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Abstract 
Lack of diversity in human genomics limits our understanding of the genetic underpinnings of complex 

traits, hinders precision medicine, and contributes to health disparities. To map genetic effects on 

gene regulation in the underrepresented Indonesian population, we have integrated genotype, gene 

expression, and CpG methylation data from 115 participants across three island populations that 

capture the major sources of genomic diversity on the region. In a comparison with a European 

dataset, we identify 166 uniquely Indonesia-specific eQTLs, highlighting the benefits of performing 

association studies on non-European populations. By combining local ancestry and archaic 

introgression inference eQTLs and methylQTLs, we identify regulatory loci driven by modern Papuan 

ancestry as well as introgressed Denisovan and Neanderthal variation. GWAS colocalization connects 

QTLs detected here to hematological traits. Our findings illustrate how local ancestry and archaic 

introgression drive variation in gene regulation across genetically distinct and in admixed populations. 

 

Keywords: Genetic variation, Gene regulation, eQTL, QTL, Neandertal, Denisovan, Indonesia   
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Introduction 
As we move into the age of precision medicine, the systematic under sampling of global genetic 

diversity limits our ability to broadly apply biomedical research efforts across diverse ethnicities and 

population backgrounds (Duncan et al. 2019; Landry et al. 2018). Indeed, the vast majority of human 

genomics studies to date have been conducted in individuals with European ancestry, who account for 

a minority of the global population (Sirugo et al. 2019). To gain a comprehensive understanding of the 

genetic architecture of complex disease, it is critical to expand human genomics studies into diverse 

populations. Collection of multi-modal genomic data from traditionally undersampled populations will 

also allow for the mapping of genetic associations with molecular phenotypes and integration with 

genome-wide association studies (GWAS).  

 

The Indonesian archipelago is one such undersampled region. Genetically and geographically 

structured, with a genomic cline of Asian to Papuan ancestry stretching from west to east, it is the 

fourth largest country in the world by population, home to 267 million people. To investigate the effects 

of modern and archaic local ancestry on gene regulation in Indonesians, we present the first maps of 

expression QTLs (eQTLs) and DNA methylation QTLs (methylQTLs) in 115 Indonesian individuals 

drawn from three island populations that capture the major genomic axes of diversity across the 

region. 

 

 

Results 
Patterns of modern local ancestry and archaic introgression vary across the three study populations 
To contextualize the genetic diversity of the three study populations, we clustered the 115 Indonesian 

samples (Figure 1a) using principal component analysis (PCA) of genotype data, along with European 

and Han Chinese samples from the 1000 Genomes project. The first two principal components clearly 

separate the three study populations (Figure 1b). The Mentawai, representative of East Asian 

ancestry, cluster closest to mainland Chinese populations, whereas the Korowai, representative of 

Papuan ancestry, cluster distinctly from all other populations. Individuals from Sumba — a near equal 

mixture of the two ancestries — cluster between Mentawai and Korowai, as expected (Natri et al. 

2020). 

 

We genotyped our samples using two separate platforms, whole-genome sequencing (WGS, n = 73) 

and a genotyping array (n = 42; Methods, Supplementary Table 1). Using only the complete genome 

sequences, we inferred patterns of global and local ancestry (LA) and archaic introgression across the 

three populations. On average, the proportion of the genome for which we can make a confident 
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ancestry assignment is 80% for Mentawai, 71% for Sumba, and 85% for Korowai. The average 

proportion of ancestry-called individual haploid genomes assigned as Papuan is 5.3% in Mentawai, 

26.8% in Sumba, and 95.0% in Korowai (Figure 1c,d). In addition, we were able to identify Denisovan-

 
Figure 1. Patterns of genetic ancestry across three Indonesian island populations. a: Map of the 
sampling locations of the three study populations: Mentawai, blue; Sumba, yellow; Korowai, red. 
Numbers of samples used in the QTL analyses are indicated. b: Principal Components calculated from 
the genotype data of the three study populations, as well as Han Chinese from Beijing (CHB), Southern 
Han Chinese (CHS), and individuals with Northern and Western European ancestry (CEU) from the 
1000 genomes project. c, d: Estimates of global (c) and local (d) ancestry across 73 individuals (bars) 
with available WGS data. c shows proportions (y-axis) of East Asian and Papuan ancestry across all 
chromosomes. d shows patterns of local ancestry across the two haplotypes in each individual across 
chromosomes. 
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introgressed haplotypes covering, on average, 0.13%, 0.48%, and 1.44%, of each haploid genome in 

