . Figure 6(a) shows an example distribution P̃ (N).343

Finally, we use reweighting to remove ℎ(N) and study the true histogram P�1 (N,E), as in Fig. 6(b).344

We apply this procedure iteratively to obtain the phase boundary at lower and lower tempera-345

tures. Combining multicanonical sampling with Configurational-Bias Monte Carlo, our acceptance346

probabilities become347

Pacc =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

min{1, exp(−�ΔH)} ΔN = 0

min
{

1, V
N+1

R
(z+1)L−1

exp
(

− �
(

ΔH − �ΔN
)

− �
(

ℎ(N + 1) − ℎ(N)
)

)}

ΔN = +1

min
{

1, N
V
(z+1)L−1

R
exp

(

− �
(

ΔH − �ΔN
)

− �
(

ℎ(N − 1) − ℎ(N)
)

}

ΔN = −1

(12)

Single-polymer properties. The density of states g(s) is the number of configurations of an isolated348

polymer with s self-bonds. We extract g(s) by performing Monte Carlo simulations of the polymer349

over a range of � values. The distributions are then combined using the multihistogram method,350

and inverted to determine the density of states (Landau and Binder, 2014).351

Appendix 1352

Mean-field theory353

We aim to find the partition function Z for a system with N identical, interacting polymers on a
lattice with V sites. Each polymer has a A motifs, b B motifs, and length L = a + b. We label the
state of polymer i by the number of self-bonds si and trans-bonds ti. Then the total number of
self-bonds is S ≡

∑

i si, and the total number of trans-bonds is T ≡ 1
2

∑

i ti. In our approach, each
polymer forms self-bonds according to its own full degrees of freedom encoded in the density of
states g(s). However, we approximate the inter-polymer interactions within amean-field approach.
The full partition function for our system is then given by

Z =
∑

�,T
n(�, T )e��(�+T )+���2

∑

{S=�}

(

N
∏

i
g(si)

)

,

where n(�, T ) is the combinatorial term for counting states with T A-B overlap bonds (given � total
self-bonds) and the second sum is over all configurations where S = �. The parameter � quantifies
the strength of two-body nonspecific interactions, e.g. as appears in Flory-Huggins theory. We
make the approximation that in the thermodynamic limit, Z is dominated by the largest term:

Z ≈ max
�,T

[

n(�, T )e��(�+T )+���2
∑

{S=�}

( NP
∏

i
g(si)

)]

, (13)

�F ≈ min
�,T

[

− log
(

n(�, T )e��(�+T )+���2
)

− logG(�)

]

, (14)

where G(�) is the entropy associated with forming S = � self-bonds.354
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First we calculate n(�, T ) = nsteric×ntrans. nsteric is the number of allowed ways to place the polymers355

on the lattice and ntrans is the number of ways to form T trans-bonds. To find nsteric, we ignore chain356

connectivity and simply count the number of ways of choosing N⟨l⟩ sites on a lattice with V sites,357

where358

⟨l⟩ = L − s − t∕2 (15)

is the mean number of sites occupied by a polymer. We account for excluded volume using a359

semi-dilute approximation that the probability of placing monomer k successfully is the fraction of360

empty sites remaining:361

nsteric =
(

V
N

)N(⟨l⟩−1)
∏

k=N

V − k
V

, (16)

where
(V
N

)

counts the center-of-mass, or equivalently “polymer head," degrees of freedom. We find362

ntrans by assuming that each protein sees the others as a mean-field cloud of motifs with which it363

can form A-B overlap bonds depending on the overall motif density. Then364

ntrans =
(

Na − S
T

)(

Nb − S
T

)

T !

