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Abstract14

Genome-wide association (GWA) studies have identified thousands of significant genetic associations in15

humans across a number of complex traits. However, the majority of these studies focus on linear additive16

relationships between genotypic and phenotypic variation. Epistasis, or non-additive genetic interactions,17

has been identified as a major driver of both complex trait architecture and evolution in multiple model18

organisms; yet, this same phenomenon is not considered to be a significant factor underlying human19

complex traits. There are two possible reasons for this assumption. First, most large GWA studies20

are conducted solely with European cohorts; therefore, our understanding of broad-sense heritability for21

many complex traits is limited to just one ancestry group. Second, current epistasis mapping methods22

commonly identify significant genetic interactions by exhaustively searching across all possible pairs of23

SNPs. In these frameworks, estimated epistatic effects size are often small and power can be low due24

to the multiple testing burden. Here, we present a case study that uses a novel region-based mapping25

approach to analyze sets of variants for the presence of epistatic effects across six diverse subgroups within26

the UK Biobank. We refer to this method as the “MArginal ePIstasis Test for Regions” or MAPIT-R.27

Even with limited sample sizes, we find a total of 245 pathways within the KEGG and REACTOME28

databases that are significantly enriched for epistatic effects in height and body mass index (BMI), with29

67% of these pathways being detected within individuals of African ancestry. As a secondary analysis,30

we introduce a novel region-based “leave-one-out” approach to localize pathway-level epistatic signals to31

specific interacting genes in BMI. Overall, our results indicate that non-European ancestry populations32

may be better suited for the discovery of non-additive genetic variation in human complex traits — further33

underscoring the need for publicly available, biobank-sized datasets of diverse groups of individuals.34

Introduction35

Genome-wide association (GWA) studies are a powerful tool for understanding the genetic architecture of36

complex traits and phenotypes [1–8]. The most common approach for conducting GWA studies is to use a37

linear mixed model to test for statistical associations between individual genetic variants and a phenotype38

of interest; here, the estimated regression coefficients represent an additive relationship between number39

of copies of a single-nucleotide polymorphism (SNP) and the phenotypic state. While this approach has40

produced many statistically significant additive associations, it is less amenable to detecting nonlinear41

genetic associations that also contribute to a trait’s genetic architecture. Epistasis, commonly defined42
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as the nonlinear, or non-additive, interaction between multiple genetic variants, is a well-established43

phenomenon in a number of model organisms [9–18]. Epistasis has also been suggested as a major44

driver of both phenotypic variation and evolution [19–26]. Still, there remains skepticism and controversy45

regarding the importance of epistasis in human complex traits and diseases [27–34]. For example, multiple46

studies have suggested that phenotypic variation can be mainly explained with additive effects [27,28,32];47

although, this hypothesis has been been challenged recently [35]. In initial work to locate the “missing48

heritability” in the human genome — the discrepancy between larger pedigree-based trait heritability49

estimates and smaller SNP-based trait heritability estimates using the first wave of human GWA study50

results [36–38] — it was suggested that epistasis may account for a significant portion of this observed51

discrepancy [24, 39, 40]. However, other studies have posited that, for at least some human phenotypes,52

genetic interactions are unlikely to be a major contributor to total heritability [34,41,42].53

Algorithmically, detecting statistically significant epistatic signals via genome-wide scans is much more54

computationally expensive than the the traditional hypothesis-generating GWA framework. GWA tests55

for additive effects are linear in the number of SNPs, while epistasis scans usually consider, at a minimum,56

all pairwise combinations of SNPs (e.g., a total of J(J−1)/2 possible pairwise combinations for J variants57

in a study). Methods that fall within the MArginal ePIstasis Test (MAPIT) framework [43–46] attempt58

to address these challenges by alternatively testing for marginal epistasis. Specifically, instead of directly59

identifying individual pairwise or higher-order interactions, these approaches focus on identifying variants60

that have a non-zero interaction effect with any other variant in the data. Indeed, analyzing epistasis61

among pairs of SNPs can be underpowered in GWA studies, particularly when applied to polygenic traits62

or traits which are generated by many mutations of small effect [4, 47–49].63

To overcome this limitation, more recent computational approaches have expanded the additive GWA64

framework to aggregate across multiple SNP-level association signals and test for the enrichment of genes65

and pathways [50–61]. In Nakka et al. [62] we showed that enrichment analyses applied to multiple66

ancestries can identify genes and gene networks contributing to disease risk that ancestry-specific enrich-67

ment analyses fail to find. Recent multiethnic GWA studies have also found that using non-European68

populations offer new insights into additive genetic architecture [63–70]. However, despite this growing69

body of work and increasing efforts to promote conducting GWA studies in diverse ancestries [68,71–75],70

few studies have investigated the role of epistasis in shaping multiethnic human genetic variation (but71

see [76–79]). Expanding epistasis studies to include non-European ancestries, as well as to aggregate72

over multiple SNP-level signals, may reveal a new understanding of non-additive genetic architecture in73

human complex traits.74

In this study, our objective is to expand the marginal epistasis framework from individual SNPs to user-75

specified sets of variants (e.g., genes, signaling pathways) and apply the framework to multiple, diverse76

human ancestries. We aim to detect novel interactions between biologically relevant disease mechanisms77

underlying complex traits and to analyze multiple human ancestries, all while reducing the multiple78

testing burden that traditionally hinders exhaustive epistatic scans. We implement our new approach79

in “MArginal ePIstasis Test for Regions”, which we refer to as MAPIT-R. We apply MAPIT-R using80

pathway annotations from the “Kyoto Encyclopedia of Genes and Genomes“ (KEGG) and REACTOME81

databases [80] to standing height and body mass index (BMI) assayed in individuals from multiple human82

ancestry “subgroups” (British, African, Caribbean, Chinese, Indian, and Pakistani) in the UK Biobank83