Mentawai, Sumba, and Korowai, respectively, consistent with previous studies showing a high 

frequency of Denisovan sequence in Korowai (Jacobs et al. 2019). Proportions of inferred Papuan 

ancestry and Denisovan introgression are highly correlated (Pearson’s r = 0.995, Extended Data 

Figure S1). Further, we identified Neanderthal-introgressed haplotypes covering on average 1.08%, 

1.19%, and 1.40% of each haploid genomes from the three study populations. 

 
Genetic determinants of gene expression and CpG methylation levels in Indonesia 
We used a linear regression-based approach to identify genetic variants associated with changes in 

expression (eQTL) and methylation (methylQTL) levels (Methods). At an FDR of 0.01, we detect a 

total of 1,975 significant cis-eQTLs (Supplementary File 1) and 48,014 cis-methylQTLs 

(Supplementary File 2). The majority of eQTLs and methylQTLs are located in non-coding parts of the 

genome (Methods, Figure 2a,b), and are enriched among transcriptionally active histone marks and 

accessible chromatin, and mostly depleted on marks associated with heterochromatin and repression 

of transcription across three blood cell lines (Figure 2c,d, Extended Data Figure 2). 

 

We integrated the eQTL and methylQTL calls to gain insight into how genetic regulation of CpG 

methylation contributes to the regulation of gene expression (Supplementary Note 1). We tested for 

colocalization between 4,639 pairs of CpGs and genes using a Bayesian method (Methods, 

Supplementary Note 1). Over a wide range of prior probabilities, 720 (15.5%) of the tested pairs show 

robust support for a common causal variant (Methods, Supplementary Figure S1, Supplementary File 

5), corresponding to 621 unique CpGs and 222 unique genes. We had previously identified 80 

(36.0%) of the 222 genes as showing a negative correlation between expression and promoter 

methylation levels (Natri et al. 2020). CpGs located on promoters are more likely to show an opposite 

direction of effect with the gene than CpGs located outside regulatory regions (Fisher’s test p = 

3.835×10-6, Figure 2e, Supplementary Note 1, Supplementary Figure S2). These findings illustrate the 

relationship between genetically regulated promoter methylation and gene expression, highlighting the 

benefits of integrating multiple types of molecular data for a better understanding of the gene 

regulatory machinery. 

 

Sharing of eQTLs between Indonesian and European populations 
The majority of eQTL studies have been carried out in European populations and do not capture 

global genetic diversity. To better understand the impact of ancestry on the genetic architecture of 

gene regulation, we compared eQTLs detected here (at a relaxed FDR of p< 0.10 to account for 
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differences in power) with those identified in a comparable European dataset (Lepik et al. 2017). Of 

the 3,049 genes tested for colocalization (Methods), 48.9% (1,489) had some evidence of 

 
Figure 2: Qualities of QTLs called across 115 individuals. a, b: Genomic annotations of eQTLs (a) 
and methylQTLs (b). c, d: Enrichment of eQTLs (c) and methylQTLs (d) among histone marks derived 
from primary mononuclear cells from peripheral blood in the Epigenomics Roadmap project. Enrichment 
was tested against a background null-distribution of 100 sets of variants. e: An example of a colocalized 
eQTL-methylQTL pair exhibiting an opposing effect direction on the target trait . The left-side plot shows 
the -log10(p) of the associations between variants in cis and GSTM4 expression (orange) orcg22247664 
methylation (blue). The middle plot shows the relationship between the top-SNP genotype and 
cg22247664 methylation, and the right-side plot the relationship between the top-SNP genotype and 
GSTM4 expression. 
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colocalization and 17.9% (547) exhibited robust evidence of colocalization with a wide range of prior 

probabilities, suggesting a high probability of a single common causal variant shared across the 

