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Abstract 
Metacognition	 is	 the	 ability	 to	 reflect	 on,	 and	 evaluate,	 our	 cognition	 and	 behaviour.	
Distortions	 in	metacognition	 are	 common	 in	mental	 health	 disorders,	 though	 the	 neural	
underpinnings	of	such	dysfunction	are	unknown.	One	reason	for	this	is	that	models	of	key	
components	 of	metacognition,	 such	 as	 decision	 confidence,	 are	 generally	 specified	 at	 an	
algorithmic	 or	 process	 level.	While	 such	models	 can	 be	 used	 to	 relate	 brain	 function	 to	
psychopathology,	they	are	difficult	to	map	to	a	neurobiological	mechanism.	Here,	we	develop	
a	biologically-plausible	model	of	decision	uncertainty	in	an	attempt	to	bridge	this	gap.	We	
first	 relate	 the	 model’s	 uncertainty	 in	 perceptual	 decisions	 to	 standard	 metrics	 of	
metacognition,	 namely	 mean	 confidence	 level	 (bias)	 and	 the	 accuracy	 of	 metacognitive	
judgments	(sensitivity).	We	show	that	dissociable	shifts	in	metacognition	are	associated	with	
isolated	disturbances	at	higher-order	levels	of	a	circuit	associated	with	self-monitoring,	akin	
to	 neuropsychological	 findings	 that	 highlight	 the	 detrimental	 effect	 of	 prefrontal	 brain	
lesions	on	metacognitive	performance.	In	contrast	to	existing	theoretical	work,	we	account	
for	empirical	confidence	 judgements	by	 fitting	our	biophysical	model	solely	 to	 first-order	
performance	data,	specifically	choice	and	response	times.	Lastly,	in	a	reanalysis	of	existing	
data	 we	 show	 that	 self-reported	 mental	 health	 symptoms	 relate	 to	 disturbances	 in	 an	
uncertainty-monitoring	component	of	the	network.	By	bridging	a	gap	between	a	biologically-
plausible	model	 of	 confidence	 formation	 and	 observed	 disturbances	 of	metacognition	 in	
mental	health	disorders	we	provide	a	first	step	towards	mapping	theoretical	constructs	of	
metacognition	 onto	 dynamical	models	 of	 decision	uncertainty.	 In	 doing	 so,	we	provide	 a	
computational	 framework	 for	 modelling	 metacognitive	 performance	 in	 settings	 where	
access	to	explicit	confidence	reports	is	not	possible.	

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 28, 2020. ; https://doi.org/10.1101/2020.09.25.313619doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.25.313619
http://creativecommons.org/licenses/by/4.0/


Introduction 
Computational	 psychiatry	(Friston	 et	 al.	 2014;	 Huys,	 Maia,	 and	 Frank	 2016;	 Wang	 and	
Krystal	2014;	Montague	et	al.	2012)	employs	mechanistic	and	theory-driven	models	to	relate	
brain	 function	 to	 phenomena	 that	 characterise	 mental	 health	 disorders	(Ratcliff	 1978;	
Ratcliff,	Smith,	and	McKoon	2015;	Rescorla,	Wagner,	and	others	1972;	Huys,	Maia,	and	Frank	
2016;	Sutton	and	Barto	2018).	Typically,	algorithmic-level	models	(Marr	and	Poggio	1976)	
describe	 the	 computational	 processes	 that	 realise	 specific	 brain	 functions	 and	 return	
theoretically	 meaningful	 parameters	 that	 may	 vary	 between	 subjects.	 Some	 of	 these	
algorithmic	models	(e.g.	reinforcement	learning;	Sutton	and	Barto	2018)	closely	relate	to	the	
functions	of	discrete	brain	circuits	(Schultz	1999;	Dayan	and	Balleine	2002;	Dolan	and	Dayan	
2012).	However,	there	remains	a	high	degree	of	imprecision	when	relating	diverse	sets	of	
algorithms	 to	 circuit-level	 disturbances,	 potentially	 limiting	 our	 understanding	 of,	 and	
treatments	for,	mental	disorders.	

One	proposal	 is	 that	 the	 same	neural	 circuit	disturbances	 can	be	associated	with	 several	
(often	 unrelated)	 changes	 in	 behaviour	(Stephan	 et	 al.	 2016).	 Here	 detailed	 biophysical	
models	(Murray	et	al.	2014;	Krystal	et	al.	2017;	Rolls,	Loh,	and	Deco	2008)	may	provide	tools	
for	 understanding	 mental	 health	 disorders	 in	 terms	 of	 precise	 disturbances	 at	 the	
microcircuit	 level.	 For	 instance,	Murray	 et	 al.	 (2014)	 showed	 that	 an	 imbalance	 in	
excitatory/inhibitory	synaptic	connections	in	a	spiking	neural	network	model	can	explain	
working	memory	deficits	associated	with	schizophrenia.	However,	 the	complex	nature	of	
such	models	renders	it	challenging	to	fit	them	to	individual	subjects’	behavioural	data.	At	the	
level	of	neural	systems,	simpler	biologically-grounded	models	(Dima	et	al.	2009;	Yang	et	al.	
2014)	have	been	employed	to	relate	macrocircuit-level	dysfunctions	to	symptoms	of	mental	
health	 disorders,	 and	 motivate	 non-invasive	 experimental	 neuroimaging	 to	 probe	 such	
dysfunctions	(Cohen	 and	 Servan-Schreiber	 1992).	 Such	 (connectionist)	 biologically-
motivated	models	retain	a	mapping	between	neurobiology	and	behaviour,	while	allowing	
faster	computation	and	fewer	free	parameters.	

Here	 our	 focus	 is	 on	 developing	 similar	 biologically-plausible	 models	 of	 subjective	
confidence	and	metacognition	–	the	ability	to	reflect	upon	and	evaluate	aspects	of	our	own	
cognition	 and	 behaviour.	 Recent	 advances	 in	 metacognition	 research	 has	 led	 to	 the	
development	of	precision	assays	for	different	facets	of	metacognitive	ability	(Maniscalco	and	
Lau	2012;	Fleming	2017).	Within	a	signal	detection	theory	(SDT)	framework,	metacognitive	
bias	refers	to	a	subject’s	overall	(mean)	confidence	level	on	a	task.	In	contrast,	metacognitive	
sensitivity	 refers	 to	whether	 subjects’	 confidence	 ratings	 effectively	 distinguish	 between	
correct	and	 incorrect	decisions,	as	quantified	by	 the	SDT	metric	𝑚𝑒𝑡𝑎 − 𝑑!.	Furthermore,	
metacognitive	sensitivity	can	be	compared	to	another	SDT	measure,	𝑑!,	which	quantifies	how	
effectively	a	subject	processes	 information	related	to	the	task	(Howell	2009;	Rounis	et	al.	
2010).	 The	 ratio	 𝑚𝑒𝑡𝑎 − 𝑑!/𝑑!	 thus	 yields	 a	 measure	 of	 metacognitive	 efficiency,	 i.e.	
metacognitive	sensitivity	for	a	given	level	of	task	performance	(Fleming	and	Lau	2014).	

Experimental	 evidence	 suggests	 that	 these	 facets	 of	metacognitive	 ability	 are	 dissociable	
from	task	performance,	and	may	have	a	distinct	neural	and	computational	basis	(Del	Cul	et	
al.	2009;	Fleming	et	al.	2010;	Fleming	and	Dolan	2012).	Interestingly,	self-reported	mental	
health	 symptoms	 have	 been	 linked	 to	 changes	 in	metacognition,	 often	 in	 the	 absence	 of	
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differences	in	task	performance	(Rouault	et	al.	2018;	Moses-Payne	et	al.	2019;	Hoven	et	al.,	
2019;	Seow	&	Gillan,	2020).	Developing	a	biologically-motivated	model	of	metacognition	has	
the	potential	 to	cast	 light	on	how	this	dissociable	mechanism	 is	 implemented	at	a	circuit	
level,	 as	 well	 as	 provide	 a	 direct	 bridge	 between	 circuit-level	 dysfunction	 and	
psychopathology.		