[81]. Spanning across all these subgroups, we find more than 200 pathways that have significant marginal84

epistatic effects on standing height and BMI. We then investigate the distribution of these significant85

non-additive signals across ancestries, traits, and pathways, finding future directions to prioritize for86

studies of epistasis in human complex traits.87
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Materials and Methods88

Overview of the MAPIT-R Model89

We describe the intuition behind the “MArginal ePIstasis Test for Regions” (MAPIT-R) in detail here.90

Consider a genome-wide association (GWA) study with N individuals. Within this study, we assume91

that we have an N -dimensional vector of quantitative traits y, an N × J matrix of genotypes X, with J92

denoting the number of single nucleotide polymorphisms (SNPs) encoded as {0, 1, 2} copies of a reference93

allele at each locus, and a list of L predefined genomic regions of interests {R1, . . . ,RL}. We will let each94

genomic region l represent a known collection of annotated SNPs j ∈ Rl with set cardinality |Rl|. In this95

work, each Rl includes sets of SNPs that fall within functional regions of genes that have been annotated96

as being members of certain pathways or gene sets (see Supplementary Note). Recall that our objective97

is to test whether a set of biologically relevant variants have a nonzero interaction effect with any other98

region along the genome. Therefore, MAPIT-R works by examining one region at a time (indexed by l)99

and fits the following linear mixed model100

y = µ+ Zδ + ul + ml + gl + ε, ε ∼ N (0, τ2I) (1)101

where µ is an intercept term; Z is a matrix of covariates (e.g., the top principal components from the102

genotype matrix) with coefficients δ; ul =
∑

j∈Rl
xjβj is the summation of region-specific effects with103

corresponding additive effect sizes βj for the j-th variant; xj is an N -dimensional genotypic vector for the104

j-th variant in the l-th region that is the focus of the model; ml =
∑

k 6=Rl
xkβk is the combined additive105

effects from all other k 6∈ Rl SNPs in the data that have not been annotated as being within the Rl region106

of interest with coefficients βk; xk is an N -dimensional genotypic vector for the k-th variant in the data107

that has not been annotated as being within the Rl region of interest; gl =
∑

j∈Rl

∑
k 6∈Rl

(xj ◦ xk)θjk is108

the summation of all pairwise interaction effects (i.e., the Hadamard product xj ◦ xk) between the j-th109

variant in the l-th annotated region Rl and all other k 6= j variants outside of Rl with corresponding110

coefficients θjk; and ε is a normally distributed error term with mean zero and independent residual error111

variance scaled by the component τ2. There are a few important takeaways from this formulation of112

MAPIT-R. First, the term ml effectively represents the polygenic background of all variants except for113

those that have been annotated for the l-th region of interest. Second, and most importantly, the term gl114

is the main focus of the model and represents the marginal epistatic effect of the region Rl [43,44]. It is115

important to note that each component of the model will change with every new region that is considered.116

For convenience, we assume that both the genotype matrix (column-wise) and the trait of interest117

have been mean-centered and standardized to have unit variance. Next, because the model in Eq. (1)118

is an underdetermined linear system (J > N), we ensure identifiability by assuming that the individual119

regression coefficients follow univariate normal distributions where120

βj ∼ N (0, ν2/|Rl|) βk ∼ N (0, ω2/(J − |Rl|)) θjk ∼ N (0, σ2/(J − |Rl|)). (2)121

With the assumption of normally distributed effect sizes, the MAPIT-R model defined in Eq. (1) be-122

comes a multiple variance component model where ul ∼ N (0, ν2Kl) with Kl = XRl
Xᵀ
Rl
/|Rl| being123

the genetic relatedness matrix computed using genotypes from all variants within the region of interest;124

ml ∼ N (0, ω2Vl) with Vl = X−Rl
Xᵀ
−Rl

/(J − |Rl|) being the genetic relatedness matrix computed125

using genotypes outside the region of interest; and gl ∼ N (0, σ2Gl) with Gl = Kl ◦ Vl representing126

a second-order interaction relationship matrix which is obtained by using the Hadamard product (i.e.,127

the squaring of each element) between the region-specific relatedness matrix and its corresponding poly-128

genic background. Importantly, the variance component σ2 effectively captures the marginal epistatic129

effect for the l-th region. Even though we limit ourselves to the task of identifying second order (i.e.,130

pairwise) epistatic relationships between sets of SNPs in this paper, extensions to higher-order and gene-131

by-environmental interactions are straightforward to implement for alternative analyses [43,45,82–84].132
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Hypothesis Testing with the MAPIT-R Framework133

In this section, we now describe how to perform joint estimation of all the variance component parameters134

in the MAPIT-R model. Since our goal is to identify genomic regions that have significant non-zero135

interaction effects on a given phenotype, we examine each annotated SNP-set l = 1, . . . , L in turn, and136

test the null hypothesis in Eq. (1) and Eq. (2) that H0 : σ2 = 0. We make use of the MQS method for137

parameter estimation and hypothesis testing [83]. Briefly, MQS is based on the computationally efficient138

method of moments and produces estimates that are mathematically identical to the Haseman-Elston139