 
Figure 3. Sharing of eQTLs between Indonesian and European populations. a: A subset of 
Indonesian eQTLs shows evidence of colocalization with European eQTLs. Violin plots of absolute 
effect sizes for the top-SNPs in the Indonesian data for genes belonging to each group. The barplot 
shows the numbers of genes belonging to each group. b, c: The Indonesian top-SNPs for genes that do 
not show evidence of colocalization exhibit differences in absolute effect sizes (b, paired t-test p < 
2.2×10-16) and MAFs (c, paired t-test p < 2.2×10-16) between populations. d, e: Examples of a 
colocalized gene, LSP1 (d), and a gene that has an eQTL in the Indonesian data, but not in the 
European data, NDC80 (e). Manhattan plots show the chromosomal locations of tested SNPs on the x-
axis and the -log10(p-values) of each SNP on the y-axis. Indonesian = turquoise, European = gray. 
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populations (Figure 3a,d). Concordant with previous reports, eQTLs that are shared between 

populations exhibit larger effect sizes than other eQTLs (t-test p = 9.4×10-12), and most (87%) shared 

eQTLs show the same direction of effect in both populations (Stranger et al. 2012) (Figure 3a, 

Extended Data Figure 3, Supplementary Note 2). Conversely, 50.3% of genes (1,660) exhibited no 
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evidence of co-localization even with relaxed thresholds (Methods). However, 1,494 were associated 

(nominal p < 5×10−4) with an eQTL in Europeans. Out of these, 440 also showed nominally significant 

p-values for the Indonesian top-SNPs. 512 genes did not show evidence for colocalization and had the 

same top-SNPs testable in both populations, indicating that these genes are regulated in cis by 

different causal variants in each population. The absolute effect sizes for the Indonesian top-SNPs of 

these 512 genes differ between populations (paired t-test p < 2.2×10-16), indicative of fundamentally 

population specific effects (Figure 3b). Furthermore, the minor allele frequencies (MAF) of the 

Indonesian top-SNPs were significantly different between populations (paired t-test p < 2.2×10-16, 

Figure 3c), likely resulting in reduced power to detect these associations in the European data. These 

finding illustrate that analyses on diverse populations can lead to the discovery of new potentially 

causal associations even with moderate sample sizes. Despite the smaller sample size and reduced 

power to detect small effect sizes in our data, we identify 166 Indonesian-specific eGenes that do not 

show any evidence of colocalization and were not nominally associated with variants in cis in the 

European population (Figure 3a,e, Supplementary Note 2). Several of these genes are clinically 

relevant, including cancer-related NDC80 (Figure 3e), NRAS, BRMS1, and MRC2 (Supplementary 

Table 4). When compared to a background set of all tested genes, Indonesia-specific eGenes are 

enriched among canonical pathways involved in apelin signaling, platelet activation, Rap1 signaling, 

and melanogenesis (Supplementary Table 5). These results highlight the importance of studies on 

non-European populations for a better understanding of genetic regulation of molecular traits. 

 

Subsets of methylQTLs and eQTLs are largely driven by modern local ancestry and archaic 

introgression 

In addition to differences between Indonesians and Europeans, we sought to understand the extent to 

which the two distinct sources of local ancestry (LA) in modern Indonesians, as well as introgression 

Figure 4. Integrating local ancestry inference at regulatory loci to detect QTLs driven by ancestry 
and archaic introgression. a: Schematic illustrations of variation in QTL genotype (A = major allele, B 
= minor allele) and local ancestry are shown across the two haplotypes in three individuals in three 
populations. In the first example, QTL genotype variation is independent of local ancestry, and allele 
frequencies are equal between populations. Thus, there is an expected correlation between the QTL 
genotype and the molecular trait, but not between ancestry and the trait. In the second example, QTL B 
allele closely segregates with the ancestry informative marker, and allele frequencies differ between 
populations. There is an expected correlation between the genotype and the molecular trait, as well as 
inferred ancestry and the trait. b, c: Linear regression between the numbers of QTL B alleles and 
numbers of inferred Papuan, Denisovan, and Neanderthal alleles reveal subsets of (b) eQTLs and (c) 
methylQTLs largely driven by modern LA and archaic introgression. The numbers of QTLs exceeding 
the R2 threshold of 70% are indicated. d: An example of an eQTL independent of modern LA. e: An 
example of an eQTL highly correlated with modern LA. In d and e, the leftmost plot shows the 
correlation between the number of inferred Papuan alleles and eQTL B alleles. rs ID and R2 are 
indicated. The center plot shows the effect of the eQTL B allele dosage on the normalized expression 
level of the target gene. The rightmost plot shows the effect of the inferred Papuan allele dosage on the 
target gene. 
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from archaic hominins, have impacted gene regulatory architecture. We examined the haplotype 

background on which our observed QTLs occur and asked whether there was a relationship between 

the inferred ancestral source of the genotype and expression/methylation levels (Methods, Figure 