(

1
V

)T

, (17)

where the first two terms count the number of ways to choose T A motifs and T B motifs, given365

that S of each are already in self-bonds. T ! is the number of ways to pair the chosen motifs, and366

the final term is the mean-field probability that two motifs are close enough to form a bond. (This367

is simply an extension of Semenov and Rubinstein’s sticker model to two sticker types on a lattice368

(Semenov and Rubinstein, 1998).)369

Nowwe calculate FG(�) ≡ − logG(�), the entropy of having exactlyS = � self-bonds. The difficulty370

arises from the restricted sum: we only want to count states with the correct total number of self-371

bonds. However, we can relax this restriction and require instead that ⟨S⟩ = �. Formally, this is372

equivalent to working in a “Grand Canonical Ensemble” for self-bonds, where a reservoir imposes373

a chemical potential w. In the thermodynamic limit, fluctuations vanish and all ensembles yield374

equivalent macrostates. Thus we can calculate �Ω = − logZgc (where Ω is the grand potential and375

Zgc the grand canonical partition function), and use the Legendre transform FG(�) = Ω +w�∕�.376

Calculating Zgc is relatively straightforward:377

Zgc =
∑

S
ewSG(S),

=
(

∑

si

g(si)ewsi
)N

.
(18)

Then w = w(�) is fixed by requiring that ⟨S⟩ = �. Recall that s = �∕N , so378

�FG
V

= −N
V
log

(

∑

si

g(si)ewsi
)

+w
�
V
,

= −
�
L
log

(

∑

si

g(si)ewsi
)

+
�
L
ws,

(19)

where � is the monomer density NL∕V . Combining this with Eqs. 16 and 17, we obtain the full379

free-energy density:380

f ≡ �F
V

= fsteric(s, t) + ftrans(s, t) + ���2 −
�
L

(

log
∑

s
g(s)ews

)

+
�
L
ws −

�
L
��
(

s + t
2

)

, (20)

where381

fsteric ≡
�
L
log

�
L
+
(

1 − �
⟨l⟩
L

)

log
(

1 − �
⟨l⟩
L

)

+
�
L

(

⟨l⟩ − 1
)

(21)
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and382

ftrans ≡
�
L

(

y(a) + y(b) + t
2
log t

2
+ t
2
(

1 − log
�
L
)

)

,

y(x) ≡ (x − s − t∕2) log(x − s − t∕2) − (x − s) log(x − s).
(22)

At every �, we evaluate Eq. 20 with the average bond values (s∗(�), t∗(�)) which minimize f and the383

w which fixes ⟨s⟩ = s. This yields f (�) which we use to calculate the binodal and spinodal curves.384

Regarding the nonspecific interaction parameter � , density fluctuationsmake it difficult to map385

the simulation J to � , sowe simply use themean-field relation � = −V Jz∕2, where z is the lattice co-386

ordination number. This yields theoretical Tc values which differ numerically from the simulations387

but accurately reproduce the sequence hierarchy.388

Appendix 2389

Dense-phase correlations390

Figure 7. The l = 1 polymer has correlated trans-bonds in the dense phase. (a) Probability that a trans-bond
is in a segment of length �, meaning it has � bonds with the same partner, and all �monomers are contiguous
on both polymers. Data from snapshots of an NVT simulation with � = 0.3, �� = 1.25, J = 0.05�. Inset: A
trans-bond segment of � = 3, between one polymer with (a, b) = (9, 0) and another polymer with (a, b) = (0, 9).
(b) Example Pcorr for bonds between l = 1 (top) and l = 2 (bottom) polymers. Motifs from polymer 1 and 2 are
distinguished by lighter and darker shades, respectively. Bond-adjacent monomers are marked by circles for
polymer 1 and squares for polymer 2. The pictured bond’s Pcorr is the fraction of square-circle pairs that are
A-B. (c) Trans-bond correlation probability ⟨Pcorr⟩ for domain sequences, where the brackets denote averaging
over initial bonds. (d) Distribution of ⟨Pcorr⟩ for 20,000 scrambled sequences with a = b = 12. Values for the
domain sequences are marked.