(HE) cross-product regression [85]. To estimate the variance components with MQS, we first regress out140

the additive effects of the l-th SNP-set, the fixed covariates, and the intercept terms. Equivalently, we141

multiply both sides of Eq. (1) by a projection (hat) matrix such that the model becomes orthogonal to the142

column space of the intercept term µ. Specifically, we define H = I−B(BᵀB)−1Bᵀ where B = [1,Z,XRl
]143

is a concatenated matrix and with 1 being an N -dimensional vector of ones. This yields a simplified model144

y∗ = m∗l + g∗l + ε∗, ε ∼ N (0, τ2H) (3)145

where y∗ = Hy is the projected phenotype of interest; m∗l ∼ N (0, ω2V∗l ) with V∗l = HVlH; g∗l ∼146

N (0, σ2G∗l ) with G∗l = HGlH; and ε∗ = Hε is the projected residual error, respectively. Then lastly,147

for each annotation considered, the MQS estimate for the marginal epistatic effect is computed as148

σ̂2 = y∗ᵀAly
∗ (4)

where Al = (S−1l )31V
∗
l + (S−1l )32G

∗
l + (S−1l )33H with elements (Sl)jk = tr(ΣljΣlk) for the covariance

matrices subscripted as [Σl1; Σl2; Σl3] = [V∗l ; G∗l ; H]. Here, tr(•) is used to denote the matrix trace
function. It has been well established that the marginal variance component estimate σ̂2 follows a
mixture of chi-square distributions under the null hypothesis because of its quadratic form and the
assumed normally distributed trait y [43, 53, 86–89]. Namely, σ̂2 ∼

∑n
i=1 λiχ

2
1,i, where χ2

1 are chi-square
random variables with one degree of freedom and (λ1, . . . , λn) are the eigenvalues of the matrix [43,83](

ω̂2
0V
∗
l + τ̂20H

)1/2
Al

(
ω̂2
0V
∗
l + τ̂20H

)1/2
with (ν̂20 , ω̂

2
0 , τ̂

2
0 ) being the MQS estimates of (ν2, ω2, τ2) under the null hypothesis. Several approximation149

and exact methods have been suggested to obtain p-values under the distribution of σ̂2. In this paper,150

we use the Davies exact method [87,90].151

Software Availability152

Code for implementing the “MArginal ePIstasis Test for Regions” (MAPIT-R) is freely available in R/Rcpp153

and is located at https://cran.r-project.org/web/packages/MAPITR/index.html. All MAPIT-R154

functions use the CompQuadForm R package to compute p-values with the Davies method. Note that the155

Davies method can sometimes yield a p-value that exactly equals 0. This can occur when the true p-value156

is extremely small [91]. In this case, we report p-values as being truncated at 1×10−10. Alternatively, one157

could also compute p-values for all MAPIT-R based functions using Kuonen’s saddlepoint method [91,92]158

or Satterthwaite’s approximation equation [93].159

SNP-Set and Pathway Annotations160

To create appropriate pathway annotations for MAPIT-R, we first assign SNPs to genes and then ag-161

gregate the genes together according to pathway definitions provided by the KEGG and REACTOME162

databases, respectively. KEGG and REACTOME pathway definitions were downloaded and extracted163

from the Broad Institute’s Molecular Signatures Database (MSigDB; https://www.gsea-msigdb.org/164

gsea/msigdb/collections.jsp#C2) under the collection “C2: Curated Gene Sets” [80]. SNPs were an-165

notated using Annovar [94] and were then mapped to a given gene if they were exonic, intronic, in the 5’166

and 3’ UTRs, or within 20kb upstream or downstream of the gene.167
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UK Biobank Data168

To create the UK Biobank population subgroups used in this study (UK Biobank Application Number169

2241), we first extracted and grouped individuals by the self-identified ancestries of “African”, “British”,170

“Caribbean”, “Chinese”, “Indian”, and “Pakistani”. For the British subgroups, five sets of N = 4,000 and171

10,000 non-overlapping individuals were created — with one set from each sample size being used for172

“primary analyses” and the remaining four being used for the “replication analyses”. Standard quality con-173

trol procedures were applied to each population subgroup (see Supplementary Note for details). “Local”174

principal component analysis (PCA) was conducted to confirm ancestry groupings and to remove outliers.175

We refer to conducting PCA on each subgroup separately as “local” PCA to help distinguish from the176

alternative setup of conducting PCA on the entire dataset jointly, which we refer to as “global” PCA (see177

Supplementary Figure 1). Note that the genetic data we used in this study were the directly genotyped178

variant sets from the UK Biobank after running imputation of missing genotypes on the University of179

Michigan Imputation Server [95]. Here, imputation was conducted manually with an ancestry-diverse180

and sample-size balanced reference panel (1000G Phase 3 v5). For details on the final UK Biobank181

dataset, see Supplementary Tables 1 and 2. Lastly, both the standing height and body mass index (BMI)182

traits were adjusted for age, gender, and assessment center. Following previous pipelines [33, 96], each183

dataset was first divided into males and females. Age was then regressed out within each sex, and the184

resulting residuals were inverse normalized. These normalized values were then combined back together185

and assessment center designations were regressed out. Top 10 “local” principal components (PCs) were186

included as covariates during the actual MAPIT-R analyses. In total we conducted 24 different analyses187

(2 pathway databases, 2 phenotypes, 6 population subgroups), which we refer to as ‘database-phenotype-188

subgroup’ combinations. Lastly, for analyses using permuted phenotypes, permutations were conducted189

within-subgroup and done by randomly reassigning phenotypes to individuals.190

Results191

Multiethnic Analyses Enables the Detection of Pathway-Level Interactions192

We applied MAPIT-R to height and body mass index (BMI) to detect pathways from the KEGG and193