4a,d,e). We find 9, 2, and 31 instances where variance in eQTL genotype is largely driven (R2 > 70%) 

by modern LA, archaic Denisovan introgression, and archaic Neanderthal introgression, respectively 

(Figure 4b), directly linking ancestral alleles to gene expression differences between individuals. 

Similarly, we find 301, 112, and 477 instances where the methylQTL genotype is driven by modern 

LA, Denisovan introgression, and Neanderthal introgression (Figure 4c). In total, 2.1% of eQTLs and 

2.29% of methylQTLs are driven by modern LA or archaic introgression. Of the 9 and 373 unique 

Papuan-driven QTL target genes and CpGs, 7 (77.8%) and 270 (72.4%) were previously identified 

(Natri et al. 2020) as differentially expressed/methylated in at least one of the pairwise comparisons 

between islands. Further, 42 out of the 122 (34.4%) Denisovan-driven methylQTL targets were 

differentially methylated, and 7 (22.6%) and 149 (25.6%) of the Neanderthal-driven eQTL and 

methylQTL targets were differentially expressed/methylated. These observations highlight how both 

modern ancestry and archaic introgression can contribute to between-population differences in 

molecular phenotypes in the region. 

 

A subset of archaic ancestry driven QTLs are under positive selection in the region 
We asked whether positive selection on ancestry informative regulatory variants may have contributed 

to the between-population variation in molecular phenotypes in the region. We used a haplotype-

based nSL selection scan (Methods) to identify genomic regions that show signs of past selective 

sweeps and found 4.7%, 4.6%, and 5.0% of the genome to be under positive selection in Mentawai, 

Sumba and Korowai, respectively. We overlapped the ancestry driven QTLs with genomic regions with 

strong evidence of positive selection. While we detect no clear overrepresentation of ancestry-driven 

QTLs among these regions (Supplementary Table 4), we find individual QTLs that overlap them 

(Supplementary Table 7, Extended Data Figures 4, 5), including one Papuan-driven eQTL under 

selection in Mentawai, one Neanderthal-driven eQTL in Korowai and one in Mentawai, as well as 

Papuan-driven methylQTLs under selection in Mentawai (2), Sumba (2), and Korowai (12). 

 

Moreover, we detect one Denisovan-driven methylQTL under selection in Korowai, associated with a 

CpG located on the promoter of ZNF426. Genetic variation associated with ZNF426 and other KRAB-

ZNF genes has previously been identified on candidate regions for positive selection in multiple 

human populations (Perdomo-Sabogal and Nowick 2019; Ávila-Arcos et al. 2020). Further, we 

identified 13, 6, and 3 Neanderthal-driven methylQTLs under selection in Mentawai, Sumba, and 
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Korowai (Supplementary Table 5). For example, a Neanderthal-driven methylQTL under selection in 

Mentawai was also nominally associated (p = 2.596×10-7) with CATSPER3 (Cation Channel Sperm 

 
Figure 5. Subsets of LA and archaic introgression driven QTLs under positive selection or 
connected to complex traits. a, b, c: Manhattan plots of absolute nSL values across the 
autosomes in Mentawai (a), Sumba (b) and Korowai (c). nSL threshold of 2 is indicated. The QTL 
plotted in f is indicated in red in a. d, e: Manhattan plots of eQTLs (d) and methylQTLs (e). The x-
axis shows positions along the autosomes and the y-axis shows the -log10(p-value) for each SNP. 
For each QTL SNP, -log10 of the smallest p-value is plotted. f: An example of a Neanderthal-driven 
QTL under positive selection Mentawai. The left-side plot shows the relationship between the QTL 
genotype and the number of inferred Neanderthal alleles. The center-plot shows the relationship 
between the methylQTL genotype and normalized CpG methylation. The right-side plot shows the 
relationship between the genotype and normalized CATSPER3 expression. g: An example of a 
Denisovan-driven QTL that colocalizes with platelet count GWAS signal. Manhattan plots of the 
cg23681866 methylQTL, ZFP57 eQTL, and platelet count GWAS. Dotted lines indicate CpG 
positions and ZFP57 TSS. Three additional methylQTLs on the region colocalize with platelet 
count, the top SNPs of all four methylQTLs are indicated in red. All four methylVariants are 
nominally associated with ZFP57. Locations of the three additional methylQTL CpGs are indicated 
with light gray dotted lines. Indonesian LD patterns along this part of the genome are shown above. 
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Associated 3) expression, which was differentially expressed between Mentawai and Korowai, as well 

