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Abstract 20 

Neurons undergo substantial morphological and functional changes during development to form 21 
precise synaptic connections and acquire specific physiological features. What are the underlying 22 
transcriptomic bases? Here, we obtained the single-cell transcriptomes of Drosophila olfactory 23 
projection neurons (PNs) at four developmental stages. We decoded the identity of 21 24 
transcriptomic clusters corresponding to 20 PN types and developed methods to match 25 
transcriptomic clusters representing the same PN type across development. We discovered that PN 26 
transcriptomes reflect unique biological processes unfolding at each stage—neurite growth and 27 
pruning during metamorphosis at an early pupal stage; peaked transcriptomic diversity during 28 
olfactory circuit assembly at mid-pupal stages; and neuronal signaling in adults. At early 29 
developmental stages, PN types with adjacent birth order share similar transcriptomes. Together, 30 
our work reveals principles of cellular diversity during brain development and provides a 31 
resource for future studies of neural development in PNs and other neuronal types. 32 

 33 

Introduction 34 

Cell-type diversity and connection specificity between neurons are the basis of accurate 35 
information processing underlying all nervous system functions. The precise assembly of neural 36 
circuits involves multiple highly regulated steps. First, neurons are born from their progenitors and 37 
acquire unique fates through a combination of (1) intrinsic mechanisms, such as lineage, birth 38 
order, and birth timing; (2) extrinsic mechanisms, such as lateral inhibition and extracellular 39 
induction, and (3) developmental stochasticity in some cases (Jan & Jan, 1994; Johnston & 40 
Desplan, 2010; Kohwi & Doe, 2013; Holguera & Desplan, 2018; Li et al., 2018). During wiring, 41 
neurons extend their neurites to a coarse targeting region, elaborate their terminal structures, select 42 
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pre- and post-synaptic partners, and finally form synaptic connections (Sanes & Yamagata, 2009; 43 
Jan & Jan, 2010; Kolodkin & Tessier-Lavigne, 2011; Sanes & Zipursky, 2020). Studies from the 44 
past few decades have uncovered many molecules and mechanisms that regulate each of these 45 
developmental processes. 46 

The development of Drosophila olfactory projection neurons (PNs) has been extensively 47 
studied (Jefferis et al., 2004; Hong & Luo, 2014). PNs are the second-order olfactory neurons that 48 
receive organized input from olfactory receptor neurons (ORNs) at ~50 stereotyped and 49 
individually identifiable glomeruli in the antennal lobe, and carry olfactory information to higher 50 
brain regions (Vosshall & Stocker, 2007; Wilson, 2013) (Figure 1A). Different types of PNs send 51 
their dendrites to a single glomerulus or multiple glomeruli (Marin et al., 2002; Lai et al., 2008; 52 
Yu et al., 2010; Tanaka et al., 2012; Bates et al., 2020). PNs are derived from three separate 53 
neuroblast lineages—anterodorsal, lateral, and ventral lineages, corresponding to their cell bodies’ 54 
positions relative to the antennal lobe (Jefferis et al., 2001). PNs produced from the anterodorsal 55 
and lateral lineages (adPNs and lPNs) are cholinergic excitatory neurons. The fate of 56 
uniglomerular excitatory PN types, defined by their glomerular targets, is predetermined by their 57 
lineage and birth order (Jefferis et al., 2001; Yu et al., 2010; Lin et al., 2012). PNs produced from 58 
the ventral lineage (vPNs), on the other hand, are GABAergic inhibitory neurons (Jefferis et al., 59 
2007; Liang et al., 2013; Parnas et al., 2013). The connectivity and physiology of PNs have also 60 
been systematically studied (Bhandawat et al., 2007; Jeanne et al., 2018; Bates et al., 2020).  61 

Despite the fact that PNs are among the most well-characterized cell types in all nervous 62 
systems, their genome-wide gene expression changes across different developmental stages with 63 
cell-type specificity are still unknown. This information can help us obtain a more complete picture 64 
of both known and unexplored pathways underlying neural development and function. Recently, 65 
the advent of single-cell RNA sequencing (scRNA-seq) has paved the way towards obtaining such 66 
data (Li et al., 2017; Kalish et al., 2018; Zhong et al., 2018; Li, 2020). Here, we profiled and 67 
analyzed the single-cell transcriptomes of most uniglomerular excitatory PNs. We identified the 68 
correspondence between two-thirds of transcriptomes and PN types at one stage, and developed 69 
methods to reliably match transcriptomic clusters corresponding to the same types of PNs across 70 
different stages. We discovered that PN transcriptomes exhibit unique characteristics at different 71 
stages, including birth-order, neurite pruning, wiring specificity, and neuronal signaling. 72 

 73 
Results 74 

Single-cell transcriptomic profiling of Drosophila PNs at four developmental stages 75 

The development of PNs follows the coordinated steps previously described. 18 out of 40 types of 76 
adPNs are born embryonically and participate in the larval olfactory system. Then, during the 77 
larval stage, the rest of adPNs and all lPNs are born (Jefferis et al., 2001; Marin et al., 2005; Yu et 78 
al., 2010; Lin et al., 2012). During metamorphosis following puparium formation, embryonically 79 
born PNs first prune terminal branches of dendrites and axons, and then re-extend their dendrites 80 
into the future adult antennal lobe, and axons into the mushroom body and lateral horn following 81 
the neurites of larval-born PNs (Marin et al., 2005). From 0 to 24 hours after puparium formation 82 
(APF), PNs extend their dendrites into the developing antennal lobe and occupy restricted regions. 83 
ORN axons begin to invade antennal lobe at ~24 hours APF. PN dendrites and ORN axons then 84 
match with their respective partners beginning at ~30 hours APF and establish discrete glomerular 85 
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compartments at ~48 hours APF. Thereafter, they expand their terminal branches, build synaptic 86 
connections, and finally form mature adult olfactory circuits (Jefferis et al., 2004) (Figure 1B).  87 

To better understand the molecular mechanisms that control these dynamic developmental 88 
processes underlying neural circuit assembly, we performed scRNA-seq of PNs from 4 different 89 
developmental stages: 0–6 hours APF, 24–30 hours APF, 48–54 hours APF, and 1–5 days adult 90 
(hereafter 0, 24, 48h APF and adult) (Figure 1C). We used GH146-GAL4 (Stocker et al., 1997) to 91 
drive UAS-mCD8-GFP (Lee et al., 1999) expression in most PNs at 24h, 48h, and adult, which 92 
labels ~90 of the estimated 150 PNs in each hemisphere, covering ~40 of the 50 PN types. At 0h 93 
APF, GH146-GAL4 also labels cells in the optic lobes (Figure 1—figure supplement 1A), which 94 
are inseparable from the central brain by dissection. Therefore, we used VT033006-GAL4 to label 95 
PNs at 0h APF (Figure 1C and Figure 1—figure supplement 1B) (Tirian & Dickson, 2017). 96 
VT033006-GAL4 labels most PNs from the anterodrosal and lateral lineage, but not PNs from the 97 
ventral lineage or anterior paired lateral (APL) neurons like GH146-GAL4. It is expressed in ~95 98 
cells that innervate ~44 glomeruli which largely overlap with PNs labeled by GH146-GAL4 (Inada 99 
et al., 2017; Elkahlah et al., 2020). In addition to PNs labeled by GH146-GAL4 and VT033006-100 
GAL4 (we will refer them as ‘most PNs’ hereafter), we have collected single-cell transcriptomic 101 
data using drivers that only label a small number of PN types for mapping the transcriptomic 102 
clusters to anatomically defined PN types. 103 

For scRNA-seq, fly brains with a unique set of PN types labeled using different drivers at 104 
each developmental stage were dissected and dissociated into single-cell suspensions. GFP+ cells 105 
were sorted into 384-well plates by fluorescence-activated cell sorting (FACS), and sequenced 106 
using SMART-seq2 (Picelli et al., 2014) (Figure 1D) to a depth of ~1 million reads per cell (Figure 107 
1–figure supplement 1C). On average ~3000 genes were detected per cell (Figure 1–figure 108 
supplement 1D), and after quality filtering (see Methods), we obtained ~3700 high quality PNs in 109 
addition to the previously sequenced ~1200 PNs (Li et al., 2017) , yielding ~5900 PN cells for 110 
analysis in this study (Figure 1E). All analyzed PNs express high levels of neuronal markers but 111 
not glial markers, confirming the specificity of sequenced cells (Figure 1–figure supplement 1E). 112 
Unbiased clustering using overdispersed genes from all PNs readily separates them into different 113 
groups according to their stage (Figure 1F), suggesting that gene expression changes across these 114 
four developmental stages represent a principal difference in their single-cell transcriptomes. 115 

Decoding the glomerular identity of transcriptomic clusters by sequencing subsets of PNs at 116 
24h APF 117 

PNs labeled by GH146-GAL4 at 24h APF form ~30 distinct transcriptomic clusters. We previously 118 
matched 6 of these transcriptomic clusters to specific anatomically and functionally defined PN 119 
types (Li et al., 2017) , hereafter referred to as “decoding transcriptomic identity.” Unlike ORNs, 120 
whose identities can be decoded using uniquely expressed olfactory receptors (Li et al., 2020a), 121 
PNs lack known type-specific markers. Instead, PN types are mostly specified by combinatorial 122 
expression of several genes (Li et al., 2017), making it more challenging to decode their 123 
transcriptomic identities. 124 