Theoretical	work	addressing	perceptual	decision-making	has	proposed	dynamical	reduced	
accounts	(Wong	 and	 Wang	 2006;	 Roxin	 and	 Ledberg	 2008)	 the	 provide	 a	 detailed	
biophysical	 model	 of	 decision	 making	(Wang	 2002),	 enabling	 more	 rigorous	 theoretical	
analyses	and	faster	computation.	For	instance,	Wong	and	Wang	(2006)	have	accounted	for	
most	of	the	behavioural	results	addressed	by	Wang	(2002)’s	model	using	the	two	slowest	N-
Methyl-D-aspartic	 acid	 (NMDA)	 dynamical	 variables.	 More	 recently,	Atiya	 et	 al.	 (2019)	
extended	Wong	and	Wang	(2006)’s	model	 to	account	 for	decision	confidence	reports	and	
other	metacognitive	behaviours,	such	as	an	ability	to	flexibly	change	one’s	mind	and	correct	
errors	(Atiya	 et	 al.	 2020).	 More	 specifically,	 guided	 by	 neurophysiological	 evidence	 that	
supports	an	encoding	of	confidence	within	higher-order	prefrontal	brain	regions	(Kepecs	et	
al.	2008;	Fleming	and	Dolan	2012),	the	authors	introduced	the	idea	of	a	third	‘uncertainty-
monitoring’	 neuronal	 population	 (i.e.	 dynamical	 variable).	 This	 population	 continuously	
monitors	uncertainty	in	the	network,	interacting	with	the	other	two	populations	involved	in	
decision-making	via	a	feedback	loop	mechanism (Yeung	et	al.,	2004).	

To	 gain	 insight	 into	 potential	 mechanisms	 underlying	 shifts	 in	 metacognition,	 we	 first	
demonstrate	that	our	biologically-motivated	model	(Atiya	et	al.	2019,	2020)	can	account	for	
human	 confidence	 reports.	 Crucially,	 we	 show	 that	 the	 intrinsic	 dynamics	 of	 the	model,	
constrained	by	 first-order	performance,	 are	 sufficient	 to	 account	 for	 subjects’	 confidence	
reports,	 going	 beyond	 existing	 methods	 of	 fitting	 models	 to	 empirical	 confidence	
data	(Kepecs	et	al.	2008;	Kiani	and	Shadlen	2009;	Pleskac	and	Busemeyer	2010;	Sanders,	
Hangya,	 and	 Kepecs	 2016).	 We	 then	 map	 theoretical	 constructs	 such	 as	 metacognitive	
sensitivity	 and	 efficiency	 onto	 our	 dynamical	 model,	 demonstrating	 that	 changes	 in	
metacognitive	 sensitivity	 are	 associated	 with	 isolated	 disturbances	 in	 uncertainty	
monitoring.	 Finally,	 following	 a	 computational	 psychiatry	 approach	 we	 show	 that	
disturbances	 in	 uncertainty	monitoring	 can	 be	 associated	with	 variation	 in	 self-reported	
psychopathology.	Our	work	provides	a	computational	 framework	for	mapping	theoretical	
measurements	of	metacognition	onto	dynamical	models	of	decision	uncertainty.	

Results 

Neural circuit model 

Our	model	 comprises	 two	 interacting	 subnetworks.	 The	 sensorimotor	module	 comprises	
two	mutually-inhibiting	 neuronal	 populations	 selective	 for	 two	 decision	 alternatives	 (eg	
more	dots	on	the	right	or	left),	each	of	which	are	endowed	with	self-excitation	(Wong	and	
Wang	2006).	Importantly,	our	model	builds	on	neurophysiological	evidence	suggesting	that	
decision	confidence	is	encoded	by	dedicated	higher-order	brain	regions	(Kepecs	et	al.	2008;	
Fleming	 and	Dolan	2012).	 A	 crucial	 aspect	 of	 the	model	 is	 that	 decision	 uncertainty	 (i.e.	
reciprocal	 of	 confidence)	 is	 continuously	monitored	 by	 a	 dedicated	 neuronal	 population	
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termed	 the	 ‘uncertainty-monitoring’	 population.	 The	 latter	 encodes	 uncertainty	 by	
integrating	the	summed	neuronal	activities	of	sensorimotor	populations	(see	Fig.	1C	for	a	
sample	 trial).	 Importantly,	 this	 integration	 is	 terminated	when	a	 response	 is	made,	 i.e.	 in	
effect	 corresponding	 to	 when	 neuronal	 activity	 in	 one	 of	 the	 sensorimotor	 populations	
reaches	a	decision	threshold	(see	Fig.	1C	and	Methods).	Finally,	the	uncertainty-monitoring	
population	 continuously	 feeds	 back	 the	 encoded	 uncertainty	 into	 both	 sensorimotor	
populations	 via	 a	 feedback	 loop	 (See	 Fig.	1B,	 red	 arrows).	 This	 excitatory	 feedback	
mechanism	is	reminiscent	of	a	dynamic	gain	modulation	(see	Fig.	1D),	previously	shown	to	
account	well	 for	response	 time	patterns	 from	decision-making	experiments	with	urgency	
(Niyogi	and	Wong-Lin	2013;	Smith,	Ratcliff,	and	Wolfgang	2004;	Ditterich	2006;	Churchland,	
Kiani,	and	Shadlen	2008;	Kiani,	Hanks,	and	Shadlen	2008;	Drugowitsch	et	al.	2012).	Here	we	
refer	to	this	feedback	loop	as	the	strength	of	uncertainty-monitoring	(UM).	

	

	
Figure	1.	Task	and	neural	circuit	model.	A.	Perceptual	decision-making	task	used	as	a	basis	for	simulations.	A	fixation	
cross	appears	for	1000ms,	followed	by	two	boxes	with	dots	for	a	fixed	duration	of	300ms.	Subjects	are	asked	to	judge	which	
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box	contains	the	greater	number	of	dots	by	pressing	left/right	key	on	the	keyboard.	Their	response	is	highlighted	for	500ms,	
i.e.	with	a	blue	border	appearing	around	the	chosen	box.	Finally,	participants	report	their	confidence	in	their	decision	on	a	
scale	of	1-11	in	experiment	1,	and	1-6	in	experiment	2	(Supplementary	Notes	1	and	2).	B.	Neural	circuit	model	of	decision	
uncertainty.	The	model	comprises	two	modules.	The	sensorimotor	module	(green)	comprises	two	neuronal	populations	
(blue/orange)	selective	for	right/left	 information.	The	two	populations	are	endowed	with	mutual	 inhibition	(lines	with	
filled	circles)	and	self-excitation	(curved	arrows).	These	populations	receive	external	input	as	a	function	of	the	difference	
between	the	number	of	dots	shown	in	the	two	boxes.	Figure	assumes	correct	response	is	on	the	right	–	hence	the	positive	
input	bias	for	the	population	selective	to	rightward	information.	A	gain	parameter	controls	the	difference	in	input	each	
population	receives.	One	neuronal	population	(red)	continuously	monitors	overall	decision	uncertainty	by	integrating	the	
summed	 output	 of	 the	 sensorimotor	 populations	 (see	 Methods).	 Uncertainty	 is	 equally	 fed	 back	 into	 both	 neuronal	
populations	through	symmetric	feedback	excitation	(two-way	red	arrows,	controlled	by	value	of	uncertainty	monitoring	
strength,	 UM).	C.	 A	 sample	 timecourse	 of	 the	 activities	 of	 the	 sensorimotor	 populations	 (top	 panel)	 and	 uncertainty-
monitoring	population	(bottom	panel).	Typical	winner-take-all	behaviour	is	seen	in	the	sensorimotor	module.	Activity	of	
the	uncertainty-monitoring	population	follows	a	phasic	profile	(see	Atiya	et	al.	(2019,	2020)	and	Methods).	Trial	simulated	
with	dot	difference	between	the	two	boxes	set	at	20	(see	Methods).	D.	Sample	timecourse	of	firing	rates	of	the	‘winning’	
neural	 population	 (i.e.	 one	 with	 more	 input	 bias)	 in	 the	 sensorimotor	 module	 under	 two	 strengths	 of	 uncertainty-
monitoring	 (UM)	values.	Random	seed	reset	 to	 control	 for	noise.	 In	 the	case	of	 the	 trial	with	 strong	 (weak)	excitatory	
feedback	(solid	grey	(black)	trace),	ramping	up	is	faster	(slower),	leading	to	a	quicker	(slower)	response.	Neural	population	
firing	rates	shown	here	are	smoothed	with	a	simple	moving	average	(window	size	=	50ms).	