as Sumba and Korowai (Natri et al. 2020). Neanderthal variation in sodium channel genes was 

recently linked to increased pain sensitivity in modern humans (Zeberg et al. 2020). These findings 

indicate that positive selection on introgressed archaic variation may have shaped the patterns of 

these molecular traits, as well as their downstream functions, in Indonesia. 

 
Connecting regulatory variants to complex traits 
GWAS colocalization analyses offer a way to connect regulatory variants to biological functions and 

complex traits. We tested for colocalization between the significant QTLs and 36 hematological traits 

using genome-wide summary statistics from a GWAS study on 173,480 European ancestry 

participants (Astle et al. 2016). We detected 30 and 614 unique eGenes and methylCpGs that 

colocalize with 34 and 36 traits, respectively (Supplementary Table 8). Notably, we find a Papuan-

driven methylQTL that colocalizes with hemoglobin measurements, as well as four Denisovan-driven 

methylQTLs that colocalize with platelet count. We further examined these four methylQTLs to gain 

insight into possible mechanisms underlying the connection with platelet count (Supplementary Note 

4, Supplementary Table 9). All four target CpGs are located near the HLA superlocus. While these 

methylQTLs do not significantly colocalize with eQTLs in our data, they are nominally associated with 

the nearby ZFP57. ZFP57 is a transcriptional regulator known to have an important role in DNA 

methylation, epigenetic regulation and imprinting during development (X. Li et al. 2008). Expression of 

ZFP57 is dependent on underlying genetic variation, and while the biology of ZFP57 in adults is not 

well studied, its location within the HLA region points to a role in immunity, and it has been implicated 

as the causal gene connecting some GWAS variants to cancer and HIV/AIDS progression (Plant et al. 

2014). Further multi-ethnic GWAS and functional studies are needed for the fine-mapping of causal 

variants underlying transcription. 

 
 
Discussion 
Indonesia is the world's fourth most populous country. Its people represent a key region that has been 

vastly understudied, one that is undergoing a rapid demographic and lifestyle shift giving rise to an 

expanding middle class, and where non-infectious, complex diseases are already contributing 

substantially to mortality and morbidity. This transition accelerates the need to understand the 

molecular underpinnings of complex disease, and in this context, our study adds to a growing 

literature demonstrating the importance of characterizing functional genomics within traditionally 

understudied populations (Mogil et al. 2018; Tehranchi et al. 2019). 

 

We have explored the degree to which functional variation differs between Europeans and 
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Indonesians, and more broadly, the problem of translating eQTL knowledge across populations. When 

comparing the eQTLs identified in this study to those identified previously in a European cohort (Lepik 

et al. 2017), only 45% have evidence of a shared causal variant. Additionally, we identified 166 genes 

that are eQTLs in Indonesians but have no evidence of an eQTL in Europeans, representing unique 

population-specific eQTLs. These eQTLs impact the expression of genes involved in clinically relevant 

biological processes, such as immunity and cancer progression. 

 

Leveraging the unique cline of Asian and Papuan ancestry in Indonesia, we were also able to identify 

both eQTLs and methylQTLs driven by local ancestry or introgression from archaic hominin species. 

In an attempt to identify the forces shaping QTLs driven by LA or archaic alleles, we integrated the 

QTL results with signals of recent positive selection in the three Indonesian study populations, 

possibly indicative of local adaptation. While limited in number, we do indeed identify such QTLs that 

are also under positive selection. At least anecdotally, this demonstrates how local selective pressures 

can act upon unique non-coding variation altering molecular traits and presumably endpoint 

phenotypes as well. This is further bolstered by our identification of QTLs co-localizing with GWAS 

traits. Taken together these data demonstrate how population-level genetic structure can drive 

differences in functional variation that contributes to complex traits.  