REACTOME databases [80] with significant epistatic interactions with other regions on the genome,194

using genotype data and diverse individuals from the UK Biobank. We focused on height and BMI195

due to the extensive work that has already been done investigating the broad-sense and narrow-sense196

heritabilities of these traits [29,41,97–100], and we used the KEGG and REACTOME databases because197

they cover an extensive range of both biological processes and pathway-sizes (measured in SNP counts).198

We analyzed six different human ancestry subgroups that we extracted from the UK Biobank: African199

(N = 3111), British (N = 3848, chosen randomly from the full N = 472,218 cohort), Caribbean (N =200

3833), Chinese (N = 1448), Indian (N = 5077), and Pakistani (N = 1581) (Supplementary Figure 1 and201

Supplementary Tables 1-2). Subgroups were extracted based on self-identified ancestry and individuals202

were filtered using standard quality control procedures (see Materials and Methods and Supplementary203

Note for details). In total, we conducted 24 different analyses (i.e., 2 pathway databases, 2 phenotypes,204

6 population subgroups), which we refer to as ‘database-phenotype-subgroup’ combinations.205

Applying MAPIT-R to height and BMI within each ancestry subgroups, we find a total of 245 enriched206

pathways that have genome-wide significant signals for marginal epistatic interactions with the rest of207

the genome (Figure 1, Supplementary Figure 2, and Supplementary Table 3) Here, p-value significance208

thresholds were determined by using Bonferroni correction based on the number of pathways tested per209

analysis (see Supplementary Table 1). Overall, a similar number of pathways were statistically enriched210

between the KEGG and REACTOME databases (130 and 115, respectively); however, we find that BMI211

yields more non-additive genetic signal than height (155 versus 90 significant pathways, respectively).212

Across each ancestry-specific subgroup, our findings overlap with results from other work showing evidence213
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for the importance of epistasis in human immunity, particularly involving the Major Histocompatibility214

Complex (MHC) [101–107], as well as the key roles metabolic processes and cellular signaling play in trait215

architecture for model systems [108–114]. Most notably, however, the majority of our results occurred216

within the African subgroup: 165 out of 245 significant pathways across all analyses.217

Focusing on the African subgroup, the enriched pathways represent multiple biologically relevant218

themes in both height and BMI (Table 1 and Supplementary Table 3). When analyzing height with219

annotations from the KEGG database, we find that most of the statistically significant marginal epistatic220

interactions occur in pathways related to canonical signaling cascades, functions within the immune221

system, and sets of genes that affect heart conditions. Previous multiethnic GWA studies of height have222

found additive associations with cytokine genes [115] andWNT/beta-catenin signaling [116]. Results from223

MAPIT-R suggest that non-additive interactions involving cytokine receptors (p-value = 2.84 × 10−8)224

and genes within the WNT-signaling pathway (p-value = 6.54 × 10−6) also contribute to the complex225

genetic architecture of height as well. In BMI, we find similar themes, as well as multiple statistically226

significant signals from metabolic pathways (Table 1). Notably, MAPIT-R identified pathways related227

to ErbB signaling (p-value = 3.30× 10−7) and ether lipid metabolism (p-value = 1.41× 10−4) as having228

significant marginal epistatic effects — both of which have also been shown to have additive associations229

with BMI as well [96, 117,118].230

It is important to note that, in our analyses, the African subgroup has neither the largest sam-231

ple size nor the largest number of SNPs following quality control (Supplementary Table 1). Thus, to232

investigate the power of MAPIT-R and its sensitivity to underlying parameters, we conducted simula-233

tion studies under a range of genetic architectures (Supplementary Figure 3) [43]. Here, we found that234

MAPIT-R both controls type 1 error accurately and also has the power to effectively detect pathway235

level marginal epistasis, even for polygenic traits where the contribution from individual SNPs to the236

broad-sense heritability of a trait can be quite low. We also ran versions of MAPIT-R on the real data,237

but with permuted phenotypes, to ensure that the model was not identifying significant non-additive ge-238

netic relationships by chance (Supplementary Figures 4 and 5). These permutations allowed us to further239

investigate MAPIT-R’s false discovery rates, in which we observe values only as high as 1.5% across our240

different database-phenotype-subgroup combinations at multiple significance thresholds (Supplementary241

Table 4).242

Evidence of Epistasis within the Non-African Subgroups243

In our analyses of the British, Chinese, Caribbean, Indian, and Pakistani subgroups, we identify 80244

pathways in total that have significant marginal epistatic interactions. Interestingly, many of these245

pathways overlap with the set of significant results from the African subgroup; there is notably less overlap246

though in results between each of the individual non-African subgroups (Figure 2 and Supplementary247

Figure 6). For example, in the height analysis with KEGG annotations, 6-out-of-7 and 7-out-of-8 enriched248

pathways identified using the Caribbean and Chinese subgroups overlap with those detected while using249

the African subgroup, respectively. However, there is no overlap in results from our marginal epistasis250

scans at the pathway level between the Chinese and Caribbean subgroups.251

The pathways commonly identified with significant marginal epistatic signals in both the African and252