From simulations, the l = 1 sequence has a Tc between that of l = 3 and l = 4, whereas the391

mean-field theory predicts that l = 1 would have a Tc very close to that for l = 2. Why is the l = 1392

sequence better at phase separating than the mean-field theory predicts? In the theory, sequence393

only appears in g(s), the density of states for self-bonds. We thus assume that sequence does394

not directly affect inter-polymer interactions and that trans-bonds are uncorrelated. However, this395

assumption neglects the fact that a bond is between twopolymers. We can quantify this correlation396

by looking at trans-bond “segments.” Trans-bonds are considered to be in a segment of length �397
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if two polymers have � trans-bonds, and all involved monomers are contiguous on both polymers398

(Fig. 7(a) Inset). Essentially, trans-bond segments form when two polymers are lying on top of each399

other. Figure 7(a) shows the probability that each trans-bond is in a segment of length � in an NVT400

simulation with � = 0.3. For all sequences, the most probable segment length is 1. However, l = 1401

and l = 12 both have relatively high probabilities of forming longer segments (these two curves402

overlap). As a result of these correlations, the dense phase is more favorable for these sequences403

than is predicted by the theory, and this leads to their higher Tc values.404

We can quantify a sequence’s tendency to form correlated segment bonds by defining a corre-405

lation probability Pcorr. Consider two polymers which form a bond betweenmonomers i and j. Now406

pair up neighboring monomers: the four unique possibilities are (i−1, j−1), (i−1, j+1), (i+1, j−1),407

and (i + 1, j + 1). Pcorr is the probability that these monomers will form a valid A-B bond instead408

of an invalid overlap. Figure 7(b) shows examples for l = 1 and l = 2 sequences. Every possible409

initial bond (i, j) has its own Pcorr, and so we average this Pcorr over all possible bonds. This yields410

⟨Pcorr⟩, a sequence-specific metric for trans-bond correlations. Figure 7(c) shows ⟨Pcorr⟩ for the do-411

main sequences, and we observe that it is monotonic in domain size except for l = 1, which has a412

⟨Pcorr⟩ similar to l = 12. This explains why these two sequences have similar segment probabilities413

in Fig. 7(a), and why l = 1 is better at phase separating than expected from g(s) alone. In Appendix414

3 below, we incorporate ⟨Pcorr⟩ into a “condensation parameter” that successfully predicts the Tc415

hierarchy observed in simulation. Figure 7(d) shows the distribution of ⟨Pcorr⟩ for 20,000 random416

sequences with a = b = 12. The distribution is strongly peaked at low values, comparable to the417

l = 2 sequence. This suggests that the l = 1 and l = 12 domain sequences are atypical in their418

tendency to form correlated trans-bonds, so themean-field theory that neglects these correlations419

should perform well for generic sequences.420

Appendix 3421

Condensation parameter Ψ422

Although ourmean-field theory does a good job explaining sequence-driven patterns in Tc, it would423

be convenient to have an order parameter that is simpler to compute but that retains some of the424

same predictive power. According to our results, such ametric should take into account the density425

of states g(s), the motif stoichiometry a, b, and the correlation metric ⟨Pcorr⟩. Thus we propose as a426

metric the condation parameter Ψ:427

Ψ ≡ − log
(

1
(rA)b(rB)a

∑

s

g(s)
(4⟨Pcorr⟩)s∕2

)

, (23)

where the motif ratios are given by rA = a∕L and rB = b∕L. The role of g(s) is intuitive: the easier428

it is to form self-bonds, the less a polymer will tend to condense. The factor rbAr
a
B characterizes the429

probability of placing a Amotifs and b Bmotifs in the dense phase without disallowed overlap. (The430

mean-field motif placement probability depends on the density �, but this effect is not sequence-431

dependent.) Finally, we normalize g(s) by the tendency to form correlated trans-bonds in the dense432

phase. This tendency enhances the favorability of the dense phase, and we quantify it with ⟨Pcorr⟩.433

The factor of 1∕2 in s∕2 is due to the fact that two trans-bonds/polymer are required to lower the434

energy by �/polymer, and the factor of 4 is the number of pairs of bond-adjacent monomers (Fig.435