	

Applying the model to account for facets of metacognition 

	
Figure	 2.	 	 Dissociable	 changes	 in	 metacognition	 are	 associated	 with	 changes	 in	 uncertainty	 monitoring.	 The	
behaviour	of	the	model	was	analysed	using	standard	metrics	of	performance	(d’)	and	metacognition	(metacognitive	bias,	
sensitivity	(meta-d’)	and	efficiency	(meta-d’/d’)).	Blue	line	represents	mean	value	of	metric	across	50	simulations.	Shaded	
area	is	standard	deviation.	Yellow	line	is	linear	fit	to	mean	value	of	metric	as	a	function	of	parameter	value.	Increases	in	
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gain	lead	to	monotonic	increases	in	(A)	𝑑!	and	(B)	metacognitive	bias	but	(C)	almost	no	effect	on	sensitivity.	Gain	has	a	
weak	 negative	 effect	 on	 (D)	 metacognitive	 efficiency,	 possibly	 driven	 by	 the	 strong	 linear	 increase	 in	 d’	 in	 panel	 A.	
Increasing	UM	has	no	effect	on	(E)	𝑑!,	but	a	negative	effect	on	(F)	metacognitive	bias,	(G)	metacognitive	sensitivity,	and	(H)	
metacognitive	 efficiency.	 In	 (I-J),	we	 varied	both	parameters	 and	measured	 the	 effect	 on	 (I)	𝑑!	 	 and	 (J)	metacognitive	
sensitivity.	The	 increase	 in	𝑑!	 is	mostly	driven	by	changes	 in	gain	(I),	whereas	changes	 in	metacognitive	sensitivity	are	
mostly	 driven	 by	 UM	 (J).	 All	 simulations	 were	 done	 with	 the	 same	 fixed	 list	 of	 dot	 differences	 (2.8	 in	 log-space).	 In	
simulations	(A-H),	where	the	gain	(UM)	parameter	is	varied,	UM	(gain)	was	fixed	at	0.0015	(0.0029).	𝑅"	in	all	panels	is	
adjusted	𝑅".	Confidence	data	was	generated	by	binning	the	uncertainty	values	into	6	bins,	assuming	equal	bin	width	(see	
Methods).	

We	 first	 asked	whether	 our	model	 can	 account	 for	 the	 variation	 in	 standard	 theoretical	
metrics	 of	 metacognition.	 To	 do	 that,	 we	 simulated	 the	 model	 using	 various	 parameter	
values,	 and	derived	both	choices	and	confidence	 judgements	 from	 the	 fluctuations	 in	 the	
uncertainty-monitoring	population	of	the	model.	More	specifically,	for	each	simulated	trial,	
we	define	decision	uncertainty	(the	inverse	of	decision	confidence)	as	the	maximum	firing	
rate	reached	by	the	uncertainty-monitoring	population	within	that	trial	(Atiya	et	al.,	2019).	
We	 use	 equal-width	 binning	 to	 bin	 (discretise)	 raw	 confidence	 measurements	 into	
confidence	bins	(discrete	ratings).	

Next,	we	entered	the	simulated	confidence-accuracy	matrix	as	data	into	a	Bayesian	model	of	
metacognition	(Fleming	2017).	The	model	returns	a	parameter	𝑚𝑒𝑡𝑎 − 𝑑!	representing	the	
metacognitive	 sensitivity	 for	 a	 particular	 simulation	 with	 a	 set	 of	 parameter	 values.	
Metacognitive	 efficiency	 is	 then	 estimated	 by	 comparing	 𝑚𝑒𝑡𝑎 − 𝑑!	 to	 the	 model’s	
perceptual	 sensitivity	 (i.e,	𝑑!)	 yielding	 the	 ratio	meta-d’/d’	 (M-Ratio,	Maniscalco	 and	Lau	
2012).	Metacognitive	 bias	 is	 defined	 as	 the	 average	 binned	 confidence	 level	 across	 both	
correct	and	incorrect	trials.	We	fitted	several	linear	models	to	estimate	the	contribution	of	
each	 parameter	 in	 our	 network	 model	 of	 decision	 confidence	 to	 perceptual	 sensitivity,	
metacognitive	bias,	metacognitive	sensitivity,	and	metacognitive	efficiency	(see	Methods).	

The	results	 (Figs.	2A	and	2B)	show	 increasing	gain	has	a	strong	positive	effect	on	𝑑!	 and	
metacognitive	bias	(i.e.	leading	to	higher	confidence	levels).		The	effect	on	𝑑!	is	unsurprising	
given	 that	 increasing	 gain	magnifies	 the	 difference	 in	 input	 each	 neuronal	 population	 is	
receiving	 (see	Fig.	1B).	The	 effect	 on	metacognitive	bias	 is	 also	 expected	 from	an	overall	
increase	in	number	of	correct	trials,	and	therefore	the	production	of	fewer	‘low-confidence’	
error	trials.	Notably,	however,	the	results	also	show	(Fig.	2C)	that	increasing	gain	has	almost	
no	effect	on	𝑚𝑒𝑡𝑎 − 𝑑!.	Finally,	the	results	(Fig.	2D)	show	that	increasing	gain	has	a	weak	
negative	effect	on	metacognitive	efficiency,	possibly	driven	by	the	sustained	linear	increase	
in	d’	as	a	function	of	gain.		

More	interestingly,	the	second	set	(Fig.	2,	bottom	row)	of	results	show	that	increasing	UM	
has	only	weak	effects	on	first-order	task	performance	(𝑑!)	(Fig.	2E).	However,	increasing	UM	
strength	has	a	negative	effect	on	both	metacognitive	bias	(Fig.	2F)	and	𝑚𝑒𝑡𝑎 − 𝑑!	(Fig.	2G),	
leading	to	reductions	in	overall	confidence	and	metacognitive	sensitivity.	Given	that	 first-
order	 performance	 is	 relatively	 unchanged,	 greater	 UM	 strength	 also	 results	 in	 lower	
metacognitive	efficiency	(Fig.	2H).	We	then	varied	both	parameters	together	and	confirmed	
that	 changes	 in	 first-order	 task	performance	 (𝑑!)	 (Fig.	 2I)	 are	driven	by	 changes	 in	 gain,	
whereas	changes	in	metacognitive	sensitivity	(𝑚𝑒𝑡𝑎 − 𝑑!)	(Fig.	2J)	are	driven	by	changes	in	
UM.		
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Overall,	 the	 results	 suggest	 that,	 in	 our	 model,	 a	 dissociable	 uncertainty-monitoring	
mechanism	 can	 drive	 changes	 in	 metacognition,	 in	 the	 absence	 of	 any	 change	 in	 task	
performance.	 More	 specifically,	 stronger	 uncertainty	 monitoring	 is	 associated	 with	 a	
decrease	 in	metacognitive	 sensitivity,	 bias,	 and	 efficiency,	 but	 not	 perceptual	 sensitivity.	
Armed	with	this	understanding	of	how	model	parameters	relate	to	facets	of	metacognitive	
performance,	we	next	fit	the	model	to	subjects’	data,	and	apply	a	computational	psychiatry	
approach	in	order	to	relate	variation	in	model	parameters	to	psychopathology.	

Model fits to subject data 

	
Figure	3.	Model	accounts	for	subjects’	perceptual	performance	in	experiment	1.	A.	Choice	accuracy,	i.e.	probability	
correct	as	a	function	of	task	difficulty	from	experiment	1	of	Rouault	et	al.	(2018)	averaged	across	all	498	participants.	Task	
difficulty	is	split	into	5	difficulty	bins	as	in	the	original	paper	(see	Methods).	Grey	markers:	data.	Black	markers:	model	fits.	
B.	Response	times	as	a	 function	of	 task	difficulty	 from	the	data	(circles)	and	model	fits	(diamonds)	averaged	across	all	
participants.	 Orange	 (blue)	markers:	 Error	 (correct)	 responses.	 The	 typical	 ‘<’	 pattern,	 i.e.	 response	 times	 for	 correct	
(error)	responses	increasing	(decreasing)	as	a	function	of	task	difficulty,	is	found	in	both	the	model	and	data.	C.	Scatter	plot	
of	observed	(empirical)	vs.	simulated	mean	overall	response	times	and	D.	overall	accuracy	for	each	of	the	498	subjects.	
Error	bars	indicate	95%	confidence	interval.	Random	seed	is	reset	after	each	simulation	during	the	fitting	procedure	and	
for	the	purposes	of	generating	Figures	C	and	D	(but	not	A	and	B).	See	Supplementary	Figure	8	for	scatter	plots	without	
resetting	the	random	generator	seed.	

We	 re-analysed	 data	 from	Rouault	 et	 al.	 (2018),	 in	 which	 subjects	 (experiment	 1:	 498	
subjects,	experiment	2:	497	subjects)	completed	an	online	task	via	Amazon	Mechanical	Turk.	
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In	the	task,	upon	initiating	a	trial,	a	fixation	cross	appears	for	1000ms,	followed	by	two	black	
boxes	each	filled	with	a	number	of	white	dots	(see	Fig.	1A).	Subjects	indicated	first	which	box	
contains	the	greater	number	of	dots,	by	pressing	the	right	or	left	arrow	key	on	a	computer	
keyboard,	 and	 then	 provided	 their	 confidence	 rating	 on	 a	 numerical	 scale	 (1-11	 for	
experiment	1,	1-6	for	experiment	2).	