Caribbean subgroups contain genes related to multiple kinases (e.g., MAPK1, ROCK1, PRKCB, PAK1 )253

and calcium channel proteins (e.g., CACNA1S, CACNA1D) (Supplementary Tables 5 and 6) — many of254

which are supported by associations validated in previous GWA applications [33, 119]. In contrast, the255

pathways with significant marginal epistatic effects identified in both the African and Chinese subgroups256

are pathways related to the immune system and contain multiple HLA loci (e.g., HLA-DRA, HLA-DRB1,257

HLA-A, HLA-B) (Supplementary Tables 5 and 6). These results are unsurprising since it is well known258

that the MHC region holds significant clinical relevance in complex traits [44,103,104,120]; however, more259

recent work has also suggested that Han Chinese genomes may be particularly enriched for interactions260

involving HLA loci [121].261

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 25, 2020. ; https://doi.org/10.1101/2020.09.24.312421doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.24.312421
http://creativecommons.org/licenses/by/4.0/


7

Stronger Epistatic Signals underlie BMI than Height262

In our analyses with the African subgroup, we detected far more significantly enriched pathways for BMI263

than in height while using both the KEGG and REACTOME database annotation (Figure 1 and Supple-264

mentary Figure 2). While there is considerable correlation between the MAPIT-R p-values in height and265

BMI (Pearson correlation coefficient r = 0.76 in KEGG and 0.72 in REACTOME, respectively), there266

are stronger marginal epistatic signals in BMI that remain significant after Bonferroni-correction (Figure267

3). These results align with pedigree-based heritability estimates for each trait, which have indicated268

narrow-sense heritability is around h2 = 0.8 in height and between h2 = 0.4 and h2 = 0.6 in BMI [97,98].269

Taken together, these estimates suggest that non-additive effects may play a greater role in BMI than270

height, as we have observed here.271

We detected one specific cluster of pathways in the KEGG database with notably divergent statistical272

evidence for marginal epistasis in height versus BMI (see Figure 3). These four highlighted pathways273

are related to oncogenic activity and include: genes associated with small cell lung cancer (p-value274

= 3.20 × 10−10), the ErbB signaling pathway (p-value = 3.30 × 10−7), genes associated with non-small275

cell lung cancer (p-value = 1.64× 10−6), and T-cell receptor signaling (p-value = 6.12× 10−6). There are276

predominantly two sets of gene families that appear in all four of these annotated gene sets: phosphatidyli-277

nositol 3-kinases (PI3Ks) and the AKT serine/threonine-protein kinases (see Supplementary Table 7).278

One particular gene in this group, AKT2, has been associated with multiple monogenic disorders of279

glucose metabolism, including severe insulin resistance and diabetes, and severe fasting hypoinsulinemic280

hypoglycemia [122–124], representing a possible driver of this cluster. Additionally, pharmacological in-281

hibition of crosstalk between the PI3Ks has been shown to reduce adiposity and metabolic syndrome in282

both human beings and other model organisms [125–129].283

Testing Variability in MAPIT-R with British Replicate Subpopulations284

One important consideration of our results is that the diverse non-European human ancestries in the UK285

Biobank have smaller sample sizes than recent GWA studies in individuals of European ancestry. Given286

the large sample size of over N = 470,000 individuals for the full white British cohort in the UK Biobank,287

we decided to test whether subsampled datasets from this group — similar in size to the non-European288

ancestry subgroups — would be large enough to gain insight into the genetic variation of height and BMI.289

Here, we sampled four additional, non-overlapping random subgroups of N = 4,000 British individuals290

and tested whether MAPIT-R results in these replicate subgroups were consistent with our results for291

the original British 4,000 subgroup. We also constructed larger non-overlapping British subsamples of292

N = 10,000 individuals to investigate how our results might vary with sample size. In total we analyzed293

five non-overlapping sets of N = 4,000 British individuals and five non-overlapping sets of N = 10,000294

British individuals.295

When applying MAPIT-R to these data replicates, we find that our results are robustly similar to296

what was observed in the original British 4,000 subgroup. Overall, there is a limited number of pathways297

with significant marginal epistatic effects, regardless of the pathway annotation scheme being used (i.e.,298

KEGG versus REACTOME). Moreover, there is also limited overlap in the significant pathways that299

were detected between each of the subsampled replicates. These results are depicted and summarized300

in Supplementary Figures 7-12. As previously done with the individuals of non-European ancestry, we301

also checked that the null hypothesis of MAPIT-R remained well-calibrated on these subsampled British302

replicates by permuting the height and BMI measurements. Once again, we found that MAPIT-R303

continued to exhibit low empirical false discovery and type 1 error rates (Supplementary Tables 8 and 9).304

Altogether, the consistency of these analyses compared to the results with the original 4,000 individual305

British subgroup demonstrate that sample size does not appear to be a driving factor in the detection of306

pathway-level marginal epistasis.307
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The Proteasome is Enriched for Marginal Epistasis Signals308

To better identify the genes and genomic regions that are driving pathway-level marginal epistatic effects,309

we first investigated genes and gene families that are enriched amongst the significant pathways identified310

by MAPIT-R. To accomplish this, we conducted two types of hypergeometric tests for enrichment to311

detect genes that are overrepresented amongst the pathway annotations with low p-values (Supplementary312