To circumvent these challenges and decode the transcriptomic identities of more types of 125 
PNs, we took advantage of the extensive driver line collection in Drosophila (Luan et al., 2006; 126 
Jenett et al., 2012; Dionne et al., 2018). We searched for split-GAL4 lines that only labeled a small 127 
proportion of all PNs (Yoshi Aso, unpublished data). Using such drivers, we could sequence a few 128 
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types of PNs at a time, map those cells onto clusters formed by most PNs, and then use 129 
differentially expressed markers among them to decode their identities one-by-one. 130 

split#28-GAL4 labeled two types of PNs—those that project their dendrites to the DC3 and 131 
DA4l glomeruli in developing and adult animals (Figure 2A, B; note that PN types are named after 132 
the glomeruli they project their dendrites to). We sequenced those PNs (split#28+ PNs hereafter) 133 
at 24h APF. We chose this stage because this is when different PN types exhibit the highest 134 
transcriptome diversity as hinted by the number of clusters seen in Figure 1F (see following 135 
sections for more detailed analysis). To visualize sequenced split#28+ PNs, we performed 136 
dimensionality reduction using 561 genes identified from most 24h PNs using Iterative Clustering 137 
for Identifying Markers (ICIM), a unsupervised machine learning algorithm (Li et al., 2017), 138 
followed by embedding in the tSNE space. Split#28+ PNs (orange dots) fell into two distinct 139 
clusters and intermingled with GH146+ PNs (grey dots) (Figure 2C). One cluster mapped to 140 
previously decoded DC3 PNs (Li et al., 2017), and the other cluster expressed zfh2 (Figure 2—141 
figure supplement 1A). We validated that this cluster indeed represents DA4l PNs by visualizing 142 
the expression of zfh2 in PNs utilizing an intersectional strategy by combining zfh2-GAL4, GH146-143 
Flp, and UAS-FRT-STOP-FRT-mCD8-GFP (hereafter referred to as “intersecting with GH146-144 
Flp”) (Figure 2—figure supplement 1B). 145 

split#7-GAL4 labeled 3 types of PNs in the adult stage (Figure 2—figure supplement 2A). 146 
However, when we sequenced cells labeled by this GAL4 line at 24h APF and visualized them 147 
using tSNE, 8 distinct clusters were found (Figure 2F). We reasoned that this could be due to loss 148 
of driver expression in adult stage for some PN types. To test this hypothesis and reveal PNs that 149 
are labeled by this driver transiently during development, we used a permanent labeling strategy 150 
to label all cells that express split#7-GAL4 at any time of development (split#7+ PNs hereafter) 151 
by combining it with UAS-mCD8-GFP, Actin promoter-FRT-STOP-FRT-GAL4, and UAS-Flp. 152 
Using this strategy, we observed labeling of 8 types of PNs (Figure 2D), consistent with number 153 
of clusters we observed by sequencing. Among split#7+ PNs, 4 types belong to the adPN lineage 154 
(acj6+) and the other 4 types belong to the lPN lineage (vvl+) (Figure 2E). Only 1 lPN type, DA1 155 
(CG31676+), has previously been decoded (Figure 2—figure supplement 2B). We identified 156 
differentially expressed genes among split#7+ PNs and obtained existing GAL4 lines mimicking 157 
their expression. By intersecting those GAL4 lines with GH146-Flp, we mapped all 7 previously 158 
unknown transcriptomic clusters to 7 PN types (Figure 2—figure supplement 2 C–H; see legends 159 
for detailed description). 160 

In addition to screening through collections of existing driver lines, we also utilized 161 
scRNA-seq data to find drivers that label a subpopulation of PNs. One such marker we found was 162 
the gene knot (kn), which was expressed in 7 transcriptomic clusters among all GH146+ PNs 163 
(Figure 2—figure supplement 3A). One of the kn+ clusters expressing trol has been previously 164 
mapped to VM2 PNs (Li et al., 2017). When kn-GAL4 was intersected with GH146-Flp, 6 types 165 
of adPNs (acj6+) and several vPNs (Lim1+) were labeled (Figure 2G, J). Among the 6 adPN types, 166 
VM7 and VM5v PNs were also labeled by split#15-GAL4 (Figure 2H). Although it has been 167 
previously reported that GH146-GAL4 is not expressed in VM5v PNs (Yu et al., 2010), labeling 168 
of these PNs when GH146-Flp was intersected with either kn-GAL4 or split#15-GAL4 indicates 169 
that GH146-Flp must be expressed in VM5v PNs at some point during development. Using 170 
split#15-GAL4, we were able to decode the two clusters to be either VM7 or VM5v PNs (Figure 171 
2–figure supplement 3B). Due to the lack of existing GAL4 drivers for differentially expressed 172 
genes between these two clusters, we could not further distinguish them so far, but we could create 173 
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new GAL4 drivers to decode their identities in future studies. Other than these two clusters, we 174 
were able to match transcriptomic clusters and glomerular types for the rest of adPNs one-to-one 175 
(Figure 2–figure supplement 3C-E). In addition to excitatory PNs, one kn+ vPN type innervated 176 
DA1 glomerulus (because DA1 glomerulus is innervated only by lPNs and vPNs, not adPNs). We 177 
found that DIP-beta was expressed in one kn+ vPN cluster but not in lPNs innervating DA1 178 
glomerulus (Figure 2—figure supplement 3F, G). Intersecting DIP-beta-GAL4 with GH146-Flp 179 
confirmed that DIP-beta+ vPN indeed targeted their dendrites to DA1 glomerulus, illustrating the 180 
DIP-beta+ vPN cluster to be DA1 vPNs (Figure 2—figure supplement 3H). 181 

In summary, by sequencing a small number of known PN types at a time and analyzing the 182 
expression pattern of differentially expressed genes, we have now mapped a total of 21 183 
transcriptomic clusters corresponding to anatomically defined PN types at 24h APF (Figure 2K, 184 
L). Ultimately, we aimed to match the transcriptomes of the same types of PNs across development. 185 
Prior to achieving this goal, we carried out global analysis of gene expression changes across 186 
development, which could help us reliably identify transcriptomic clusters representing different 187 
PN types at different developmental stages.  188 
Global gene expression dynamics across four developmental stages 189 

All sequenced PNs segregated into different clusters according to their developmental stages using 190 
unbiased, over-dispersed genes for clustering (Figure 1F) regardless of PN types. Even when we 191 
used the genes identified by ICIM for clustering, which emphasizes the differences between 192 
different PN types (Li et al., 2017), we still observed that individual PNs were separated principally 193 
by developmental stages (Figure 3A). Together, these observations illustrate global transcriptome 194 
changes of PNs from pupa to adult. 195 

To understand what types of genes drive this separation, we searched for genes that were 196 
differentially expressed in different developmental stages (Figure 3B, C). We clustered the genes 197 
into different groups based on their expression pattern throughout development. Six groups of 198 
genes showed clear developmental trends—four groups were down-regulated from pupa to adult 199 
and two groups were up-regulated (Figure 3D–E). Consistent with our previous knowledge, neural 200 
development-related genes, including those with functions in morphogenesis and cytoskeleton 201 
organization, were enriched in developing PNs; genes related to synaptic transmission, ion 202 
transport, and behavior, on the other hand, were up-regulated in mature PNs (Li et al., 2017; Li et 203 
al., 2020b). 204 
Single-cell transcriptomes of PNs reveal dominant biological processes at different stages of 205 
development 206 
Because PN transcriptomes exhibited global development-dependent dynamics, we needed to find 207 
a method to reliably and consistently classify transcriptomic clusters representing different PN 208 
types at all stages. We first identified informative genes for clustering from each stage using ICIM 209 
and used them for further dimensionality reduction. However, using this method, we obtained 210 
different numbers of clusters at each stage (Figure 4A). Closer examination of each stage revealed 211 
unique biological features of PN development. 212 

At 0h APF, PNs always formed two distinct clusters—a larger cluster consisting of both 213 
adPNs and lPNs, and a smaller one with only adPNs (Figure 4B, Figure 4—supplement 2A). As 214 
introduced earlier, although all lPNs and many adPNs are born during the larval stage, some adPNs 215 
are born during the embryonic stage. We hypothesized that the smaller cluster could represent 216 
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embryonically born PNs, which undergo metamorphosis including the pruning of their dendrites 217 
and axons (Marin et al., 2005). Neurite pruning in Drosophila depends on the function of the 218 
steroid hormone ecdysone receptor (EcR) (Levine et al., 1995; Thummel, 1996; Schubiger et al., 219 
1998; Lee et al., 2000) cell autonomously (Lee et al., 2000). Upon binding of the steroid hormone 220 
ecdysone, EcR and its co-receptor Ultraspiracle (Usp) form a complex to activate a series of 221 
downstream targets, including a transcription factor called Sox14, which in turn promotes 222 
expression of the cytoskeletal regulator Mical and Cullin1 SCF E3 ligase (Figure 4C) (Lee et al., 223 
2000; Kirilly et al., 2009; Kirilly et al., 2011; Wong et al., 2013). To test our hypothesis, we 224 
examined the expression of genes which are known to participate in neurite pruning and genes that 225 
showed elevated expression in the mushroom body γ neurons during pruning (Alyagor et al., 2018). 226 
We found that Sox14, Mical, Cullin1, and two sorting complexes required for transport (ESCRT) 227 
genes—shrb and Vps20, indeed showed higher expression levels in the smaller cluster (Figure 4D). 228 
We also confirmed our hypothesis by mapping two types of embryonically born PNs, DA4l and 229 
VA6 PNs, to this smaller cluster (Figure 4—figure supplement 2B; see mapping details in Figure 230 
7). 231 

At 24h APF, we observed the highest number of clusters reflecting different PN types. 232 
Moreover, dimensionality reduction using the top 2000 overdispersed genes also showed more 233 
distinct clusters at this timepoint compared to the others (Figure 4—figure supplement 1). 234 
Quantifications of transcriptomic similarity among PNs at each stage indeed confirmed the highest 235 
diversity among PNs at 24h APF (Figure 4E–G). This is likely explained by the fact that at this 236 
stage, PNs refine their dendrites to specific regions and begin to prepare themselves as targets for 237 
their partner ORN axons. Both processes require high level of molecular diversity among different 238 
PN types to ensure precise wiring, warranting more distinction between their transcriptomes at this 239 
stage.   240 

In contrast to the high transcriptomic diversity in 24h APF PNs, adult PNs only formed 241 
three clusters (Figure 4A bottom, indicated by dashed lines). The three clusters represent excitatory 242 
PNs (marked by VAChT), and two Gad1+ GABAergic inhibitory cell types—vPNs and APL 243 
neurons (VGlut+), respectively (Figure 4H). This is likely because after wiring specificity is 244 
achieved, all excitatory PNs may perform similar functions in comparison with the other two 245 
neuronal types. 246 

Thus, at three different developmental stages, the differentially expressed genes we 247 
identified all revealed the most defining biological processes those neurons are undertaking. Our 248 
observations showed that PN transcriptomes reflect the pruning process of embryonically born 249 
PNs at 0h APF, PN type and wiring distinction at 24h APF, and neurotransmitter type in adults.  250 