To	 provide	 insight	 into	 the	 interaction	 between	 decision	 formation	 and	 metacognitive	
processes	 in	 this	 task,	 we	 simulated	 and	 fitted	 our	 neural	 circuit	 model	 of	 decision	
uncertainty	to	subjects’	choices	and	response	times	(Atiya	et	al.	2019,	2020).	This	allowed	
us	to	use	subjects’	explicit	confidence	reports	as	an	out-of-sample	test	of	the	model’s	ability	
to	account	for	individual	differences	in	metacognition.	For	simplicity,	we	only	simulated	the	
sensorimotor	and	uncertainty	modules	of	the	circuit,	as	originally	introduced	in	Atiya	et	al.	
(2019,	2020)	(See	Fig.	1B).	

In	fitting	our	model	to	subjects’	choices	and	response	times,	we	used	a	procedure	based	on	
the	subplex	optimisation	method	(Bogacz	and	Cohen	2004;	Rowan	1990)	(see	Methods).	The	
subplex	optimisation	method	is	an	evolution	of	the	simplex	method	(Nelder	and	Mead	1965)	
–	 one	 that	 is	 better	 suited	 for	 optimising	 noisy	 objective	 functions.	 Importantly,	 when	
parameterising	our	model,	we	initially	set	the	values	of	all	parameters	to	those	found	in	our	
previous	 work	(Atiya	 et	 al.	 2020),	 allowing	 only	 two	 parameters	 to	 vary	 in	 the	 fitting	
procedure.	The	first	parameter	is	a	‘gain’	parameter,	which	maps	the	dot	difference	to	input	
current	 flowing	 into	 the	 sensorimotor	 populations	 (see	Methods).	 Subjects	 having	 larger	
values	of	the	gain	parameter	generally	have	better	choice	accuracy.	The	second	parameter	is	
the	strength	of	uncertainty	monitoring	(see	Fig.	2D	for	an	example	of	effect	of	varying	this	
parameter	on	the	decision	process).	

In	experiment	1,	subjects	completed	a	perceptual	decision-making	task	in	which	they	judged	
which	box	contained	a	greater	number	of	dots,	followed	by	a	confidence	report	on	an	11-
point	numerical	scale.	Subjects	then	completed	a	number	of	questionnaires	to	assess	self-
reported	psychiatric	symptoms	(see	Methods).	Unsurprisingly,	subjects	were	more	accurate	
when	the	task	was	easy,	i.e.	when	the	difference	between	the	number	of	dots	was	large	(see	
Fig.	3A).	The	model	captures	this	straightforward	relationship	between	accuracy	and	task	
difficulty	(Fig.	3A),	and	accounts	for	individual	variation	in	accuracy	levels	(Fig.	3C).	

In	 line	 with	 existing	 findings	 from	 both	 human	 and	 animal	 studies	 of	 decision-
making	(Shadlen	 and	Newsome	 2001;	 Roitman	 and	 Shadlen	 2002;	 Sanders,	 Hangya,	 and	
Kepecs	2016),	subjects’	correct	(error)	responses	were	quicker	(slower)	as	the	task	became	
easier,	 forming	a	 ‘<’	pattern	of	response	times	as	a	 function	of	difficulty	(see	Fig.	3B,	and	
Fig.	3D	for	individual	variation	in	mean	response	time).	Observing	an	interaction	between	
difficulty	and	accuracy	in	response	time	data	is	particularly	striking	given	that	the	task	was	
administered	 using	 a	 web-based	 platform,	 where	 response	 time	measurement	might	 be	
expected	to	be	noisier	 than	 in	standard	 laboratory	settings.	However,	such	a	pattern	was	
closely	mirrored	 by	 our	model	 fits,	 and	 importantly	 allowed	us	 to	 constrain	 the	model’s	
estimates	of	subjects’	confidence	(see	below).	
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Neuronal model constrained with perceptual performance accounts for subjects’ 
confidence reports 

We	next	 asked	whether	 our	 fitted	model	 parameters	 could	 account	 for	 subjects’	 explicit	
confidence	reports,	even	though	these	data	had	not	been	used	to	constrain	the	model.	Here,	
we	leverage	the	close	relationship	between	confidence,	response	time	and	task	difficulty	to	
make	 inferences	about	 trial-by-trial	uncertainty	 (or	 confidence)	 levels	 from	model	 fits	 to	
first-order	performance	(Kepecs	et	al.	2008;	Kiani,	Corthell,	and	Shadlen	2014).	In	our	model,	
longer	response	times	allow	more	time	for	the	uncertainty	monitoring	population	to	activate	
—	leading	to	higher	uncertainty	(see	Methods).	

	
Figure	4.	Model	accounts	 for	subjects’	confidence	reports	and	 individual	differences	 in	uncertainty	monitoring	
predict	symptom	scores.	A.	Confidence	reports	averaged	across	all	participants	 from	experiment	1	data	(circles)	and	
model	(diamond)	as	a	function	of	task	difficulty.	Blue	(orange)	markers:	Error	(correct)	responses.	Note	that	the	model	was	
fit	only	to	first-order	performance	data	(accuracy	and	response	times)	and	fits	to	confidence	represent	an	out-of-sample	
prediction.	Confidence	 increases	 (decreases)	 as	 a	 function	of	 changing	 task	difficulty	 for	 correct	 (error)	 responses.	 	B.	
Symptom	scores	from	experiment	1	were	entered	into	a	multiple	regression	model	predicting	the	strength	of	uncertainty-
monitoring	 and	 gain	 parameters	 from	 the	 model	 fits	 to	 task	 performance	 (choices	 and	 response	 times).	 Self-report	
measures	of	depression	(grey),	schizotopy	(blue),	social	anxiety	(red),	obsessive	and	compulsive	symptoms	(purple)	and	
generalised	anxiety	(green)	are	significantly	associated	with	weaker	uncertainty-monitoring.	No	significant	association	was	
found	 between	 impulsivity	 (pink)	 and	 the	 strength	 of	 uncertainty-monitoring.	 No	 significant	 association	 was	 found	
between	the	symptom	scores	and	the	gain	parameter.	See	Methods	for	details	on	the	regression	models.	Error	bars	indicate	
s.e.m.	 All	 regression	 results	 shown	 control	 for	 the	 influence	 of	 age,	 gender,	 and	 IQ	 (see	 Supplementary	 Figure	 6	 for	
regression	model	results	with	age	and	IQ	predicting	model	parameters).	*	p< 0.05.	

We	first	simulated	our	neural	circuit	model	with	the	parameters	fitted	to	subjects’	choices	
and	 response	 times	 from	experiment	1.	We	 then	 applied	distribution	matching	(Sanders,	
Hangya,	and	Kepecs	2016)	to	map	the	model’s	simulated	uncertainty	levels	onto	subjects’	
retrospective	confidence	reports.	More	specifically,	instead	of	equal-width	binning	used	in	
our	 analyses	 thus	 far,	 the	 shape	 of	 the	 overall	 mapping	 (i.e.	 prior	 to	 conditioning	 on	
performance	 or	 difficulty)	 is	 inferred	 from	 the	 distribution	 of	 experimental	 confidence	
reports,	per	subject	(see	Methods).	This	allowed	us	to	show	the	model	accounts	for	a	complex	
relationship	between	decision	confidence	and	task	difficulty	(see	Fig.	4A).	The	results	also	
hold	 after	 conditioning	 confidence	 reports	 on	 trial	 outcome	 (i.e.	 correct	 vs.	 error).	
Importantly,	these	effects	result	from	the	intrinsic	nonlinear	dynamics	of	the	network	after	
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fitting	 to	 (and	constraining	 the	model	with)	 subjects’	 first-order	performance	data	alone.	
Hence	 the	model	 is	 able	 to	 account	 for	 individual	differences	 in	 subjects’	 perceptual	 and	
metacognitive	performance	despite	model	fits	only	having	access	to	choices	and	response	
times.	We	next	asked	whether	the	uncertainty-monitoring	mechanism	in	the	model	might	
also	covary	with	psychiatric	symptom	scores.	