Tables 3). In the first test, we took the annotations from a given database (i.e., KEGG or REACTOME)313

and implemented a standard hypergeometric test where we compared the number of times a gene appears314

within the set of significant epistatic pathways versus the number of times that same gene appears315

across all pathways in the database. This type of test, however, may be confounded by the fact that316

larger pathways naturally have more SNPs and are therefore more likely to be involved in non-additive317

genetic interactions (see Supplementary Figures 13 and 14). To mitigate this concern, we ran a second318

hypergeometric enrichment test using only pathways containing 1000 SNPs or fewer. By focusing on319

smaller pathways, we are better able to identify genes enriched for marginal epistasis versus spurious320

signals that may happen by chance in larger pathways.321

Figure 4 shows the hypergeometric p-values for all genes in significant interacting pathways. Here, we322

focus on results for BMI within the African subgroup using annotations from the REACTOME database323

and we specifically highlight the only genes that were significant under both types of hypergeometric324

enrichment tests (i.e., the genes that were robustly identified as drivers regardless of the number of SNPs325

included in the test). Notably, these gene families (PSMA, PSMB, PSMC, PSMD, PSME, and PSMF )326

are all components of, or related to, the proteasome. The proteasome is a complex protein structure that327

acts as the catalytic half of the ubiquitin-proteasome system (UPS) — a critical system for the proper328

degradation of proteins within the cell [130–132]. The main proteasome isoform, 26S, is made up of two329

substructures: (i) the 20S core particle (CP) of four stacked rings (two outer structural rings encoded by330

PSMA genes and two inner catalytic rings encoded by PSMB genes), and (ii) the 19S regulatory particle331

(RP) which caps both ends of the CP (encoded by genes within both the PSMC and PSMD families).332

See Figure 5(a) for an illustration of this structure. Since these gene families covered both a large number333

of genomic sites, as well as biological functions known to be relevant to BMI, we used the proteasome as334

a test case to further refine the pathway-level signals identified by MAPIT-R.335

To investigate whether components of the proteasome served as a driver of significant marginal336

epistatic effects, we conducted a “leave-one-out” analysis with each of the gene families in the proteasome.337

More specifically, we first used MAPIT-R to reanalyze BMI after leaving out SNPs annotated within genes338

belonging to the PSMA, PSMB, PSMC, PSMD, PSME, and PSMF families, one family at a time. Next,339

we then compared these new “leave-one-out” MAPIT-R p-values to each pathway’s original p-value from340

running MAPIT-R on the full data. This enabled us to identify whether the removal of a particular gene341

family would lead to a notable loss of information regarding a pathway’s epistatic interactions with the342

rest of the genome.343

Figure 5(b) shows the results from this analysis. We find that the PSMA and PSME gene families344

exhibit biologically interpretable changes in p-value magnitudes across multiple REACTOME pathways.345

For the PSMA gene family, we observe no examples where removing these genes leads to large increases346

in the MAPIT-R p-values. As previously mentioned, the PSMA gene family functionally encodes the347

outer two rings of the core four rings in the main 20S core. These outer “alpha” rings are gates which348

block entry into the core of the proteasome until they are opened by stimulation from the 19S regulatory349

particle [133–135]. And unlike the inner “beta” rings encoded by the PSMB family, which contain the350

proteolytic active sites, the outer rings do not have any catalytic functionality [136,137]. This less direct351

role in the protein degradation process may explain the lack of increase in MAPIT-R p-values, or lack of352

information lost, when PSMA genes are removed from analysis.353

For the PSME gene family, on the other hand, we find some of the largest increases in MAPIT-354

R p-values across multiple REACTOME pathways. Contextually, members of the PSME gene family355

encode an alternative regulatory particle, 11S PA28αβ, that also associates with the 20S core. PA28αβ356
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is an Interferon-γ (IFN-γ) inducible regulatory protein that operates in a ubiquitin-independent manner357

and increases production of a particular subset of proteasomes known as immunoproteasomes [138–141].358

Immunoproteasomes are specialized isoforms that are expressed at higher levels in hematopoietic cells and359

are more directly associated with immunity-related processes such as MHC antigen presentation [142–144].360

Additionally, recent work has connected PSME genes to the regulation of NF-κB signaling [145, 146].361

Altogether, these connections to immune activity may explain why removal of the PSME gene family362

affects marginal epistatic signals in pathways related to NF-κB, B-cells, HIV, and apoptosis. Lastly,363

conducting these “leave-one-out” MAPIT-R analyses in the other remaining UK Biobank subgroups, we364

observe that removing the PSME gene family also leads to some of the largest increases in MAPIT-R365

p-values in individuals of non-African ancestry as well (Supplementary Figures 15-20 and Supplementary366

Table 10). The consistency of this result across all subgroups suggests that PSME is a key contributor367

to proteasome epistatic interactions with other regions in the genome.368

Discussion369

Here, we present the first scans for marginal epistasis within multiple human ancestries. We implement370

a new method, MAPIT-R, to test for evidence of non-additive genetic effects on the pathway-level and371

apply the framework to six different human ancestries sampled in the UK Biobank: African, British,372

Caribbean, Chinese, Indian, and Pakistani subgroups. Using two different pathway databases, we study373

continuous measurements of height and body mass index (BMI) and find a total of 245 pathways that have374

significant epistatic interactions with their polygenic background (see Figure 1). We find that the African375

subgroup produces the majority of these results, with over 65% of our 245 significant pathways being376

identified within this subgroup (see Figure 2). Additionally, we find that pathways related to immunity,377

cellular signaling, and metabolism have significant signals in our genome-wide marginal epistasis scans,378

and that BMI produces more significant marginal epistatic interactions at the pathway level than height379

(see Figure 3 and Table 1). In testing for drivers of our MAPIT-R results, we find evidence that the380

proteasome may be enriched for marginal epistatic interactions and characterize how proteasome gene381

families contribute to non-additive genetic architecture of complex traits (see Figures 4-5).382