Identifying PN types at all developmental stages 251 
With the exception of the 24h APF PNs, gene sets identified from each of the other stages could 252 
not resolve distinct clusters reflecting PN type diversity (Figure 4). Therefore, we tried to use the 253 
genes identified by ICIM from 24h APF PNs to cluster PNs of the other stages. We found that this 254 
gene set outperformed all other gene sets in separating different PN types at all timepoints (Figure 255 
5A). In fact, most gene sets found by different methods at 24h APF, including overdispersed genes, 256 
ICIM genes, as well as differentially expressed genes between different clusters, exceeded gene 257 
sets identified at other stages for clustering PNs according to their types (data not shown), further 258 
confirming that transcriptomes of 24h APF PNs carry the most information for distinguishing 259 
different PN types, even for other developmental stages.  260 
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Following this observation, we decided to use differentially expressed genes between 24h 261 
PN clusters for PN-type identification for all stages. We applied meta-learned representations for 262 
single cell data (MARS) for identifying and annotating cell types (Brbić et al., 2020). MARS learns 263 
to project cells using deep neural networks in the latent low-dimensional space in which cells 264 
group according to their cell types. Using this approach, we found ~30 cell types in each stage 265 
(Figure 5B). Independently, we also validated MARS cluster annotations using two distinct 266 
methods: HDBSCAN clustering based on tSNEs or Leiden clustering based on neighborhood 267 
graphs (Figure 5—figure supplement 1) (Blondel et al., 2008; Levine et al., 2015; Traag et al., 268 
2019). Clusters identified by HDBSCAN and Leiden largely agreed with MARS annotations, 269 
confirming the reliability of MARS. We compared cluster annotations by these three methods to 270 
known PN types at 24h APF (Figure 5–figure supplement 1C) and found that MARS performed 271 
better at segregating closely related clusters representing multiple PN types (Figure 5–figure 272 
supplement 1D), demonstrating the robustness of MARS at identifying unique cell types.  273 
Matching the same PN types across four developmental stages 274 

We next sought to match transcriptomes of the same PN type across different developmental stages. 275 
To develop reliable approaches to perform this task, we first used kn+ PNs as test case. We 276 
collected PNs labeled by kn-GAL4 from 24h APF, 48h APF, and adult brains for scRNA-seq 277 
(Figure 6A). Dimensionality reduction of these cells showed a consistent number of clusters across 278 
stages (Figure 6B). One exception is an extra vPN cluster observed at 48h APF and adult stages. 279 
This discrepancy with 24h APF data is likely caused by the lower number of vPNs sequenced at 280 
24h APF.  281 

When kn+ PNs from all three stages were plotted together, all adPNs (acj6+ clusters on 282 
the upper side) formed relatively distinct clusters and did not intermingle with adPNs from the 283 
other timepoints (Figure 6C), reflecting substantial changes in the transcriptome of the same type 284 
of PNs across development. To match the same type of PNs, we took two independent approaches 285 
(Figure 6D). In the first approach, clusters were automatically matched based on their 286 
transcriptomic similarity. Briefly, we identified a set of genes that were differentially expressed in 287 
each cluster compared to all the rest at the same stage. Then, we calculated the percentage of genes 288 
shared between each pair of clusters across two stages (Jaccard similarity index) (Figure 6E). If 289 
two clusters from two stages both had the highest similarity score with each other, we considered 290 
them to be matched. In the second approach, we used markers that were expressed in a consistent 291 
number of clusters at each stage. Those markers, or marker combinations, were used to manually 292 
match the same type of PNs (some example markers used are shown in Figure 6F). Using these 293 
two approaches, we were able to match the same types of PNs across three developmental stages, 294 
and the results from the two approaches consistently agreed with each other (Figure 6G). In 295 
addition, these data further validated an earlier conclusion (Figure 4) that as development proceeds 296 
from 24h APF and 48h APF to adults, the transcriptomic difference between identified PN types 297 
becomes smaller (Figure 6G; quantified in Figure 6—figure supplement 1).  298 

 We next applied the same approaches for matching kn+ PN types across 3 stages to match 299 
most PNs (sequenced using either GH146-GAL4 or VT033006-GAL4) across 4 stages (Figure 7A). 300 
In addition to marker gene expression, we also used subset of PNs we had sequenced from different 301 
stages to manually match PN types (Figure 7—figure supplements 1A–D). For the manually 302 
matched PN types with known identity, we summarized markers and marker combinations we 303 
used in a dot plot, where both average expression as well as percentage of cells expressing each 304 
marker were shown (Figure 7–figure supplement 2). Using both manual and automatic approaches, 305 
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we were able to match many PN types across 2 or more developmental stages (Figure 7B), which 306 
includes 18 PN types that we have decoded in Figure 2 and 7 transcriptomic clusters with unknown 307 
identity. The majority of the PNs we matched were confirmed mutually by both the automatic 308 
(transcriptomic similarity-based) and manual (marker-based) methods (Figure 7C and Figure 7–309 
figure supplement 1E). 310 
Gene expression dynamics in a type-specific manner 311 

Matching the same PN types across multiple developmental stages enabled us to investigate gene 312 
dynamics in each PN type. Genes with temporal dynamics in PNs on the bulk level displayed 313 
features of neurite growth during development and synaptic transmission in adult stage (Figure 3). 314 
However, not many genes known to be involved in wiring-specificity were observed in the 315 
differentially expressed gene list when we only considered developmental stage (but not PN type) 316 
as a variable. We hypothesized that genes with wiring function might display type-specific 317 
dynamics that could not be observed on the global level. Thus, we sought to systematically identify 318 
those genes. 319 

We first focused on 6 types of kn+ adPNs from 3 stages. We searched for two categories 320 
of type-specific dynamic genes: (i) dynamic-dynamic genes, and (ii) dynamic-stable genes. We 321 
defined dynamic-dynamic genes to be those that show significant changes in the opposite 322 
directions between at least two PN types at two stages, and dynamic-stable genes to be those that 323 
have altered expression level in some PN types but maintain stable expression or are not expressed 324 
in all stages (Figure 8A). We identified 26 dynamic-dynamic genes and 50 dynamic-stable genes 325 
with false discovery rate (FDR) < 0.01 among kn+ PNs (Figure 8B, C). Two examples of these 326 
type-specific dynamic genes—Pvf3, a ligand for the receptor tyrosine kinase encoded by PvR, and 327 
rad, a Rap-like GTPase activating protein—are shown in Figure 8D. The expression of Pvf3 328 
peaked at different timepoints for D PNs (at 0h APF), VA1v PNs (48h APF), and VM7 or VM5v 329 
PNs (in adults). The expression of rad decreased in VA1v PNs and increased in VM2 PNs from 330 
48h APF to the adult stage.  Interestingly, more than half of the dynamic-dynamic genes (14 out 331 
of 26) are cell surface molecules (CSMs) and transcription factors (TFs). Consistent with our 332 
hypothesis, both CSMs and TFs are known to play critical roles in PN wiring (Hong & Luo, 2014; 333 
Li et al., 2017).  334 

Next, we extended this analysis to more PN types. We focused on 13 PN types that were 335 
matched across all 4 developmental stages (12 PN types with known identity and 1 with unknown 336 
identity). The increased number of PN types and the additional timepoint produced more type-337 
specific dynamic genes. In particular, at FDR < 0.01 we identified 327 dynamic-dynamic genes 338 
(Figure 8E–F). Among the 327 dynamic-dynamic genes, we compared the gene distribution at 3 339 
transitions: 0h to 24h, 24h to 48h, and 48h to adult. We found more dynamic genes during the first 340 
and last transitions compared to the middle one. This is consistent with our expectations because 341 
PNs from 0h to 24h, or from 48h to adult, are transitioning into or out of circuit assembly, 342 
respectively. We further compared the number of dynamic genes found at all stages between each 343 
pair of 12 decoded PN types (Figure 8G). We found that PN types from two different lineages 344 
(rectangle-bound corner) tended to have more dynamic genes between each other than PN types 345 
within the same lineage. However, there were exceptions—for example, VA6 and VA1v PNs are 346 
both from the adPN lineage but possessed the highest number of type-specific dynamic genes. This 347 
is likely because VA6 and VA1v PNs are born during different developmental stages (born in 348 
embryos vs larvae, respectively), with VA6 but not VA1v PNs undergoing dendrite and axon 349 
pruning followed by re-extension during morphogenesis.  350 
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PN types with adjacent birth order share more similar transcriptomes at early stages of 351 
development 352 

Previous works have shown that the PN glomerular types are prespecified by the neuroblast 353 
lineages and birth order within each lineage (Jefferis et al., 2001; Yu et al., 2010; Lin et al., 2012) 354 
(Figure 9A). Decoding the transcriptomic identities of different PN types at different timepoints 355 
allowed us to ask: to what extent is transcriptomic similarity contributed by lineage, birth order, 356 
and/or spatial position of their glomeruli? Do these contributions persist through development? 357 

To address these questions, we performed hierarchical clustering on all excitatory PN 358 
clusters we identified from each timepoint. We plotted the dendrogram and the correlation between 359 
each pair of clusters (Figure 9—figure supplement 1). We observed some lineage-related similarity 360 
between PN types at 0h APF: transcriptomes of PNs from the same lineage tended to be clustered 361 
together in the dendrogram and their correlations are higher, although the relationship was not 362 
absolute. Such similarity was gradually lost as development proceeded (as inferred by both the 363 
dendrogram as well as correlation between PNs from the same lineage). Interestingly, we noticed 364 
that some PNs with adjacent birth order appeared to be neighbors in the dendrogram at 0h and 24h 365 
APF. 366 

To further investigate the relationship between birth order of PNs and their transcriptomic 367 
similarity, we selected all decoded PNs from the anterodorsal lineage, ordered them according to 368 
their birth order, and computed their correlation (Figure 9B). 0h APF adPNs showed high 369 
correlation between their birth order and their transcriptomic similarity, as indicated by the high 370 
correlations in boxes just off the diagonal line. To test if the transcriptomic similarity of adPNs 371 
indeed covaries with their birth order, we performed permutation tests, comparing the Spearman 372 
correlations between birth-order ranking and transcriptomic similarity ranking (Figure 9C, see 373 
Materials and Methods for details). The results confirmed that 0h and 24h APF PNs, but not 48h 374 
APF and adult PNs, exhibited high correlations between their birth orders and transcriptomic 375 
similarities. In addition, developmental trajectory analysis of adPNs born at the larval stage using 376 
Monocle 3 also showed that the unbiased pseudo time recapitulated their birth order (Figure 9D) 377 
(Cao et al., 2019). 378 