Psychiatric symptoms are associated with the strength of uncertainty-monitoring 

In	 experiment	 1,	 upon	 completion	 of	 the	main	 perceptual	 task,	 participants	 completed	 a	
series	of	standard	self-report	questionnaires	 that	assess	a	range	of	psychiatric	symptoms	
(Zung	1965;	Spitzer	et	 al.	2006;	Mason,	Linney,	 and	Claridge	2005;	Patton,	 Stanford,	 and	
Barratt	1995;	Foa	et	al.	2002;	Liebowitz	et	al.	1985;	Spielberger	and	Gorsuch	1983;	Saunders	
et	 al.	 1993;	 Marin,	 Biedrzycki,	 and	 Firinciogullari	 1991;	 Garner	 et	 al.	 1982).	 The	
questionnaires	comprised:	Zung	Self-Rating	Depression	Scale,	Generalized	Anxiety	Disorder	
7-item	 scale,	 Short	 Scales	 for	 Measuring	 Schizotypy,	 Barratt	 Impulsiveness	 Scale	 11,	
Obsessive-Compulsive	Inventory-Revised	[OCI-R],	and	Liebowitz	Social	Anxiety	Scale.		

As	 in	Rouault	 et	 al.	 (2018),	 we	 ran	 a	 series	 of	 linear	 regressions	 to	 tease	 apart	 the	
relationship	between	psychiatric	symptoms	and	model	parameters.	Importantly,	here,	we	
were	able	to	account	for	differences	in	perceptual	and	metacognitive	performance	using	only	
two	model	parameters,	 as	highlighted	 in	our	model	 fits	 above.	The	 first	 parameter	 (UM)	
controls	the	strength	of	uncertainty	monitoring.	The	second	(gain)	parameter	maps	the	dot	
difference	subjects	see	on	the	screen	to	difference	in	input	current	flowing	into	the	model’s	
sensorimotor	neuronal	populations.	

We	 entered	 each	 questionnaire	 score	 (see	 Methods)	 into	 multiple	 linear	 regressions	
predicting	the	uncertainty-monitoring	and	gain	parameters.	The	results	(see	Fig.	4B)	show	
that	 increases	 in	 z-scored	 self-reported	 scores	 were	 broadly	 associated	 with	 weaker	
uncertainty	monitoring	 across	 all	 dimensions	 of	 psychopathology,	 with	 the	 exception	 of	
impulsivity,	 though	 the	 association	 strengths	did	not	differ	between	questionnaires.	This	
contrasts	with	 the	 gain	parameter,	which	did	not	 correlate	with	 any	of	 the	 self-reported	
scores	 (p> 0.05)	 in	 experiment	 1.	 These	 results	 largely	 recapitulate	 the	 relationships	
between	 empirical	 confidence	 level	 and	 psychiatric	 symptoms	 scores	 (albeit	with	minor	
differences	 in	effect	 sizes)	observed	 in	Rouault	et	al.	 (2018),	but	now	provide	a	potential	
circuit-level	explanation	for	such	differences	(i.e.,	a	change	in	the	strength	of	uncertainty-
monitoring).		

We	also	followed	the	same	approach	for	experiment	2	(see	Supplementary	Figure	Note	2),	
although	 here	we	 found	 no	 significant	 association	 between	 the	majority	 of	 self-reported	
scores	(or	cross-cutting	 factors	derived	from	these	scores,	see	Supplementary	Figures	3A	
and	3B)	and	model	parameters.	This	 lack	of	 significance	 in	experiment	2	may	 reflect	 the	
smaller	 variance	 in	 difficulty	 (due	 to	 the	 staircase	 procedure)	 leading	 to	 inferences	 on	
uncertainty-monitoring	being	less	constrained	by	the	data	(see	Supplementary	Figure	7).	To	
explore	this	further,	we	attempted	to	recover	the	fitted	parameters	to	both	experiment	1	and	
2	data	and	found	that	the	results	show	that	the	fits	to	experiment	1	data	were	indeed	more	
stable	(See	Supplementary	Figures	4	and	5)	–	potentially	due	to	the	larger	variation	in	task	
difficulty.	 We	 note	 however	 that	 qualitatively,	 similar	 symptom	 scores	 (e.g.	 depression,	
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anxiety)	that	were	negatively	related	to	uncertainty	monitoring	in	experiment	1	were	also	
negatively	related	to	the	uncertainty	monitoring	in	experiment	2.	

Discussion 
While	 self-reported	 psychiatric	 symptoms	 have	 been	 shown	 to	 be	 associated	 with	
dissociable	 differences	 in	metacognition,	 the	mechanisms	 underlying	 such	 changes	 have	
remained	elusive.	In	this	work,	using	a	computational	circuit	model	of	decision-making,	we	
show	 that	 shifts	 in	 metacognition	 are	 associated	 with	 disturbances	 in	 the	 interaction	
between	 decision-making	 and	 uncertainty-monitoring	 networks.	 Specifically,	 stronger	
uncertainty	monitoring	 is	 associated	 with	 decreased	metacognitive	 bias,	 sensitivity,	 and	
efficiency.	 Importantly,	 changes	 in	 uncertainty-monitoring	 strength	 have	 no	 effect	 on	
perceptual	 sensitivity.	 Notably,	 our	 model-fitting	 approach	 enabled	 inferences	 about	
uncertainty	monitoring	(and,	in	turn,	these	facets	of	metacognition)	from	fits	to	first-order	
performance	data	alone.	When	we	apply	this	approach	to	data	 from	an	online	perceptual	
decision	 task,	 we	 find	 that	 self-reported	 psychiatric	 symptoms	 are	 associated	 with	
disturbances	in	uncertainty	monitoring.	

Through	a	dedicated	uncertainty-monitoring	population,	our	model	of	decision	uncertainty	
captures	 key	 features	 of	 the	 neurobiology	 of	metacognition,	while	 remaining	 sufficiently	
simple	to	fit	to	data.	Recent	work	has	shown	that	long	response	times	are	associated	with	
lower	confidence	for	an	impending	decision	(Kepecs	et	al.	2008;	Kiani,	Corthell,	and	Shadlen	
2014;	Atiya	et	al.	2020).	Our	computational	model	naturally	accounts	for	this	phenomenon.	
More	 specifically,	winner-take	all	 behaviour	 is	 less	prevalent	when	 the	external	 stimulus	
input	to	the	network	is	(or	close	to)	symmetric,	i.e.	when	stimulus	information	is	ambiguous.	
This	 high	 level	 of	 competition	 between	 the	 sensorimotor	 populations	 prolongs	 the	 time	
taken	 to	 reach	 a	 decision	 threshold,	 and	 by	 allowing	 more	 time	 for	 an	 uncertainty-
monitoring	module	to	integrate	bottom-up	input	results	in	higher	uncertainty.	Building	on	
this	proposed	mechanism,	and	existing	behavioural	evidence,	our	approach	allows	us	to	infer	
metacognitive	performance	from	first-order	(i.e.	response	time)	data.	

Crucially,	we	go	beyond	simply	relating	our	model	dynamics	to	decision	confidence	(Atiya	et	
al.	2019).	By	linking	our	model’s	uncertainty	to	standard	metrics	of	metacognition,	we	reveal	
that	 shifts	 in	 facets	 of	 metacognition	 are	 associated	 with	 disturbances	 in	 uncertainty	
monitoring	(Fig.	2).	This	suggest	that	stronger	uncertainty	monitoring	in	such	a	network	has	
a	 negative	 effect	 on	 metacognitive	 bias,	 sensitivity,	 efficiency,	 while	 leaving	 perceptual	
sensitivity	unaffected.	More	specifically,	 controlling	 for	 task	difficulty,	our	 findings	reveal	
that	 stronger	 uncertainty-monitoring	 (i.e.	 leading	 to	 overall	 faster	 responses)	 leads	 to	
deficits	 in	 the	 accuracy	 of	 confidence	 reports	 –	 generally	 leading	 to	 lower	 confidence	 in	
correct	 trials,	 and	 higher	 confidence	 in	 errors.	 It	 is	 of	 interest	 to	 note	 here	 that	 such	
dissociable	changes	in	metacognitive	ability,	as	a	result	of	a	(higher-order)	disturbance	in	
the	 strength	of	uncertainty-monitoring,	 finds	 support	 in	 recent	neuropsychological	work.	
For	instance,	lesions	in	prefrontal	brain	regions	are	associated	with	deficits	in	metacognitive	
ability,	 but	 not	 task	 performance	(Fleming	 et	 al.,	 2014),	 highlighting	 the	 contribution	 of	
higher-order	brain	regions	to	metacognition	(Fleming	et	al.	2010;	Fleming	and	Dolan	2012).	

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 28, 2020. ; https://doi.org/10.1101/2020.09.25.313619doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.25.313619
http://creativecommons.org/licenses/by/4.0/


Future	work	 could	 combine	 our	 computational	 framework	with	neuroimaging	 to	 further	
elucidate	the	neural	basis	of	metacognitive	ability.	