The fact that we find such an abundance of epistatic signals in the African subgroup underscores383

that African populations, and non-European ancestries in general, are particularly useful for complex384

trait genetics [66–68, 72, 147–152]. Past research has shown that African ancestry genomes offer a more385

complete characterization of the the genetic architecture of skin pigmentation [63, 64], reveal the evolu-386

tionary histories of FOXP2 and other loci [153,154], and are needed for more transferable polygenic risk387

scores [65, 70]. While many studies have generated a call for more GWA studies to be conducted in in-388

dividuals of non-European ancestry [71,73–75,155], we believe this study reveals that our understanding389

of the role of epistasis in human complex trait architecture and broad-sense heritability will also expand390

with multiethnic analyses. Our results suggest that non-European ancestries, and African ancestries in391

particular, may be better suited for identifying signals of epistasis than European ancestries.392

Our analyses are not without limitations. First, we are limited due to the computational costs393

of epistasis detection, although testing for marginal epistasis reduces our testing burden compared to394

standard exhaustive epistasis scans. Still, the MAPIT-R framework does not scale well to the full sample395

sizes of modern human genomic biobanks [43,45,84]. MAPIT-R encounters burdensome scalability when396

analyzing tens of thousands of individuals. One important future direction for research is to detect397

epistatic interactions using GWA summary statistics. Moving away from the need to have individual-398

level genotype-phenotype data to GWA study summary statistics has proven useful in both speeding up399

algorithmic efficiency as well as increasing power in multiple other GWA contexts [61,156–160]. Another400

noticeable limitation is that MAPIT-R cannot be used to directly identify the interacting variant pairs401

that drive individual non-additive associations with a given trait. In particular, after identifying a402

pathway is involved in epistasis, it is still unclear which particular region of the genome it interacts with.403
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While the novel “leave-one-out” approach we implement here (see Figure 5(b)) helps narrow down the404

list of potential regions, MAPIT-R still does not directly identify pairs of interacting variants. Exploring405

marginal epistasis results a posteriori in a two step procedure can be one way to overcome these issues.406

For example, linking MAPIT-R with a framework that explicitly follows up on marginal epistasis signals407

with locus-focused methods such as fine-mapping [161–163] or co-localization [164–168] could further408

expand the power of the framework.409
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Figures and Tables438

Figure 1. Number of KEGG pathways identified by MAPIT-R that have significant
marginal epistatic effects within (a) standing height and (b) body mass index (BMI) per
subgroup in the UK Biobank. Here, subgroups in the UK Biobank included individuals based on
their self-identified ancestries: “African”, “British”, “Caribbean”, “Chinese”, “Indian”, and “Pakistani” (see
legend to the right of panel (b)). Genome-wide significance was determined by using Bonferroni-corrected
p-value thresholds based on the number of pathways tested in each database-phenotype-subgroup com-
bination (see Supplementary Table 1). Across all database-phenotype combinations, the African sub-
group has the largest numbers of significant pathways. For lists of the specific significant pathways per
database-phenotype-subgroup combination, see Supplementary Table 3. Results from running MAPIT-R
with REACTOME database pathways can be found in Supplementary Figure 2.
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Biological Category KEGG Pathway
Annotation

Height BMI

MAPIT-R
p-Value

Highlighted
Genes References MAPIT-R

p-Value
Highlighted

Genes References

Cellular Signaling

CHEMOKINE_SIGNALING_PATHWAY 5.14× 10−10 PCSK5, CDC42EP3,
STAT2

[169–171] 1.51× 10−8 ADCY3,
PLCB3

[172,173]

CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION 2.84× 10−8
GDF5, LTBP1,

LTBP2 [33, 68,174] NS NS NS

WNT_SIGNALING_PATHWAY 6.54× 10−6
FBXW11, NFATC4,

ANAPC10 [171,174,175] 1.41× 10−7
CEP63, ANAPC13,

SMAD3 [176–178]

ERBB_SIGNALING_PATHWAY NS NS NS 3.30× 10−7
VEGFA, MACROD1,

ERBB4 [179–181]

Immune System

AUTOIMMUNE_THYROID_DISEASE 1.49× 10−6 TGFB2,
HLA-C

[68, 171] 1.39× 10−8 LYPLAL1, ITGB8,
HLA-DRB1

[177,181,182]

ALLOGRAFT_REJECTION 8.15× 10−8
HLA-B,
HLA-C [33, 171] 2.53× 10−8

TNFAIP8, HSD17B4,
DTWD2 [176,181,183]

ANTIGEN_PROCESSING_AND_PRESENTATION 2.89× 10−5
C2CD4A,
HLA-B [171,184] 2.08× 10−7

IFI30, ZNF318,
TJAP1 [180,183]

Heart Condition
DILATED_CARDIOMYOPATHY 1.24× 10−7 IGF1, IGF1R,

POMC
[68, 174,175] 6.99× 10−6 TGFB2, ADCY3,

HSD17B4
[172,176,181]

VIRAL_MYOCARDITIS 1.89× 10−5
HMGA1, HLA-B,

LAMA2 [33, 68,171] 1.09× 10−6
HMGA1, CYCSL1,

HLA-DRB1 [177,181]

Metabolism

PURINE_METABOLISM 1.19× 10−7 ADAMTSL3, ADAMTS17,
PDE3A

[171,174,185] 2.46× 10−6 ADAMTSL3, ADAMTS9,
CENTA2

[180,181]

BETA_ALANINE_METABOLISM NS NS NS 1.12× 10−4
DPYSL5,
DPYD [170,186]