A previous study profiled the transcriptomes of PN neuroblasts at various larval stages and 379 
identified 63 genes with temporal gradients (Liu et al., 2015). Among those genes, the authors 380 
have validated that two RNA-binding proteins, Imp and Syp, regulate the fate of PNs born at 381 
different times. Therefore, we analyzed expression of these genes at 0h APF to see if any of these 382 
genes with temporal gradients has persisted expression in postmitotic PNs. We found 15 out of the 383 
63 genes (including Imp but not Syp) maintained the same temporal gradient patterns according to 384 
their birth order at 0h APF (Figure 9E) but not at the later stages (data not shown). This result 385 
suggested that the expression of some birth order-related molecular features, including some cell-386 
fate regulators, were maintained till early pupal stage. 387 

In summary, our data demonstrated that PN types with adjacent birth order shared more 388 
similar transcriptomes, illustrating sequential transition of gene expression profiles in PN 389 
neuroblasts. Such transcriptomic similarity was maintained at early pupal stages and was gradually 390 
lost as PNs mature. 391 
Differentially expressed genes in different PN types in adults  392 
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Our analyses have shown that transcriptomic differences between different PN types diminish as 393 
development proceeds (Figure 4). However, different PN types in adults still exhibited some 394 
degree of differential gene expression, as demonstrated by the clustering of adult PNs (Figure 5) 395 
and the negative correlations observed between some PN types (Figure 9–figure supplement 1D). 396 
Such differential expression could be contributed by residual developmentally differentially 397 
expressed genes, by new categories of differentially expressed genes in mature PNs reflecting 398 
functional differences between different PN types, or a combination of both. To distinguish 399 
between these possibilities, we compared differentially expressed (DE) genes among different 400 
transcriptomic clusters of PNs at 24h APF and at the adult stage.  401 
 About a third of the DE genes were shared between these two stages (Figure 10A). Gene 402 
ontology analysis revealed that these shared genes were predominately related to neural 403 
development (Figure 10B, middle). In addition, CSMs and TFs were enriched in 24h APF and 404 
adult DE genes compared to the entire genome, albeit to a lesser extent for TFs (Figure 10C). 405 
These data suggested that some DE genes found among adult PN types were residual 406 
developmentally differentially expressed genes.  407 

Interestingly, many gene ontology terms related to the physiological properties of PNs 408 
among the adult only DE genes (Figure 10B, bottom). These include ion channels, G-protein-409 
coupled receptors, and regulators of synaptic transmission (some selected examples are shown in 410 
Figure 10D). These results suggested different PN types in adults might exhibit different 411 
physiological properties. Future studies can address whether such differences in the adult PN 412 
transcriptomes have an impact on their physiological properties.  413 

 414 

Discussion 415 

Deciphering single-cell transcriptomes for connectivity-defined neuronal types 416 
Traditionally, neurons are classified based on their morphology, physiology, connectivity, and 417 
signature molecular markers. More recently, scRNA-seq has allowed classification of cell types 418 
based entirely on their transcriptomes. Many studies have illustrated that cell-type classification 419 
based on the single-cell transcriptomes largely agrees with classifications by some of the more 420 
traditional criteria (Zeng & Sanes, 2017). 421 

 For Drosophila olfactory PNs, the most prominent type-specific feature is their pre- and 422 
post-synaptic connections, which determines their olfactory response profiles and the higher order 423 
neurons they relay olfactory information to. Thus, different PN types are largely defined by their 424 
differences in their connectivity. We have previously observed that the transcriptomic identity of 425 
PNs corresponds well with their types during development, and for three identified PN types, 426 
transcriptomic differences peak during the circuit assembly stage (Li et al., 2017). Here, we 427 
generalized these findings across many more PN types by showing that transcriptomic differences 428 
are the highest around 24h APF, a stage when PNs are making wiring decisions and preparing cues 429 
for subsequent ORN-PN matching (Figure 4), and by demonstrating that clustering of PNs 430 
according to their types from all stages are best done using differentially expressed genes at 24h 431 
APF (Figure 5). Additionally, our data indicate that at certain stages, differences among those type-432 
specific genes can be masked by other genes belonging to pathways of a more dominating 433 
biological process (such as neurite pruning at 0h APF for PNs). As a consequence, it may be 434 
challenging to identify genes carrying type-specific information at certain timepoints even when 435 
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sophisticated algorithms are applied, which can lead to underestimation of cell type diversity. Thus, 436 
to determine single-cell transcriptomes of connectivity-defined neuronal types such as fly olfactory 437 
PNs, it may be a general strategy to first obtain their single-cell transcriptomes during their circuit 438 
assembly and then use this information to supervise cell-type classification in other developmental 439 
stages, including adults. 440 
Tracing the same cell type in different states 441 

Both cell types and their biological states can split single-cell transcriptomes into distinct clusters 442 
(Zeng & Sanes, 2017; Cembrowski & Menon, 2018; Tasic, 2018). We observed that the same 443 
types of PNs of different developmental stages—reflecting different states—indeed exhibit very 444 
distinct transcriptomic profiles (Figures 5 and 6). To identify transcriptomic clusters corresponding 445 
to the same PN types across multiple timepoints, we developed and applied two complementary 446 
methods—one manual based on the marker gene expression, and one automatic based on the 447 
similarity between transcriptomic clusters. By applying both methods, we can confidently track 448 
the transcriptomes of the same cell type throughout development and study the unique molecular 449 
features of each stage. 450 

Our methods can be applied to other single-cell studies where diverse cell types and 451 
multiple states are involved. This can be especially useful for tissues with high cellular diversity 452 
but lack unique markers for each cell type. 453 

Using single-cell RNAseq data to identify new candidate molecules for future studies 454 
In this study, we have obtained high-quality single-cell transcriptomes of most excitatory PNs from 455 
early pupal stage to adulthood (Figure 1). We have used combinations of markers and drivers to 456 
decode the transcriptomic identity of 21 transcriptomic clusters at 24h APF (Figure 2), and 457 
matched clusters representing the same PN type across four developmental stages (Figure 7).  458 

Using this rich and well-annotated dataset, researchers can now explore different aspects 459 
of PN development and function to identify candidate molecules for future studies. For example, 460 
one can search for novel molecules involved in neurite pruning among the differentially expressed 461 
genes between the embryonically-born and larval-born PNs at 0h APF (Figure 4B–D). 462 
Developmentally enriched genes and genes with type-specific dynamics, on the other hand, can be 463 
good candidates for studies on neural development and wiring specificity (Figure 3 and 8). 464 
Differentially expressed neuronal signaling genes in adult PNs can be used to explore differences 465 
in physiological properties and information processing (Figure 10). In addition, driver lines for 466 
specific types of PNs can be made using genes that show consistent expression pattern across 467 
different stages (Figure 7–figure supplement 2) to label and genetically manipulate specific PN 468 
types. Together with a companion paper on single-cell transcriptomes of olfactory receptor 469 
neurons across multiple stages (McLaughlin et al.), these studies have established foundations of 470 
gene expression for the two principal types of neurons in the Drosophila olfactory system and 471 
should catalyze new biological discoveries.  472 
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Methods and Materials 473 

Key Resource Table 474 
Reagent type 
(species) or 
resource 

Designation Source or 
reference 

Identifiers Additional 
information 

Genetic reagent (D. 
melanogaster)  

GH146-GAL4  (Stocker et al., 
1997) 

RRID: 
BDSC_30026 

  

Genetic reagent (D. 
melanogaster)  

VT033006-GAL4  (Tirian & 
Dickson, 2017) 

RRID: 
BDSC_73333 

 

Genetic reagent (D. 
melanogaster)  

Mz19-GAL4 (Jefferis et al., 
2004) 

RRID: 
BDSC_41573 

 

Genetic reagent (D. 
melanogaster)  

knot-GAL4 (Lee et al., 2018) RRID: BDSC_ 
67516 

 

Genetic reagent (D. 
melanogaster) 

split#28-GAL4 Yoshi Aso 
(unpublished) 

 SS01265 

Genetic reagent (D. 
melanogaster) 

split#7-GAL4 Yoshi Aso 
(unpublished) 

 SS01867 

Genetic reagent (D. 
melanogaster) 

split#15-GAL4 Yoshi Aso 
(unpublished) 

 SS01165 

Genetic reagent (D. 
melanogaster) 

GH146-Flp (Potter et al., 
2010) 

  

Genetic reagent (D. 
melanogaster) 

UAS-FRT-
STOP-FRT-
mCD8GFP 

(Potter et al., 
2010) 

RRID: 
BDSC_30125 

 

Genetic reagent (D. 
melanogaster) 

zfh2-GAL4 (Lee et al., 2018) RRID: 
BDSC_86479 

 

Genetic reagent (D. 
melanogaster) 

Act-FRT-STOP-
FRT-GAL4 

(Pignoni & 
Zipursky, 1997) 

  

Genetic reagent (D. 
melanogaster) 

UAS-Flp (Duffy et al., 
1998) 

  

Genetic reagent (D. 
melanogaster) 

C15-p65AD (Xie et al., 2019)   

Genetic reagent (D. 
melanogaster) 

C15-GAL4DBD This study   

Genetic reagent (D. 
melanogaster) 

danr-GAL4DBD This study   

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 25, 2020. ; https://doi.org/10.1101/2020.09.24.312397doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.24.312397


 13 

Genetic reagent (D. 
melanogaster) 

VT033006-
GAL4DBD 

Yoshi Aso 
(unpublished) 

  

Genetic reagent (D. 
melanogaster) 

DIP-zeta-GAL4 (Cosmanescu et 
al., 2018) 

RRID: 
BDSC_90317 

 

Genetic reagent (D. 
melanogaster) 

DIP-eta-GAL4 (Cosmanescu et 
al., 2018) 

RRID: 
BDSC_90318 

 

Genetic reagent (D. 
melanogaster) 

AstA-GAL4 (Deng et al., 2019) RRID: 
BDSC_84593 

 

Genetic reagent (D. 
melanogaster) 

DIP-beta-GAL4 (Carrillo et al., 
2015) 

RRID: 
BDSC_90316 

 

Genetic reagent (D. 
melanogaster) 

kn-p65AD This study   

Genetic reagent (D. 
melanogaster) 

elav-GAL4DBD (Luan et al., 2006)   

Antibody Rat anti-Ncad Developmental 
Studies Hybridoma 
Bank 

RRID: 
AB_528121 

1:40 in 5% 
normal goat 
serum 

Antibody Chicken anti-
GFP 

Aves Labs RRID: 
AB_10000240 

1:1000 in 5% 
normal goat 
serum 

Software ZEN Carl Zeiss RRID: 
SCR_013672 

 

Software ImageJ National Institutes 
of Health 

RRID: 
SCR_003070 

 