7(b)). Although this metric is only heuristic, it successfully captures the Tc patterns without multi-436

polymer simulations (Fig. 3(c)).437

One limitation of the condensation parameter is that it still requires knowledge of g(s) for each438

sequence. Is it possible to characterize the tendency of a sequence to phase separate without439

any simulations? In Fig. Fig. 3(c) of the main text, we replace ∑

s g(s) with a theoretical calculation440

of g(1)∕g(0) that uses established scaling relations for the number of self-avoiding walks and the441
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Figure 8. The linear fit between Tc from Monte Carlo simulations and Ψ calculated via Eq. 24. Slope=0.1089,
intercept=2.9767.

number of self-avoiding loops (De Gennes, 1979). This gives442

g(1) =
∑

{i,j}
!walk(L − 1) +

∑

i,j
!loop(|i − j|, L),

!walk(N) = Awalk�
N−1(N − 1)−1,

!loop(N,L) = !walk(L −N)Aloop�
NN−3� ,

(24)

where !walk(L−1) is the number of self-avoiding walks when a polymer of length L forms a contigu-443

ous bond (shortening it by 1monomer), and!loop(N,L) counts the number of self-avoiding loops of444

length N . We model the entropy of the polymer outside the loop as a self-avoiding walk of length445

L−N . The sums are over all possible contiguous bonds and loops, which depend on the compatibil-446

ity of motifs i and j. The exponents  = 1.157 and � = 0.588 are universal, and � = 10.037 on the FCC447

lattice (this coefficient �, which is standard notation, is not to be confused with the chemical poten-448

tial � in our simulations). The scaling amplitudes Awalk and Aloop are not universal, so we determine449

their relative magnitude by fitting to g(1) from the Monte Carlo g(s) for a single sequence. With this450

one fitting parameter, we can rapidly evaluateΨ for new sequences with no additional simulations451

or calculations. Specifically, we perform a linear fit of Ψ to Tc for the domain sequences (Fig. 8)452

and obtain Tc for any new sequence from its Ψ value. This procedure allows us to generate the Tc453

distribution in Fig. 3(d) in seconds. A Python script to calculate Ψ and Tc for arbitrary sequences is454

available at https://github.com/BenjaminWeiner/motif-sequence/tree/master/condensation%20analysis.455
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Appendix 4456

Additional figures457

Figure 9. The critical temperatures of L = 24 domain sequences. Tc is monotonic in domain size l except for
the l = 1 sequence, which has strong trans-bond correlations (see Appendix 2). Mean ± SD over three
replicates. (Temperature uncertainties are too small to see.)

Figure 10. (a) The density of states g(s), i.e. the number of ways a given sequence can form s bonds with itself,
semi-log plot. Domain sequences have large differences in g(s) even for relatively rare states with large s.
Domain color code applies to all panels. (b) The phase diagram from the mean-field theory, rescaled by the
critical temperature Tc and critical density �c.

Figure 11. Critical temperatures and critical densities of L = 24 domain sequences and scrambled sequences,
all with a = b = 12. For the domain sequences, the plot markers denote domain size l. Scrambled sequences
cluster around the l = 3 domain sequence, motivating the use of this sequence as the starting point for
stoichiometry mutations in Fig. 3(b). Mean ± SD over three replicates. (Temperature uncertainties are too
small to see.)
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Figure 12. Tc as a function of length for sequences with different domain sizes. Mean ± SD over three
replicates. (Temperature uncertainties are too small to see.) The Tc hierarchy is preserved across sequence
lengths. Thus domain size is a robust predictor of phase separation via its relationship with self-bond entropy.

Figure 13. Using the “Sticky Rouse Model” for unentangled polymer dynamics in a melt with cross-links
(Rubinstein and Semenov, 2001), the dense-phase diffusivity D = m2

�bt
, where m is the monomer size and

�b = �0 exp(��) is the bond lifetime, is plotted as a function of scaled temperature. For all sequences, lower
temperatures correspond to higher densities and slower polymer diffusion. Importantly, the sequences with
large domain sizes and many trans-bonds (e.g. l = 12 and l = 6) have smaller D, in spite of their lower
density. This coincides with the viscosity results in Fig. 4 of the main text, where the trans-bonds dominate
the physical properties of the droplet. Color bar: droplet density.
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