ETHER_LIPID_METABOLISM NS NS NS 1.41× 10−4
PLA2G6,
PLA2G4A [170,187]

O_GLYCAN_BIOSYNTHESIS NS NS NS 1.92× 10−4
GALNT10,
B4GALNT3 [181,188]

Table 1. Biological themes among the MAPIT-R significant KEGG pathways for height and body mass index (BMI)
within the African subgroup in the UK Biobank. The biological themes include: cellular signaling, immune system, heart condition,
and metabolism. Notably enriched pathways for each biological theme are included in the second column. For each pathway, MAPIT-R
p-values, highlighted gene associations, and references for each gene association are shown for both height (third, forth, and fifth columns)
and BMI (sixth, seventh, and eighth columns). Genome-wide significance was determined by using Bonferroni-corrected p-value thresholds
based on the number of pathways tested in each database-phenotype-subgroup combination (Supplementary Table 1). “Highlighted Genes”
and “References” were determined using relevant SNP association citations from the GWAS Catalog (version 1.0.2) [7]. For a full list
of MAPIT-R significant pathways in all database-phenotype-subgroup combinations, see Supplementary Table 3. NS indicates that a
pathway was not genome-wide significant for a given phenotype.
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Figure 2. Heatmaps depicting the overlap of MAPIT-R significant KEGG pathways for
(a) standing height and (b) body mass index (BMI) across the different ancestry-specific
subgroups in the UK Biobank. Here, subgroups in the UK Biobank included individuals based
on their self-identified ancestries: “African”, “British”, “Caribbean”, “Chinese”, “Indian”, and “Pakistani”
(ordered here from top-to-bottom and left-to-right). Genome-wide significance was determined by us-
ing Bonferroni-corrected p-value thresholds based on the number of pathways tested in each database-
phenotype-subgroup combination (see Supplementary Table 1). The diagonal shows the total number
of genome-wide significant pathways per subgroup. We observe that significant pathways identified in
non-African subgroups overlap more often with pathways from the African subgroup than they do with
pathways from the other, remaining non-African subgroups. Results for both phenotypes in the REAC-
TOME database can be seen in Supplementary Figure 6.
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Figure 3. Scatterplots comparing the MAPIT-R p-values using (a) KEGG and (b) RE-
ACTOME pathways annotations in height and body mass index (BMI) within the African
subgroup in the UK Biobank. For each plot, the x-axis shows the -log10 transformed MAPIT-R
p-value for height, while the y-axis shows the same results for BMI. The red horizontal and vertical
dashed lines are marked at the Bonferroni-corrected p-value thresholds for genome-wide significance in
each pathway-phenotype combination (see Supplementary Table 1). Pathways in the top right quadrant
have significant marginal epistatic effects in both traits; while, points in the bottom right and top left
quadrants are pathways that are uniquely enriched in height or BMI, respectively. The four highlighted
pathways in blue represent a cluster of oncogenic and signaling pathways whose loci have been function-
ally connected to BMI in previous studies [122–129]. Across both databases, BMI results have lower
MAPIT-R p-values than height results on average. For these comparisons in all of the UK Biobank
subgroups, see Supplementary Figure 21.
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Figure 4. Scatterplots comparing the p-values from the hypergeometric enrichment analyses
using only (a) KEGG and (b) REACTOME pathways annotations with at most 1000 SNPs
within the African subgroup in the UK Biobank. Here, the gene-based p-values using the size
restricted pathways are shown on the y-axis, while the results from the original unrestricted version of
the analysis are shown on the x-axis. The blue dashed circle in panel (b) highlights the proteasome
gene family cluster. For lists containing each gene’s original and size-restricted hypergeometric p-values,
see Supplementary Table 11. Note that we only show results for BMI because few MAPIT-R significant
pathways in the height analysis remained after imposing the size restriction. For lists containing gene
counts for each database-phenotype-subgroup combination under both the original and size-restricted
data sets, see Supplementary Tables 12 and 13.
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Figure 5. Structure of the proteasome and results from applying a “leave-one-out” approach to MAPIT-R with protea-
some gene families. (a) Models of different isoforms of the proteasome, a complex protein structure required for proper degradation of
many proteins in the cell. The “26S Proteasome” is the main isoform, composed of the 20S core particle (CP) and capped on both ends
by the 19S regulatory particle (RP). The “Hybrid Proteasome” isoform is produced when the CP binds on one end with an RP and on
the other end with the IFN-γ-inducible 11S complex PA28αβ. The PSMA and PSMB gene families encode components of the CP, the
PSMC and PSMD gene families encode components of the RP, and members of the PSME gene family encode PA28αβ. Note that PSMF
represents a proteasome inhibitor and is not shown. The structures shown were adopted and modified from the Protein Data Bank (human
26S proteasome, https://www.rcsb.org/structure/5GJR; mouse PA28αβ, https://www.rcsb.org/structure/5MX5) [141]. (b) The
heatmap shows the change in original MAPIT-R -log10 p-value for different REACTOME pathways when each proteasome gene family is
removed one at a time in a “leave-one-out” manner. The analyses were conducted in BMI for the African subgroup of the UK Biobank.
The x-axis shows each proteasome gene family and the y-axis lists each REACTOME pathway. Each column has been scaled by the
number of SNPs present in the given gene family and, as a result, the heatmap specifically shows the -log10 p-value change (∆ in legend)
per SNP. (c) The table shows the number of SNPs present in each proteasome gene family (left), as well as the number of SNPs present
in each REACTOME pathway (right).
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