Software Illustrator Adobe RRID: 
SCR_010279 

 

Software STAR 2.5.4 (Dobin et al., 
2013) 

RRID: 
SCR_015899 

https://github.co
m/alexdobin/ST
AR 

Software HTseq 0.11.2 (Anders et al., 
2015) 

RRID: 
SCR_005514 

https://github.co
m/htseq/htseq 

Software Scanpy (Wolf et al., 2018) RRID: 
SCR_018139 

https://scanpy.rea
dthedocs.io/en/st
able/ 

Software Iterative 
Clustering for 
Identifying 
Markers (ICIM) 

(Li et al., 2017)  https://github.co
m/felixhorns/Fly
PN  
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Plasmid pT-GEM(0) (Diao et al., 2015) RRID: 
Addgene_62891 

 

Plasmid pBS-KS-attB2-
SA(2)-T2A-
p65AD-Hsp70  

(Diao et al., 
2015) 

RRID: 
Addgene_62915 

 

Plasmid pU6-BbsI-
chiRNA 

(Gratz et al., 
2013) 

RRID: 
Addgene_45946 

 

Drosophila Stocks and genotypes 475 

Flies are maintained on standard cornmeal medium at 25 °C with 12-h light–dark cycle. The 476 
following lines were used in this study: GH146-GAL4 (Stocker et al., 1997), VT033006-GAL4 477 
(Tirian & Dickson, 2017), Mz19-GAL4 (Jefferis et al., 2004), knot-GAL4 (Lee et al., 2018), 478 
GH146-Flp, UAS-FRT-STOP-FRT-mCD8-GFP (Potter et al., 2010), zfh2-GAL4 (Lee et al., 2018), 479 
Act-FRT-STOP-FRT-GAL4 (Pignoni & Zipursky, 1997), UAS-Flp (Duffy et al., 1998), C15-p65AD 480 
(Xie et al., 2019), DIP-beta-GAL4, DIP-eta-GAL4, DIP-zeta-GAL4 (Carrillo et al., 2015; 481 
Cosmanescu et al., 2018), AstA-GAL4 (Deng et al., 2019), and elav-GAL4DBD (Luan et al., 2006). 482 
VT033006-GAL4DBD, split-GAL4 line #7 (SS01867), #15 (SS01165), and #28 (SS01265) are 483 
unpublished reagents generously provided by Yoshi Aso (Janelia Research Campus). 484 
Generation of danr-GAL4DBD, kn-p65AD, and C15-GAL4DBD 485 

danr-GAL4DBD was generated using CRISPR mediated knock-in. ~2000 bp of genomic sequence 486 
flanking the targeted insertion site was amplified by Q5 hot-start high-fidelity DNA polymerase 487 
(New England Biolabs) and inserted into pCR-Blunt-TOPO vectors (Thermo Fisher). Using this 488 
vector, we generated homology directed repair (HDR) vector TOPO-danr-T2A-GAL4DBD-P3-489 
RFP by inserting T2A-GAL4(DBD)::Zip+ and 3XP3-RFP-SV40 (cloned from pT-GEM(0) 490 
Addgene #62891) 45bp downstream of the start codon of danr. CRISPR guide RNA (gRNA) 491 
targeting a sequence inside danr (AACATCCGGATGAGCACGCG) were designed by the 492 
flyCRISPR Target Finder tool and cloned into a pU6-BbsI-chiRNA vector (Addgene #45946). The 493 
HDR and gRNA vectors were co-injected into nos-Cas9 (gift from Dr. Ben White) embryos. RFP+ 494 
progenies were selected and individually balanced. 495 

kn-p65AD was generated by co-injecting pBS-KS-attB2-SA(2)-T2A-p65AD-Hsp70 496 
(Addgene #62915) and ΦC31 into the embryos of MI15480 (BL61064). All yellow– progenies were 497 
individually balanced. 498 

C15-GAL4DBD was generated using methods similar to danr-GAL4DBD. But because C15 499 
have been shown to be involved in PN dendrite targeting (Li et al., 2017), instead of inserting 500 
driver elements into the coding region, the stop codon of C15 was replaced by T2A-501 
GAL4(DBD)::Zip+ to prevent disruption of the gene. 502 

Immunofluorescence  503 
Fly brains were dissected and immunostained according to previously described methods (Wu & 504 
Luo, 2006). Primary antibodies used in this study included rat anti-Ncad (N-Ex #8; 1:40; 505 
Developmental Studies Hybridoma Bank), chicken anti-GFP (1:1000; Aves Labs). Secondary 506 
antibodies conjugated to Alexa Fluor 488/647 (Jackson ImmunoResearch) were used at 1:250. 5% 507 
normal goat serum in phosphate buffered saline was used for blocking and diluting antibodies. 508 
Confocal images were collected with a Zeiss LSM 780 and processed with ImageJ. 509 
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Single-cell RNA sequencing procedure 510 
Single-cell RNA sequencing was performed following previously described protocol (Li et al., 511 
2017). Briefly, Drosophila brains with mCD8-GFP labeled cells using specific GAL4 drivers were 512 
dissected at appropriate timepoints (0–6h APF, 24–30h APF, 48–54h APF, and 1–5 day adults). 513 
Optic lobes were removed from brain during dissection for all timepoints except for 0-6h APF. 514 
Single-cell suspension were prepared and GFP positive cells were sorted using Fluorescence 515 
Activated Cell Sorting (FACS) into individual wells of 384-well plates containing lysis buffer 516 
using SH800 (Sony Biotechnology). Full-length poly(A)-tailed RNA was reverse-transcribed and 517 
amplified by PCR following the SMART-seq2 protocol (Picelli et al., 2014). cDNA was digested 518 
using lambda exonuclease (New England Biolabs) and then amplified for 25 cycles. Sequencing 519 
libraries were prepared from amplified cDNA, pooled, and quantified using BioAnalyser (Agilent). 520 
Sequencing was performed using the Novaseq 6000 Sequencing system (Illumina) with 100 521 
paired-end reads and 2 x 8 bp index reads (all except split#28-GAL4). split#28-GAL4 is sequenced 522 
using NextSeq 500 Sequencing system (Illumina) with 75 paired-end reads and 2 x 8 bp index 523 
reads. 524 
QUANTIFICATION AND STATISTICAL ANALYSIS 525 

Unless otherwise specified, all data analysis was performed in Python using Scanpy (Wolf et al., 526 
2018), Numpy, Scipy, Pandas, scikit-learn, and custom single-cell RNA-seq modules (Li et al., 527 
2017; Brbić et al., 2020). Gene Ontology analysis were performed using Flymine (Lyne et al., 528 
2007). 529 

Sequence alignment and preprocessing 530 
Reads were aligned to the Drosophila melanogaster genome (r6.10) using STAR (2.5.4) (Dobin 531 
et al., 2013). Gene counts were produced using HTseq (0.11.2) with default settings except ‘‘-m 532 
intersection-strict’ (Anders et al., 2015). We removed low-quality cells having fewer than 100,000 533 
uniquely mapped reads. To normalize for differences in sequencing depth across individual cells, 534 
we rescaled gene counts to counts per million reads (CPM). All analyses were performed after 535 
converting gene counts to logarithmic space via the transformation Log2(CPM+1). We further 536 
filter out non-neuronal cells by selecting cells with high expression of canonical neuronal genes 537 
(elav, brp, Syt1, nSyb, CadN, and mCD8-GFP). We retained cells expressing at least 8 538 
Log2(CPM+1) for least 2/6 markers. 539 

Dimensionality reduction and clustering 540 
To select variable genes for dimensionality reduction, we used previously described methods to 541 
search for either overdispersed genes (Satija et al., 2015) or ICIM genes (Li et al., 2017).  We then 542 
further reduced its dimensionality using tSNE to project the reduced gene expression matrix into 543 
a two-dimensional space (van der Maaten & Hinton, 2008). We observed that our most recently 544 
sequenced cells using NovaSeq (all newly sequenced cells in this study except for split#28-GAL4) 545 
exhibited some small batch effect with PNs sequenced using NextSeq [split#28-GAL4+ PNs and 546 
PNs from (Li et al., 2017)]. To overcome this batch effect (in Figure 2, and Figure 7–figure 547 
supplement 2 A, C), we performed principal component analysis (PCA) on the ICIM matrix, 548 
applied Harmony to correct for batch effect on the principal components (PCs) (Korsunsky et al., 549 
2019), and used tSNE to further project the Harmony-corrected PCs into a two-dimensional space. 550 

To cluster PNs in an unbiased manner, we applied the hierarchical density-based clustering 551 
algorithm, HDBSCAN, on the tSNE projection (McInnes et al., 2017). Parameters 552 
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min_cluster_size and min_samples were adjusted to separate clusters representing different types 553 
of PNs. In addition, we also clustered cells using an independent, community-detection method 554 
called Leiden on the neighborhood graph computed based on the ICIM gene matrix (Blondel et al., 555 
2008; Levine et al., 2015; McInnes et al., 2018). Both methods appeared to agree with each other 556 
for all datasets we examined (examples in Figure 5–figure supplement 1), and we assigned PN 557 
types in Figure 2 based on HDBSCAN clustering. 558 

Global level dynamic gene identification 559 
To identify dynamically expressed genes on the global level (Figure 3), we first identified the top 560 
150 most differentially expressed genes (Mann-Whitney U test) between every two stages and 561 
combined them to obtain a set of 474 dynamic genes. We calculated the median expression of each 562 
gene at each timepoint and normalized these median expression values by dividing them by the 563 
maximum value across time points. We then performed dimensionality reduction on the expression 564 
profiles of the genes using tSNE, and identified clusters using HDBSCAN on the projected 565 
coordinates. This resulted in identification of 8 sets of genes with distinct dynamic profiles, of 566 
which 2 sets are upregulated (Figure 3E), 4 sets are down regulated (Figure 3D), and 2 sets without 567 
obvious trend from 0h APF to adult cells (data not shown). 568 

Transcriptomic similarity calculation 569 
To analyze the transcriptome differences of PNs in different stages (Figure 4E, F), we first isolated 570 
lPNs and adPNs to analyze cells from each lineage separately. Cell-level analysis was performed 571 
by calculating for each cell mean inverse Euclidean distance in the 2-dimensional UMAP space 572 
from all other cells within each stage using the 1215 genes identified by ICIM from most PNs of 573 
all stages (Figure 3A). Box plots show the distance distribution at each stage (Figure 4E and F, 574 
left). Cluster-level analysis was performed on the MARS clusters. We identified a set of 575 
differentially expressed genes for each cluster and calculated Pearson correlation on differentially 576 
expressed genes between all pairs of clusters. Bar plots represent mean values across all pairs and 577 
errors are 95% confidence intervals determined by bootstrapping with n=1,000 iterations (Figure 578 
4E and F, right). 579 
PN type identification for most PNs 580 