Adopting	 a	 computational	 psychiatry	 approach,	 we	 shed	 light	 on	 a	 potential	 driver	 of	
metacognitive	distortions	reported	 in	recent	work	 in	relation	to	mental	health	symptoms	
(Rouault	et	al.	2018).	Rouault	and	colleagues	showed	that	symptom	scores	for	depression,	
social	anxiety,	and	generalised	anxiety	relate	to	lower	confidence	level.	In	the	present	report,	
following	similar	analyses,	we	show	that	these	relationships	can	be	explained	by	changes	in	
the	strength	of	uncertainty	monitoring,	 in	the	absence	of	any	change	in	sensory	gain.	Our	
analyses	 not	 only	 recapitulate	 previously-reported	 relationships	 with	 depression	 and	
anxiety	(Fig.	5B),	but	show	that	schizotopy	and	OCD	scores	also	relate	 to	disturbances	 in	
uncertainty-monitoring	(Vaghi	et	al.,	2017),	in	line	with	existing	work	relating	deficits	in	self-
evaluation	to	schizophrenia	(Koren	et	al.	2004).		

Symptoms	 of	 OCD	 have	 been	 linked	 to	 deficits	 in	 working	memory	(Nakao	 et	 al.	 2009),	
though	 previous	 work	 has	 linked	 the	 typical	 feeling	 of	 doubt	 in	 OCD	 patients	 to	 an	
intolerance	 of	 uncertainty	(Tolin	 et	 al.	 2003).	 More	 recent	 work	 has	 demonstrated	 that	
symptoms	 of	OCD	 are	 associated	with	 deficits	 in	 utilising	 evidence	 to	 update	 confidence	
(Seow	&	Gillan,	2020).	In	the	context	of	our	model,	this	can	be	explained	by	the	weaker	UM	
strength	 associated	 with	 Obsessive-Compulsive	 Inventory–Revised	 (OCIR)	 scores	 —	 i.e.	
participants	with	high	OCIR	scores	tend	to	monitor	uncertainty	for	longer,	prolonging	their	
response	 times,	but	not	necessarily	 increasing	 their	 confidence	 in	 their	decisions.	 Such	a	
mechanism	is	supported	by	recent	work	linking	extended	evidence	accumulation	associated	
with	 compulsive	 behaviour	 to	 increased	 decision-making	 thresholds	 and	 metacognitive	
impairments	(Hauser,	Moutoussis,	 et	 al.	 2017;	Hauser,	Allen,	 et	 al.	 2017).	Notably,	 in	 the	
current	 work,	 we	 could	 account	 for	 individual	 differences	 in	 task	 (Figs.	3	 and	4)	 and	
metacognitive	performance	(Fig.	4A)	even	in	large	samples	of	data	(N=495	in	Experiment	1,	
N=496	in	Experiment	2	–	see	Supplementary	Note	1	and	2	for	Experiment	2	results)	collected	
over	 the	 web	 where	 experimental	 control	 over	 subjects’	 responses	 is	 less	 precise,	 and	
response	 time	 measurement	 potentially	 noisier.	 Taken	 together,	 the	 results	 from	 both	
experiments	 suggest	 our	 computational	 framework	 can	 be	 used	 to	 study	 the	 interaction	
between	metacognition	and	psychiatric	symptoms	without	requiring	subjects	to	explicitly	
report	 confidence	 in	 decisions	 —	 potentially	 opening	 the	 door	 to	 using	 shorter,	 more	
engaging	tasks	such	as	smartphone	games	(Brown	et	al.	2014).	

We	 also	 explored	 whether	 our	 model	 accounts	 for	 metacognition-psychopathology	
relationships	 in	 a	 task	 with	 staircased	 difficulty	 levels	 (experiment	 2	 in	 Rouault	 et	 al.).	
Although	our	analyses	of	 the	UM	parameter	show	a	similar	pattern	 to	 those	obtained	 for	
metacognitive	 bias	 in	 the	 original	 study,	 (Supplementary	 Figures	 3A	 and	 3B),	 these	
relationships	between	factor	scores	and	model	parameters	did	not	reach	significance.	One	
interpretation	of	this	equivocal	result	is	that	effective	inference	on	individual	differences	in	
uncertainty-monitoring	strength	may	require	perceptual	tasks	with	systematic	variation	in	
difficulty,	to	enable	full	coverage	of	the	RT-accuracy-difficulty	surface	(i.e.	the	<	patterns).	
Importantly,	we	found	that	the	fit	for	experiment	2	is	not	as	stable	as	the	fit	for	experiment	
1	 (Supplementary	Figures	4	and	5).	Further	 theoretical	work	 is	needed	 to	determine	 the	
effect	of	per-subject	difficulty	variance	on	the	ability	to	infer	such	model	parameters.	
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Previous	versions	of	our	neural	circuit	model	have	also	been	applied	to	tasks	with	explicit	
motor	reaching	trajectories	through	a	dedicated	motor	output	network	(Atiya	et	al.	2019,	
2020).	Here,	given	that	participants	reported	their	decisions	using	a	keyboard	button	press	
rather	 than	 continuous	 motor	 responses,	 this	 aspect	 of	 the	 network	 was	 less	 relevant.	
However,	our	current	findings	highlight	the	promise	of	leveraging	the	full	model	to	dissect	
the	interaction	between	uncertainty-monitoring,	indecisiveness	and	psychiatric	symptoms	
in	a	task	where	both	sensory	input	and	motor	output	are	quantified	in	a	continuous,	dynamic	
fashion.	Because	these	relationships	can	be	obtained	from	fits	to	first-order	performance	and	
response	time	data	alone,	future	work	could	leverage	our	computational	framework	to	infer	
facets	of	metacognition	in	situations	where	obtaining	explicit	metacognitive	judgements	is	
problematic	or	impossible,	e.g.	in	studies	of	animals	or	children.	

In	summary,	we	employed	a	biologically-plausible	model	of	decision	uncertainty	to	relate	
dissociable	shifts	in	metacognition	to	isolated	disturbances	in	uncertainty	monitoring.	We	
validate	our	model	against	empirical	data,	and	relate	its	parameters	to	psychopathology.	Our	
work	bridges	a	gap	between	a	biologically	plausible	model	of	confidence	formation	and	the	
observed	disturbances	in	metacognition	seen	in	mental	health	disorders,	and	provides	a	first	
step	 towards	mapping	 theoretical	 constructs	 of	metacognition	onto	dynamical	models	 of	
decision	 uncertainty.	 In	 doing	 so,	 we	 provide	 a	 computational	 framework	 for	modelling	
metacognitive	performance	in	settings	where	access	to	explicit	confidence	reports	is	either	
difficult	or	impossible.	

Methods 

Neural circuit model of uncertainty 

We	modelled	 the	processes	underpinning	decisions	and	confidence	using	a	neural	circuit	
model	of	uncertainty	described	previously	(Atiya	et	al.	2019,	2020).	The	version	of	the	model	
used	 here	 comprises	 two	 interacting	 subnetworks	 —	 a	 decision-making	 sensorimotor	
module,	and	an	uncertainty-monitoring	population.	

As	in	previous	work	(Atiya	et	al.	2019,	2020),	the	sensorimotor	module	is	modelled	using	a		
reduced	 (i.e.	 two-variable)	 spiking	 neural	 network	model	(Wang	 2002;	Wong	 and	Wang	
2006).	The	dynamics	of	the	neuronal	populations	are	described	by:	

	 d𝑆"
d𝑡 = −

𝑆"
𝜏#
+ (1 − 𝑆")𝛾𝐻(𝑥" , 𝑥$)	

	Eq.		1	

	

	 d𝑆$
d𝑡 = −

𝑆$
𝜏#
+ (1 − 𝑆$)𝛾𝐻(𝑥$ , 𝑥")	

	Eq.		2	

	

	

where	𝑆"	and	𝑆$ 	are	the	synaptic	gating	variables	for	the	sensorimotor	population	selective	
to	leftward	and	rightward	stimulus	information,	respectively.	𝜏#	denotes	the	synaptic	gating	
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time	constant.	𝛾	is	a	constant	that	is	derived	in	previous	theoretical	work	(Wong	and	Wang	
2006)	that	describes	a	reduction	of	the	original	spiking	neuronal	network	model	of	decision	
making	(Wang	2002).	