We observed that the transcriptomes of different PN types are the most distinct at 24h APF and 581 
variable genes identified at this stage carry type-specific information (Figure 5). Therefore, we 582 
calculated the differentially expressed genes among 24h APF clusters and applied MARS to 583 
identify clusters in the space of those genes. MARS is able to reuse annotated single-cell datasets 584 
to learn shared low-dimensional space of both annotated and unannotated datasets in which cells 585 
are grouped according to their cell types. However, initially we did not have any annotated 586 
experiments so we first applied MARS to annotate 24h APF clusters. We then used 24h APF 587 
clusters as annotated dataset and moved to annotate PNs at 48h APF. We then repeated the same 588 
procedure by gradually increasing our set of annotated datasets. In particular, we used 24h and 48h 589 
APF data to help in annotating 0h APF, and finally all three datasets (0h, 24h, 48h) for the adult 590 
PNs. We proceed in this order according to the expected difficulty to identify PN types at a 591 
particular stage (Figure 5). At each stage, we ran MARS multiple times with different random 592 
initializations and architecture parameters to increase our confidence in the discovered clusters, 593 
and combined annotations from these different runs. For each cluster, we additionally manually 594 
checked the expressions of known PN markers to confirm the annotations. 595 
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Matching clusters representing the same PN type across development using marker 596 
expression 597 

For each cluster, we used Mann-Whitney U test to find genes that are highly expressed in that 598 
cluster compared to the rest. Then, among those genes, we searched for genes or 2-gene 599 
combinations which are uniquely expressed in 1 cluster. We check each gene or combination of 600 
genes at the other stages, and if they are also only expressed in 1 cluster and they are of the same 601 
lineage, we consider them to be the same types of PNs. Genes used to match clusters representing 602 
the same PN types at different timepoints are summarized in a dot-plot in Figure 7–figure 603 
supplement 2. 604 

In addition, we used previously sequenced subset of PNs using Mz19-GAL4 and kn-GAL4 605 
to overlay with most PNs in combinations of those markers to confirm our matching. 606 
Matching clusters representing the same PN type across development using similarity 607 
calculation 608 
For each cluster, we found the set of differentially expressed genes in that cluster compared to all 609 
other clusters at the same stage. Next, we computed the similarity of the sets of identified 610 
differentially expressed genes between all pairs of clusters across subsequent stages. Specifically, 611 
we computed similarity scores between all pairs of clusters from (i) 0h and 24h APF, (ii) 24h and 612 
48h APF, and (iii) 48h and adult APF. The similarity of the sets of differentially expressed genes 613 
was computed as the Jaccard similarity index defined as the ratio of the cardinality of the 614 
intersection of two sets and the cardinality of the union of the sets. We excluded clusters 615 
representing vPNs and APLs for matching most PNs across 4 stages (Figure 7). For each cluster, 616 
we then identified its most similar cluster at the adjacent stage according to the Jaccard index. If 617 
the clusters between two stages coincide—meaning that two clusters from two stages have the 618 
highest similarity to each other, we consider the clusters to be matched. Empirically, we found this 619 
matching procedure to be stringent, resulting in high confidence matching pairs.  620 
Identification of type specific dynamic genes 621 

We first identified all dynamic and stable genes. For each PN type matched across all 622 
developmental stages, we consider all genes that significantly change their expression between 623 
any two adjacent time points as dynamic genes. Statistical significance was determined by two-624 
tailed t-test and p-values were adjusted for multiple hypothesis testing using Benjamini–Hochberg 625 
method. To ensure that gene is expressed in at least one time point, we required that Log2(CPM+1) > 626 
2 in at least 50% of cells at one time point. Further, for each PN type we characterized all genes 627 
with FDR adjusted p-value larger than 0.9 at all time points as stable genes. 628 

If the same gene is identified as dynamic in two PN types at the same time transition but it 629 
shows opposite dynamics, we consider it as dynamic-dynamic gene (Figure 8A). Here, opposite 630 
dynamics means that the mean expression increases in one PN type in the transition from one stage 631 
to another but decreases in the another PN type. On the other hand, if the same gene is identified 632 
as dynamic in one PN type but stable in another PN type, we consider it as dynamic-stable gene 633 
(Figure 8A). 634 
Correlation between different PN types 635 

MARS clusters of excitatory PNs were used for analysis in Figure 9. We performed PCA on the 636 
entire matrix and calculated their correlation based on the PCs. Dendrograms shown in Figure 9–637 
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figure supplement 1 are generated using distance calculated using Farthest Point Algorithm and 638 
organized so the distance between successive leaves is minimal. 639 

To observe the relationship between birth timing and their transcriptomic similarity, for 640 
each stage, we selected adPN clusters, performed PCA among all genes detected, calculated their 641 
correlation, and plotted the correlation matrices according to their birth order (Yu et al., 2010) 642 
(Figure 9B). For the two clusters representing either VM7 or VM5v PNs, we ordered them based 643 
on their correlation with decoded PN types whose birth order are adjacent to either of these two 644 
PN types. We are showing adPNs in the figure because we decoded much fewer transcriptomic 645 
clusters belonging to the lPN lineage, which is too few to carry out analysis shown in Figure 9 C–646 
D with robust statistical backing. Nevertheless, we still observed higher correlation between lPN 647 
types with adjacent birth-order in 0h and 24h APF (data not shown). 648 
Spearman’s rank correlation calculation and permutation test 649 

For consistency, 8 adPN types that were decoded across 4 stages were selected for this analysis 650 
(Figure 9C). For each PN type X, the group of PNs that are born either earlier or later than X was 651 
selected depending on which direction contains more PN types (each group contains at least 5 652 
types of PNs). Then, we ranked the PN types according to their correlation with X and calculated 653 
the Spearman’s rank correlation of this ranking with the ranking based on their birth order. For 654 
each stage, we obtained the average correlation coefficients and plotted the result as a red dot on 655 
the x-axis for each timepoint. Higher value indicates higher correlation between birth order and 656 
order calculated based on their transcriptomic similarity. 657 

To determine if we can reject the null hypothesis that the adPN transcriptomic similarity 658 
do not covary with the ranks of the birth order, we performed permutation test. We randomly 659 
shuffled the birth order and performed the aforementioned correlation calculation for 5000 660 
iterations. The distribution of the simulated average correlations is shown in the histogram of 661 
Figure 9C. We obtained the p-value by dividing the number of times of the simulated correlation 662 
is greater than the observed correlation by the total number of iterations. 663 

Developmental trajectory analysis  664 
Pseudo-time analysis of 0h APF adPNs was performed using the monocle package in R (Trapnell 665 
et al., 2014; Qiu et al., 2017; Cao et al., 2019). We selected only adPNs born at larval stage because 666 
the embryonically born adPNs have a very distinct transcriptomes which skew clustering. We 667 
applied the dimensionality reduction method UMAP (Becht et al., 2018) on 561 24h ICIM genes 668 
to resolve distinct PN types. This dimensionally reduced dataset was then used as the basis for a 669 
developmental trajectory graph created by Monocle 3. We then selected the cluster representing 670 
DL1 PNs to be the root node of the trajectory and computed the pseudo-times based on distance 671 
from the root in accordance to the trajectory. 672 
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Figures 958 

 959 
Figure 1. Overview of single-cell transcriptomic profiling of Drosophila olfactory projection neurons (PNs). (A) 960 
Schematic of the adult Drosophila olfactory system. 50 types of olfactory receptor neurons (ORNs) form one-to-one 961 
synaptic connections with 50 types of excitatory PNs at 50 glomeruli in the antennal lobe. Illustrated are two types 962 
each of ORNs (brown) and PNs (green), as well as two glomeruli to which their axons and dendrites target. (B) 963 
Schematic of the developmental process of the adult Drosophila olfactory system. The ~50 types of excitatory PNs 964 
are from either anterodorsal (adPN) or lateral (lPN) neuroblast lineages. PNs with cell body on the ventral side are 965 
inhibitory ventral PNs (vPNs). (C) Representative confocal images of PNs from four different developmental stages, 966 
0h APF, 24h APF, 48h AFP, and adult. APF: after puparium formation. Images are shown as maximum z-projections 967 
of confocal stacks. Antenna lobe is outlined. Scale bars, 40 μm. (D) Workflow of the single-cell RNA sequencing 968 
using plate-based SMART-seq2. FACS: fluorescence-activated cell sorting. (E) Summary of the number of high-969 
quality PNs sequenced at each timepoint and driver lines used. Most PNs refer to PNs sequenced using either GH146-970 
GAL4 or VT033006-GAL4. (F) Visualization of all sequenced PNs from four different developmental stages using 971 
tSNE plot. Dimensionality reduction was performed using the top 500 overdispersed genes identified from all 972 
sequenced PNs.  973 
 974 
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 975 
Figure 1—figure supplement 1. Technical characteristics of PN scRNA-seq. (A) Representative confocal image 976 
and illustration of cells labeled by GH146-GAL4 at 0h APF. Other than PNs and a pair of APL neurons in the central 977 
brain, many cells in the optic lobes are also labeled. (B) Representative confocal image and illustration of cells 978 
labeled by VT033006-GAL4 at 0h APF. This driver labels excitatory PNs, but not cells in the optic lobes or vPN or 979 
APL neurons. Scale bars, 40 μm. (C) Distribution of the number of uniquely mapped reads per cell. (D) Distribution 980 
of the number of detected genes per cell. (E) Heatmaps showing the expression of: mCD8-GFP, pan-neuronal 981 
makers (nSyb, elav, CadN, Syt1, and brp), PN marker (Oaz), and glial markers (repo and alrm). Expression levels 982 
are indicated by the color bar (CPM, counts per million). 983 
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 985 
Figure 2. Matching 15 transcriptomic clusters to specific PN types at 24h APF. (A) Representative maximum z-986 
projection of confocal stacks of split#28-GAL4 in adults. Dendrites of split#28-GAL4+ PNs target the DC3 and DA4l 987 
glomeruli. (B) Diagram of split#28-GAL4+ PNs. (C) tSNE plot showing newly sequenced split#28-GAL4+ PNs, 988 
which form two clusters that can be assigned to DC3 and DA4l PNs (see also Figure 2–figure supplement 1). (D) 989 
Representative confocal images of split#7-GAL4 labeled PNs using permanent labeling strategy. One anterior section 990 
and one posterior section of the antennal lobe are shown. Using permanent labeling, we found that this driver is 991 
expressed in 8 PN types. Genotype: split#7-GAL4, UAS-Flp, Actin promoter-FRT-STOP-FRT-GAL4, UAS-mCD8-992 
GFP. (E) Diagram of split#7-GAL4+ PNs. split#7-GAL4 labels 8 types of PNs. 4 from the adPN lineage and 4 from 993 
the lPN lineage. (F) tSNE plot of split#7-GAL4 PNs with GH146+ PNs (see Figure 2–figure supplement 2 for details 994 
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on the decoding procedure). (G) Representative maximum z-projection of confocal stacks of kn+ PNs in the adult. 995 
kn-GAL4 was intersected with GH146-Flp to restrict the expression of GAL4 in only PNs. (H) Representative confocal 996 
images of split#15-GAL4 in adults, which labels 2 kn+ PN types. (I) Diagram showing that kn+ PNs include 6 types 997 
of adPNs (VM2 was decoded) and two vPNs. (J) tSNE plot of kn-GAL4 PNs with GH146+ PNs (see Figure 2–figure 998 
supplement 3 for details on the decoding procedure). (K) Dot plot summarizing drivers and marker genes we used to 999 
map 21 transcriptomic clusters to 20 PN types [14 adPNs, 5 lPNs—DA1 PNs form two clusters, one fru+ and one 1000 
fru– (Li et al., 2017)—and 1 vPNs] and the anterior paired lateral (APL) neurons at 24h APF. Gene expression level 1001 
[log2(CPM+1)] is shown by the dot color, and percentages of cells expressing a marker are shown by dot size. (L) 1002 
tSNE plot showing GH146+ PNs colored by PN types. Scale bars, 20 μm. Axes, D (dorsal), L (lateral). In panel B, E, 1003 
and I, orange glomeruli represent PN types of unknown transcriptomic identity prior to this study. Green glomeruli 1004 
represent PN types whose transcriptomic identity were previously decoded.  1005 
 1006 
 1007 
 1008 

 1009 
Figure 2—figure supplement 1. Validation of DA4l PN identity. (A) Visualization of GH146+ and split#28-GAL4+ 1010 
PNs using tSNE. Cells are colored according to driver genotypes (left) or by the expression of zfh2 (right). (B) zfh2-1011 
GAL4, after intersecting with GH146-Flp, labels DA4l PNs. Scale bars, 20 μm. Axes, D (dorsal), L (lateral). 1012 
  1013 
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 1014 
Figure 2—figure supplement 2. Decoding split#7+ PNs. (A) Representative confocal images of split#7+ PNs. 1015 
Without permanent labeling, this driver is strongly expressed in 3 PN types in adults. Permanent labeling showed that 1016 
it can label 8 adult PN types (Figure 2D), suggesting that this driver is expressed in 8 PN types during development 1017 
and turned off in 5 of them in adult stage. (B) Visualization of GH146+ and split#7+ PNs colored according to 1018 
genotype (left), acj6 (middle), and CG31676 (right) expression. Previously, we know among those split#7+ PNs, the 1019 
cells with CG31676 expression are DA1 PNs (Li et al. 2017). (C) Among split#7+ adPN clusters (circled in green), 1020 
only one cluster does not express C15. Intersection between C15-p65AD and the GAL4 DNA-binding domain (DBD) 1021 
from split#7 (top) as well as intersection between C15-GAL4DBD and the p65-activating domain (AD) from split#7 1022 
(bottom) revealed that the C15 negative cluster represents DL1 PNs. (D) Among split#7+ adPNs (circled in green), 1023 
two clusters are danr–. One of those cluster represents DL1 PNs. Intersection between danr-GAL4AD and VT033006-1024 
GAL4DBD (split-GAL4 with PN specific expression) revealed the other danr– adPN is VA6 PNs. (E) One split#7+ 1025 
cluster specifically expresses DIP-zeta. Intersection between DIP-zeta-GAL4 and GH146-Flp revealed this cluster 1026 
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represents VA2 PNs. As three out of four adPN clusters are assigned, we assigned the last unassigned to be DA3 PNs. 1027 
(F) Among split#7+ lPNs (circled in red), only one cluster is DIP-eta+. Intersection between DIP-eta-GAL4 and 1028 
GH146-Flp revealed the identity of this cluster as VA5 PNs. (G) The DIP-eta- cluster also specifically expresses AstA. 1029 
Intersection between AstA-GAL4 and GH146-Flp only labels VA5 PNs, further confirming its identity. (H) Among 1030 
the last two unmapped clusters, one is DIP-beta+. Intersection between DIP-beta-GAL4 and GH146-Flp revealed the 1031 
cluster negative for DIP-beta is DM2 PNs. And we assigned the remaining split#7+ lPN cluster to be VC2 PNs. Scale 1032 
bars, 20 μm. Axes, D (dorsal), L (lateral). 1033 
 1034 
 1035 

 1036 
Figure 2—figure supplement 3. Decoding the identity of kn+ PNs. (A) kn is expressed in 7 transcriptomic cluster 1037 
in GH146+ PNs at 24h APF. (B) Visualization of kn+ and split#15-GAL4+ PNs at 24h APF using tSNE. kn+ PNs 1038 
(green) form 8 clusters, two of them intermingled with split#15-GAL4+ PNs (purple). These 8 clusters are assigned 1039 
to specific PN types using information in the following panels. (C) Summary of marker genes used to decode the 1040 
identity of kn-GAL4+ PNs. trol+ cluster represents VM2 PNs (Li et al., 2007). (D) Intersection between kn-p65AD 1041 
and danr-GAL4DBD with GH146-Flp revealed that the cluster positive for both kn and danr is VA1v PNs. (E) 1042 
Intersection between C15-p65AD and elav-GAL4DBD revealed that the cluster positive for acj6 but negative for C15 is 1043 
D PNs. (F) Visualization of DIP-beta expression among GH146+ PNs. DA1 lPNs does not express DIP-beta. (G) 1044 
Visualization of DIP-beta expression among kn+ PNs. One vPN cluster expresses DIP-beta. (H) Representative 1045 
confocal image of DIP-beta-GAL4 after intersecting with GH146-Flp. Innervation of the DA1 glomerulus indicated 1046 
the DIP-beta+ vPN cluster is vPN (DA1). Scale bars, 20 μm. Axes, D (dorsal), L (lateral). 1047 
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1048 
Figure 3. Global-level gene expression dynamics of PNs. (A) Visualization of PNs from 4 different developmental 1049 
stages: 0h APF, 24h APF, 48h AFP, and adult sequenced using either VT033006-GAL4 or GH146-GAL4. tSNE 1050 
dimensionality reduction was performed using 1216 genes identified by iterative clustering for identifying markers 1051 
(ICIM) among them. (B) Hierarchical heatmap showing the expression of the top 100 out of 474 differentially 1052 
expressed genes identified among PNs of different developmental stages. (C) Examples of the expression of the 1053 
dynamic genes. Cells are colored according to the expression level of each gene. (D, E) Top 474 differentially 1054 
expressed genes can be divided into 8 groups based on their dynamic profiles–2 groups without obvious 1055 
developmental trend (not shown), 4 groups of down-regulated genes (D), and 2 groups of up-regulated genes (E). 1056 
Pink lines represent individual genes and the black line shows mean expression of genes in each group. The highest 1057 
expression is normalized as 1 for all genes. GO terms for developmentally up-regulated and down-regulated genes 1058 
are shown on right. 1059 
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 1060 
Figure 4. PN transcriptomes show distinct features at different stages of development. (A) Visualization of most PNs 1061 
from 0h APF, 24h APF, 48h APF, and adults using tSNE based on genes identified by ICIM at each stage. Adult 1062 
clusters (circled) are identified using HDBSCAN. (B) Clustering of 0h APF PNs using HDBSCAN identified two 1063 
clusters. (C) Part of the molecular pathways critical for neurite pruning in Drosophila. (D) Genes whose function have 1064 
been implicated in neurite pruning have higher expression in cluster 0: Sox14 (p-value: 5.01E-51), Mical (p-value: 1065 
1.49E-09), Cul1 (p-value: 8.15E-4),  shrb (p-value: 6.37E-19) and Vps20 (p-value: 1.23E-17) (Mann-Whitney U test). 1066 
(E, F). PN transcriptomic similarity calculated at the cell level (mean inverse Euclidean distance calculated using 1067 
1216 ICIM genes identified from PNs of all 4 stages) and the cluster level (Pearson correlation calculated using 1068 
differentially expressed genes identified from 24h PN clusters) for adPNs (E) [0h APF: 587 cells, cell-level similarity 1069 
(mean ± standard deviation): 0.350 ± 0.036, 15 clusters, cluster-level similarity (mean ± standard deviation): 0.615 ± 1070 
0.160; 24h APF: 547 cells, cell-level similarity: 0.292 ± 0.041, 15 clusters, cluster-level similarity: 0.395 ± 0.189; 48h 1071 
APF: 301 cells, cell-level similarity: 0.377 ± 0.046, 13 clusters, cluster-level similarity: 0.484 ± 0.212; adult stage: 1072 
209 cells, cell-level similarity: 0.422 ± 0.058, 15 clusters, cluster-level similarity: 0.741 ± 0.129] and lPNs (F) [0h 1073 
APF: 484 cells, cell-level similarity: 0.402 ± 0.052, 10 clusters, cluster-level similarity: 0.736 ± 0.129; 24h APF: 354 1074 
cells, cell-level similarity: 0.360 ± 0.056, 10 clusters, cluster-level similarity: 0.474 ± 0.057; 48h APF: 296 cells, cell-1075 
level similarity: 0.385 ± 0.043, 10 clusters, cluster-level similarity: 0.570 ± 0.171; adult stage: 191 cells, cell-level 1076 
similarity: 0.444 ± 0.057, 8 clusters, cluster-level similarity: 0.754 ± 0.141)] (G) Schematic summary of the 1077 
convergence of PN transcriptomes from early pupal stage to adulthood. PN diversity peaks during circuit assembly 1078 
around 24h APF and gradually diminishes as they develop into mature neurons. (H) Expression of VAChT, Gad1, and 1079 
VGlut in adult PNs. 1080 
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 1081 
Figure 4—figure supplement 1. Visualization of most PNs at different stages using tSNE. Dimensionality reduction 1082 
was computed using overdispersed genes found at each stage. 1083 
 1084 
 1085 
 1086 