The	firing	rate	of	a	sensorimotor	population	can	be	described	using	the	nonlinear	function	
𝐻:	

	 𝐻% =
𝑎𝑥% − 𝑏

1 − 𝑒&'()*!&+)
	

	Eq.		3	

	

	

where	𝑎,	𝑏,	𝑑	are	parameters	fitted	to	the	leaky	integrate-and-fire	model	(Wang	2002).	The	
variable	 𝑖	 can	 be	 𝐿	 or	 𝑅,	 denoting	 sensorimotor	 population	 selective	 for	 rightward	 or	
leftward	sensory	information,	respectively.	𝑥% 	denotes	the	total	input	into	population	𝑖,	and	
can	be	described	by:	

	 𝑥% = 𝑤-𝑆% −𝑤&𝑆. + 𝐼/ + 𝐼% + 𝐼0 +𝑤1𝑈	
	Eq.		4	

	

	

where	𝑤-	denotes	synaptic	weight	for	self-excitation,	whereas	𝑤&	denotes	synaptic	weight	
for	mutual	inhibition.	𝐼/ 	is	some	constant	input.	𝐼0 	denotes	noise	—	here	we	use	the	same	
noise	described	by	an	Ornstein–-Uhlenbeck	process	as	in	(Wong	and	Wang	2006).	𝐼% 	denotes	
external	input	flowing	into	population	𝑖,	as	a	function	of	the	dot	difference	participants	see	
on	the	screen	(Fig.	1).	This	external	input	is	described	by:	

	 𝐼% = 𝑤2µ3	(1 ± 𝜀)	
	Eq.		5	

	

where	𝑤2 	is	a	synaptic	weight,	whereas	𝜇3	is	some	baseline	external	input.	𝜀	can	be	described	
by:	

	 𝜀 = gain ⋅ dot	difference	
	Eq.		6	

	

	

where	the	input	gain	parameter	maps	the	dot	difference	to	difference	in	input	flowing	into	
the	sensorimotor	populations.	

Importantly,	the	last	term	in	Eq.	4	(𝑤1𝑈)	determines	the	strength	of	feedback	excitation	from	
the	 uncertainty-monitoring	 neuronal	 population.	 More	 specifically,	 𝑤1	 is	 referred	 to	
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throughout	this	article	as	UM,	or	uncertainty-monitoring	strength.	U	denotes	the	dynamical	
variable	of	the	uncertainty-monitoring	population,	which	is	described	by:	

	 𝜏1
𝑑𝑈
𝑑𝑡 =

[𝐻" + 𝐻$ − 𝑙]- − 𝑈	
	Eq.		7	

	

	

where	[	]-	is	a	threshold	linear	function	(threshold	=	0).	𝐻"	and	𝐻$ 	are	functions	denoting	
firing	 rates	 for	 sensorimotor	 populations	 selective	 for	 leftward	 and	 rightward	 stimulus	
information,	respectively	(from	Eqs.	1	and	2).	𝑙	denotes	some	constant	input	that	suppresses	
the	firing	of	the	uncertainty-monitoring	population.	This	input	is	de-activated	200ms	after	
stimulus	onset,	and	is	reactivated	when	one	the	firing	rate	of	the	sensorimotor	populations	
reaches	a	decision	threshold	(see	Fig	2).	We	summarise	the	values	of	all	model	parameters	
in	Table	1.	

Quantifying uncertainty within a trial 

As	in	our	previous	work	(Atiya	et	al.	2020),	for	a	given	trial,	we	used	the	maximum	firing	rate	
value	 of	 the	 uncertainty-monitoring	 neuronal	 population	 as	 a	 decision	 uncertainty	
measurement	 for	 that	 particular	 trial	 (the	 inverse	 of	 decision	 confidence).	 When	
extrapolating	 confidence	 reports	 from	 simulations	 (e.g.	 for	 Fig.	2	 simulations),	 we	 used	
simple	equal-width	binning	in	6	bins	to	relate	continuous	uncertainty	measurements	to	a	6-
point	confidence	scale,	similar	to	the	one	used	in	experiment	2.	

Each	participant	uses	the	confidence	scale	differently,	e.g.	on	a	6-point	probabilistic	scale,	
one	might	consistently	pick	5	as	their	highest	confidence	level.	In	order	to	relate	simulated	
uncertainty	to	empirical	confidence	data	from	each	participant,	we	match	the	distribution	of	
simulated	uncertainty	to	the	marginal	distribution	of	empirical	confidence	reports	(i.e.	prior	
to	 conditioning	 on	 accuracy,	 response	 times,	 or	 difficulty;	 Sanders,	 Hangya,	 and	 Kepecs	
2016).	More	specifically,	per	subject,	we	(non-parametrically)	infer	the	shape	of	the	mapping	
from	 their	 experimental	 confidence	 distribution.	 First,	 we	 compute	 the	 cumulative	
distribution	 function	(CDF)	of	 their	 full	confidence	distribution.	Then,	we	use	 this	CDF	to	
derive	binning	width	thresholds.	The	thresholds	here	represent	the	quantiles	of	the	subjects’	
simulated	confidence	for	the	probabilities	represented	by	CDF	computed	from	experimental	
confidence	distribution.		

Model fitting procedure 

To	fit	our	model	to	participants’	first	order	performance,	we	used	a	procedure	that	exploits	
the	 subplex	 optimisation	 method	(Bogacz	 and	 Cohen	 2004;	 Rowan	 1990).	 Subplex	
optimisation	is	based	on	the	simplex	optimsation	method,	but	adapted	for	noisy	objective	
functions	(Rowan	1990).	For	each	participant,	we	minimise	the	cost	function:	

	 	cost	 =
1
𝑚 (RTmodel − RTdata)4 +

1
𝑛 (accuracymodel − accuracydata)

4	
	Eq.		8	
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where	RT56789	 is	the	model’s	mean	response	time	from	a	single	model	simulation	(with	a	
fixed	 random	 seed),	 RT7:;:denotes	 the	 participants’	 mean	 response	 time.	 Similarly,	
accuracy56789	 and	 accuracy7:;:	 denote	 overall	 accuracy	 for	 the	 model	 and	 experiment,	
respectively.	𝑚	and	𝑛	are	normalisation	terms	for	response	times	and	accuracy,	respectively.	
Here,	𝑚	 and	 𝑛	 are	 set	 to	 the	 model	 statistic	 (i.e.,	𝑚 = 	RTmodel,	 and	 𝑛 = 	accuracymodel)	
(Bogacz	&	Cohen,	2002).	Importantly,	we	only	fit	two	free	parameters:	gain	and	w<,	 from	
Eqs.	6	and	4,	respectively.	The	vast	majority	of	the	other	model	parameters	are	adapted	from	
our	previous	work	(Atiya	et	al.	2020)	(see	Table	1).	When	generating	synthetic	data	using	
the	 model	 (for	 fitting	 or	 otherwise),	 for	 experiment	 1,	 we	 simulate	 210	 trials	 while	
generating	dot	difference	data	 from	a	uniform	distribution	bounded	by	 the	max	and	min	
value	for	each	difficulty	block	as	found	in	the	data.	For	experiment	2,	we	simulate	the	model	
with	the	vector	of	dot	differences	experienced	by	each	participant.	

Ethics statement 
 
Data	analysed	in	this	work	was	first	collected	as	part	of	a	study	conducted	by	Rouault	et	al.	
(2018).	Participants	provided	consent	in	accordance	with	procedures	approved	by	the	
University	College	London	Research	Ethics	Committee	(Project	ID	1260/003).	

	

Participants 

We	re-analysed	data	from	Rouault	et	al.	(2018),	and	the	reader	is	referred	to	this	paper	for	a	
full	description	of	the	task	and	sample.	All	participants	were	recruited	over	the	web	using	
Amazon	 Mechanical	 Turk.	 In	 experiment	 1,	 663	 (498	 after	 exclusions)	 participants	
completed	the	task,	and	were	18-75	years	of	age.	In	experiment	2,	637	(497	after	exclusions)	
participants	 completed	 the	 task,	 and	 were	 18-70	 years	 of	 age.	 The	 study	 protocol	 was	
approved	by	the	University	College	London	Research	Ethics	Committee	(REF	1260/003)	and	
all	participants	provided	informed	consent	before	undertaking	the	task.	All	participants	in	
experiment	1	and	2	were	compensated	$4.	A	$2	bonus	was	paid	out	to	participants	on	two	
conditions:	In	experiment	1,	the	bonus	was	paid	if	participants	achieved	>50%	accuracy	in	
task	 performance,	 and	 passed	 a	 check	 question.	 In	 experiment	 2,	 the	 bonus	 pas	 paid	 if	
participants	achieved	task	performance	between	60-85%,	and	passed	a	check	question.	We	
used	 the	 same	 exclusion	 criteria	 applied	 in	Rouault	 et	 al.	 (2018)	 and	 described	 in	 the	
Supplementary	Material	of	that	paper.	

Task 

In	 both	 experiments,	 participants	 completed	 a	 simple	 perceptual	 decision-making	 task	
where	they	judged	which	box	contained	a	higher	number	of	dots,	with	no	feedback.	In	any	
given	trial,	a	fixation	cross	first	appeared	for	1	second,	followed	by	two	black	boxes	with	two	
different	amounts	of	dots	(for	300ms).	The	position	of	the	box	with	higher	number	of	dots	
(i.e.	 target	 box)	 was	 pseudo-randomised.	 After	 indicating	 the	 position	 of	 the	 target	 box	
(left/right)	 via	 a	 keyboard	 arrow	 button	 press,	 the	 box	 was	 highlighted	 for	 500ms.	 In	
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experiment	1,	participants	completed	210	trials,	split	over	5	blocks,	where	the	difficulty	was	
varied.	 After	 every	 trial	 particpants	 provided	 a	 confidence	 judgement	 on	 a	 full	 11-point	
probabilistic	scale	(Boldt	and	Yeung	2015):	1=certainly	wrong,	3=probably	wrong,	5=maybe	
wrong,	7=maybe	correct,	9=probably	correct,	11=certainly	correct.	Finally,	pre-	and	post-
task	global	confidence	ratings	were	given	by	participants,	together	with	their	estimates	of	
expected	maximum	and	minimum	levels	of	task	performance.	

Experiment	 2	 (see	 Supplementary	 Note	 1)	 is	 identical	 to	 experiment	 1	 in	 all	 but	 three	
aspects.	 First,	Rouault	 et	 al.	 (2018)	 used	 a	 staircase	 (calibration)	 procedure	 to	 fix	
participants’	perceptual	performance	(Garcıa-Pérez	1998;	Fleming	et	al.	2010).	The	staircase	
procedure	was	two-down	one-up,	with	equal	step	sizes.	Step-sizes	(in	logspace)	were:	0.4	
for	first	5	trials,	0.2	for	next	5,	0.1	for	the	rest	of	the	task.	The	starting	point	was	4.2.	Each	
participant	completed	25	practice	trials	at	the	beginning	of	the	task	to	minimise	the	burn-in	
period.	Second,	participants	reported	their	confidence	on	a	6-point	confidence	scale	which	
ranged	from	1=	guessing	to	6=certainly	correct).	Third,	pre-	and	post-task	global	confidence	
ratings	were	omitted	from	experiment	2.	

Psychiatric questionnaires 

Participants	completed	a	set	of	self-report	questionnaires	used	to	assess	their	psychiatric	
symptoms	(Rouault	et	al.	2018).	In	experiment	1,	the	questionnaires	were:	

• Depression	using	the	Self-Rating	Depression	Scale	(SDS)	(Zung	1965).	

• Generalised	 anxiety	 using	 the	 Generalised	 Anxiety	 Disorder	 7-Item	 Scale	 (GAD-
7)	(Spitzer	et	al.	2006)	

• Schizotypy	using	the	Short	Scales	for	Measuring	Schizotypy	(SSMS)	(Mason,	Linney,	and	
Claridge	2005)	

• Impulsivity	 using	 the	 Barratt	 Impulsiveness	 Scale	 (BIS-11)	(Patton,	 Stanford,	 and	
Barratt	1995)	

• Obsessive	 Compulsive	 Disorder	 (OCD)	 using	 the	 Obsessive-Compulsive	 Inventory–
Revised	(OCI-R)	(Foa	et	al.	2002)	

• Social	anxiety	using	the	Liebowitz	Social	Anxiety	Scale	(LSAS)	(Liebowitz	et	al.	1985)	

In	experiment	2	(Supplementary	Notes	1	and	2),	the	following	changes	were	made	to	the	set	
of	questionnaires:	

• Generalised	Anxiety	questionnaire	was	replaced	by	the	State	Trait	Anxiety	Inventory	
(STAI)	Form	Y-2	(Spielberger	and	Gorsuch	1983)	

• Alcoholism	 was	 assessed	 with	 the	 Alcohol	 Use	 Disorders	 Identification	 Test	
(AUDIT)	(Saunders	et	al.	1993)	

• Apathy	was	assessed	with	the	Apathy	Evaluation	Scale	(AES)	(Marin,	Biedrzycki,	and	
Firinciogullari	1991)	
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• Eating	disorders	was	assessed	with	 the	Eating	Attitudes	Test	(EAT-26)	(Garner	et	al.	
1982)	

These	changes	in	experiment	2	were	made	to	facilitate	identification	of	three	latent	factors	
that	accounted	for	the	majority	of	covariance	across	individual	questionnaire	items	(Gillan	
et	al.	2016).	

Factor analysis 

For	experiment	2	data	(see	Supplementary	Notes	1	and	2),	we	obtained	three	latent	factors	
that	explain	the	shared	variance	across	the	209	questionnaire	items.	To	do	that,	we	followed	
the	same	approach	in	Rouault	et	al.	(2018)	and	Gillan	et	al.	(2016),	and	used	the	fa()	function	
from	the	Psych	package	in	R.	The	three	latent	factors	were	Anxious-Depression,	Compulsive	
Behaviour	and	Intrusive	Thought,	and	Social	Withdrawal.	

Linear regressions 

To	 estimate	 the	 relationship	 between	 the	 neural	 model	 parameters	 and	 self-reported	
psychiatric	scores,	we	followed	the	same	approach	as	in	Rouault	et	al.	(2018).	All	regressors	
were	z-scored	to	ensure	comparability	of	regression	coefficients.	For	each	symptom	score,	
and	controlling	for	age,	IQ	and	gender	the	regressions	were:	

	 Param = 𝛽3 + 𝛽=Score+ 𝛽4Age+ 𝛽>Gender+ 𝛽?IQ	
		Eq.		9	

	

	

To	 assess	 the	 relationship	 between	 model	 parameters	 and	 the	 latent	 factor	 scores	 (see	
above),	the	regression	was:	

	 Param
= 𝛽3 + 𝛽=Factor	1+ 𝛽4Factor	2+ 𝛽>Factor	3+ 𝛽?Age+ 𝛽@Gender+ 𝛽AIQ	

Eq.10	

	

	

Finally,	 we	 used	 linear	 regressions	 to	 estimate	 the	 contribution	 of	 two	 of	 the	 model	
parameters	to	standard	metrics	of	metacognition	and	perceptual	sensitivity.	Here,	we	did	
not	 z-score	 the	 regressors	 as	 the	 goal	 was	 to	 visualise	 the	 relationship	 rather	 than	
quantitatively	compare	coefficients.	The	regressions	were:	

	 metric = 𝛽3 + 𝛽=model	param	
Eq.11	
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Metacognitive bias, sensitivity, and efficiency 

Metacognitive	 bias	was	 computed	 as	 the	mean	 confidence	 level	 across	 both	 correct	 and	
incorrect	 trials.	 To	 estimate	 metacognitive	 sensitivity,	 we	 entered	 simulated	 confidence	
reports	as	data	 in	a	Bayesian	model	of	metacognitive	efficiency,	HMeta-d	(Fleming	2017).	
The	 model	 returns	 a	 value	 of	 metacognitive	 sensitivity	 (𝑚𝑒𝑡𝑎 − 𝑑!)	 for	 each	 simulated	
dataset.	To	compute	metacognitive	efficiency,	we	calculated	the	ratio	𝑚𝑒𝑡𝑎 − 𝑑!/𝑑!.	

	

	

	

Table	1.	Table	of	fixed	model	parameter	values	for	all	participants.	Parameters	𝜏#, 𝜏$, 𝑎, 𝑏, 𝑑, 𝐼% , 𝑤&	were	directly	adapted	
from	(Atiya	et	al.	2020).	Parameters	𝜇', 𝑤(, 𝑆)*	were	manually	tuned	to	adapt	the	model	simulations	to	the	task	and	stimuli.	

Parameter	 Description	 Value	
	

𝜏B	 Synaptic	gating	time	constant	 100ms	 	

𝜏1	 Uncertainty	 population	 time	
constant	

150	ms	 	

𝑎	 Input-output	function	parameter	 270	(V	nC)-1	 	

𝑏	 Input-output	function	parameter	 108	Hz	 	

𝑑	 Input-output	function	parameter	 0.154	s	 	

𝐼/ 	 External	tonic	input	 0.3255	nA	 	

𝑤-	 Self-excitation	strength	 0.261	nA	 	

𝑤&	 Inhibition	strength	 0.0497	nA	 	

𝜇3	 Baseline	stimulus	input	 26.49	Hz	 	

𝑤2 	 External	input	synaptic	strength	 0.00052	nA	Hz-1	 	

 

Data availability 
Code	used	to	fit,	simulate,	and	analyse	the	model	(and	data)	is	available	at	this	repo:	
https://github.com/nidstigator/uncertainty_psychiatry_2020	
Data	collected	is	available	in	the	same	repo.	
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