 1087 
Figure 4—figure supplement 2. Embryonically born and larval born PNs at 0h APF. (A) The larger cluster consists 1088 
of both adPNs (acj6+) and lPNs (vvl+) while the smaller cluster contains only adPNs. (B) Two types of embryonically 1089 
born PNs, DA4l and VA6 PNs, are both mapped to the smaller cluster (details in Figure 7). 1090 
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 1092 
Figure 5. PN type identification by MARS. (A) Dimensionality reduction of most PNs at 4 developmental stages by 1093 
561 ICIM genes found at 24h APF. (B) PN types identified by MARS. Different PN types are illustrated in different 1094 
colors. 1095 
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 1097 
Figure 5—figure supplement 1. PN type identification using two other independent methods. (A) Dimensionality 1098 
reduction by 24h ICIM genes followed by cluster identification using HDBSCAN. Circled cells belong to two PN 1099 
types but are assigned to the same cluster using HDBSCAN. (B) Cluster identification by Leiden based on 1100 
neighborhood graph computed on 24h ICIM genes. Circled cells belong to two PN types but are assigned to the same 1101 
cluster using Leiden. (C) 24h APF PNs colored according to PN types validated in Figure 2. (D) PN types identified 1102 
using MARS (same as Figure 5B). PN types which are incorrectly annotated by HDBSCAN or Leiden are correctly 1103 
annotated as distinct clusters by MARS. 1104 
  1105 
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 1106 
Figure 6. Two complementary approaches to match transcriptomic clusters representing same PN types at different 1107 
developmental stages. (A) scRNA-seq was performed for kn+ PNs from 3 different developmental stages: 24h APF, 1108 
48h APF, and adult. (B) tSNE plots showing kn+ PNs from three different stages, plotted separately. Cells are 1109 
clustered according to 24h ICIM genes. Cell numbers are indicated. (C) kn+ PNs from three different stages plotted 1110 
in the same tSNE plot. Cells are clustered according to 24h ICIM genes. (D) Two approaches were used for matching 1111 
the same PN types at different stages: 1) automatic prediction by calculating the transcriptomic similarity between 1112 
clusters at two stages 2) manual matching of clusters using specific markers or marker combinations. (E) Jaccard 1113 
similarity index of automatically matched transcriptomic clusters from different stages. (F) Examples of markers used 1114 
to manually match transcriptomic clusters representing the same PN types across different stages. (G) All kn+ PN 1115 
types (6 adPNs and 3 vPNs) are matched from three different stages. Two independent approaches (automatic and 1116 
manual) produced similar results. 1117 
 1118 
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 1119 
Figure 6—figure supplement 1. kn+ adPN transcriptomes become more similar as development proceeds. (A) Box 1120 
plot of Euclidean distance between all pairs of kn+ cells using ICIM genes identified among them. kn+ vPNs are 1121 
excluded from this analysis.  24h APF: 98 cells, mean ± standard deviation: 0.374 ± 0.066; 48h APF: 174 cells, mean 1122 
± standard deviation (std): 0.446 ± 0.912; adult: 124 cells, mean ± std: 0.493 ± 0.085 (B) Bar plot of Pearson's 1123 
correlation between all pairs of kn+ adPN clusters. 24h APF: 8 clusters, mean ± std: 0.167 ± 0.141; 48h APF: 8 clusters, 1124 
mean ± std: 0.424 ± 0.170; adult: 8 clusters, mean ± std: 0.506 ± 0.187. 1125 
  1126 
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 1127 
Figure 7. Matching transcriptomic cluster representing the same PN types across four developmental stages. (A) 1128 
Visualization of most PNs in 4 different developmental stages: 0h APF, 24h APF, 48h APF, and adult. 561 ICIM 1129 
genes at 24h APF PNs are used for dimensionality reduction. (B) Visualization of the same types of PNs at all 1130 
developmental stages. Clusters with the same color represent same neuronal type. Light grey dots indicate cells that 1131 
have neither been decoded nor matched. (C) Summary of transcriptomic clusters mapped to known PN types at 1132 
different developmental stages. Solid red-lines indicate clusters we can unambiguously match using marker 1133 
combinations; dashed red-lines indicate PN types we can narrow down to less than 3 transcriptomic clusters. Solid 1134 
green-lines indicate clusters that are two-way matched automatically (two clusters from two stages are the most similar 1135 
to each other); dashed green-lines indicates clusters that are one-way matched automatically (one cluster is the most 1136 
similar with the other but not the other way around). Circles with white “+” on it indicate this PN type have been 1137 
sequenced and confirmed at that stage using additional GAL4 lines (see figure 7—figure supplement 1). 1138 
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 1139 
Figure 7—figure supplement 1. Supporting evidence for matching PN types across developmental stages. (A, C) 1140 
Visualization of sequenced GH146+ PNs (grey) with Mz19+ PNs (green) at 48h APF (A) and at the adult stage (C). 1141 
PN type of Mz19+ PNs shown on left were decoded previously (Li et al. 2017). (B, D) Visualization of kn+ PNs from 1142 
cells sequenced using GH146-GAL4 (in grey) and cells sequenced using kn-GAL4 (in blue) at 48h APF (A) and at the 1143 
adult stage (C). Annotation of kn-GAL4+ cells was done in Figure 6. (E) Visualization of the same types of PNs 1144 
matched automatically or manually. Transcriptomic clusters representing the same PN types of different 1145 
developmental stages are labeled in the same color. Colors used to indicate PN types are consistent with those in 1146 
Figure 7B. 1147 
  1148 
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 1149 
Figure 7—figure supplement 2. Markers used for manually matching PNs. Dot plot of markers used to match the 1150 
same types of PNs across different stages. Size of the dot represents percentage of cells expressing a given marker in 1151 
a cluster at a given stage, and color of the dot represents expression level. 1152 
  1153 
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 1154 
Figure 8. Type-specific dynamic genes among PNs. (A) Illustration of an example of dynamic-dynamic genes (left) 1155 
and dynamic-stable genes (right). (B) Number of genes with type-specific dynamics found in kn+ adPNs using 1156 
different false discovery rate (FDR) cutoffs. We highlighted the number of cell surface molecules (CSMs) or 1157 
transcription factors (TFs). (C) Heatmap of dynamic-dynamic genes found among kn+ adPNs with FDR < 0.01. Each 1158 
row shows expression patterns of a gene in different PN types from 24h APF to the adult stage. Gray color means no 1159 
significant change were observed in that PN type across development. The highest expression is normalized to 1. (D) 1160 
Examples of dynamic-dynamic genes found among kn+ PNs. Top: average expression of Pvf3 and rad in PN types 1161 
with different dynamics. Bottom: tSNE plot of kn+ PNs colored by the expression level of Pvf3 and rad. (E) Number 1162 
of genes with type-specific dynamics found among the PN types we matched in all four stages (FDR < 0.01). For the 1163 
327 dynamic-dynamic genes, we also categorized them according to the two-stage transitions the PN-type specific 1164 
dynamics are observed (note that some genes have type-specific dynamics in more than one transition). (F) Examples 1165 
of dynamic-dynamic genes reported in (E). (G) Number of dynamic-dynamic genes found between each pair of the 1166 
12 decoded PN types. Names of adPNs are in green and names of lPNs are in red. Comparison between adPNs are 1167 
lPNs are highlighted in the dashed box. 1168 
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1169 
Figure 9. PN types with adjacent birth order share more similar transcriptomes at early pupal stages. (A) Different 1170 
PN types born from a common neuroblast follow a stereotyped sequence. The birth order of PNs determines to 1171 
which glomerulus their dendrites target. The birth order of adPNs are shown on right. PN types with known 1172 
transcriptomic identities are highlighted in red. (B) Correlation matrix of the transcriptomes of adPNs with known 1173 
identities (Pearson’s correlation). PN types are ordered according to their birth order. At 0h and 24h APF, PN types 1174 
with birth orders adjacent to each other exhibit the highest correlations in their transcriptomes, as indicated by high 1175 
correlations in boxes just off the diagonal line. (C) Results of permutation test under the null hypothesis that the 1176 
ranks of adPN transcriptomic similarity do no covary with the ranks of birth order. Observed values is the average 1177 
Spearman correlation of 8 adPN types decoded in all 4 stages (red dot). The distribution is the average Spearman 1178 
correlations obtained by randomly permutating the birth order for 5000 iterations (histogram). (D) Developmental 1179 
trajectory analysis showing an unbiased pseudo time of 0h APF adPNs (embryonically born types excluded). The 1180 
pseudo time roughly matches their birth order. (E) Expression levels of 15 genes in adPNs with known identity at 0h 1181 
APF. These genes have been shown to have temporal expression gradient in PN neuroblasts (Liu et al. 2015). The 1182 
highest expression is normalized as 1 for all genes. 1183 
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 1184 
Figure 9—figure supplement 1. Hierarchical clustering of all excitatory PNs. Hierarchical clustering of all excitatory 1185 
PNs of 0h APF (A), 24h APF (B), 48h APF (C), and adult (D). Correlation calculation and hierarchical clustering is 1186 
done on the principal components calculated using the entire gene matrix. adPNs are indicated by green bar and lPNs 1187 
are indicated by orange bar on the top and left side of each plot. Clusters that have been matched to specific PN types 1188 
are labeled. 1189 
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 1190 
Figure 10. Differentially expressed genes among different PN types in the adult stage. (A) Venn diagram of 1191 
differentially expressed genes (DE genes) at 24h APF (504 genes) and in adults (518 genes). DE genes are genes 1192 
with adjusted p-value less than 0.01 by Mann-Whitney U test in at least one cluster compared to the rest. (B) Top 10 1193 
biological process terms of DE genes found in 24h APF PNs only (top), in both 24h APF and adults PNs (middle), 1194 
and in adult PNs only (bottom). (C) Percentage of CSMs or TFs in 24h APF DE genes, adult DE genes, and all 1195 
Drosophila genes. Total numbers of genes within each category are labeled above the bars. 51/88 CSMs and 29/43 1196 
TFs of adult DE genes were also found among 24h APF DE genes. (D) Dot plot showing the expression of 7 1197 
example genes related to neuronal signaling in adult PNs. Example genes were manually selected based on their 1198 
differential expression pattern among decoded transcriptomic clusters and functions. 1199 
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