 

We believe the modest overlap of GWAS hits with the population-specific QTLs represents a non-

trivial challenge in the field of functional genomics: how do we connect population-specific functional 

variation to loci associated with complex traits identified in European populations? From a practical 

perspective, we do not anticipate a robust expansion of traditional GWAS studies being carried out in 

understudied populations. To this end, the field will need to move away from simple intersections of 

GWAS and QTL hits, which rely upon shared LD structure, and instead integrate genetic variation, 

GWAS results, context-specific multi-omics (in simulated or actual disease states and in a range of 

cell types), and robust functional validations to define common sets of regulatory elements that 

contribute to disease and are shared across populations.  

 

 
Materials and methods 
Ethical approvals 

All samples in this study have been previously reported (Natri et al. 2020). Samples were collected by 

HS and an Indonesian team from the Eijkman Institute for Molecular Biology, Jakarta, Indonesia, with 

the assistance of Indonesian Public Health clinic staff. All collections followed protocols for the 

protection of human subjects established by institutional review boards at the Eijkman Institute (EIREC 
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#90 and EIREC #126) and the University of Melbourne (Human Ethics Sub-Committee approval 

1851639.1). All individuals gave written informed consent for participation in the study. Permission to 

conduct research in Indonesia was granted by the Indonesian Institute of Sciences and by the Ministry 

for Research, Technology and Higher Education. 

 

Data acquisition 
Here we report two new genomic datasets: 1) 42 samples genotyped using the Illumina Infinium 

Omni2.5-8 v1.3 BeadChip array, including 5 Korowai samples from New Guinea, 18 samples from 

Mentawai, western Indonesia, and 19 samples from Sumba, eastern Indonesia; 2) complete genomes 

for 70 samples sequenced to an expected mean depth of 30x, including 11 Korowai, 30 Mentawai, 

and 29 Sumba samples. 

 

Whole genome data processing 
The newly generated genome sequences were processed closely following the protocol described in 

(Jacobs et al. 2019) with the resources of the University of Tartu High Performance Computing Center 

(University of Tartu 2020). Briefly, we first aligned the reads to the ‘decoy’ version of the GRCh37 

human reference sequence (hs37d5). After alignment, and keeping only properly paired reads that 

mapped to the same chromosome, the autosomal sequencing depth across the samples used in 

downstream analyses was as follows: min = 31.5x, Q1 = 35.3x, median = 36x, Q3 = 36.5x, max = 

39.5x. Base-calling was undertaken using GATK best practices (Poplin et al., n.d.; Auwera et al. 

2013). Following the generation of per-sample gVCF files with GATK4 HaplotypeCaller, single sample 

gVCFs were combined into multisample files using CombineGVCFs, and joint genotyping was 

performed using GATK4 GenotypeGVCFs, outputting all sites to a multisample VCF. To maximize the 

SNP discovery and phasing power, approximately 900 complete genomes were used in a multisample 

calling pipeline. In addition to the newly generated genomes, these included complete genome 

sequences from SGDP (Mallick et al. 2016) and IGDP (Jacobs et al. 2019) projects, Malaspinas et al. 

(Malaspinas et al. 2016), Vernot et al. (Vernot et al. 2016), Lan et al. (Lan et al. 2017), and the HiSeqX 

Diversity Cohort of Polaris project (https://github.com/Illumina/Polaris), as well as approximately 100 

unpublished genome sequences from Estonia and Papua. SNP calling was performed on the 

combined dataset, with published genomes analyzed from raw reads exactly as for the new sequence 

data. Using bcftools v1.9 (H. Li 2011), the following filters were applied to each genotype call in 

multisample VCF files: base depth (DP) ≥8x and ≤400x, and genotype quality (GQ) ≥30. Only biallelic 

SNPs and invariable reference sites were kept.  
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The published data included 7 Korowai and 10 Mentawai samples, however, two first-degree relatives 

(MTW024 and MTW066) were excluded from further analysis (Jacobs et al. 2019). Our final WGS 

dataset therefore included 84 samples from three target groups: 17 Korowai, 38 Mentawai, and 29 

Sumba. 

 

Next, modern human multisample VCF files were merged with two archaic individuals: Denisovan 

(Meyer et al. 2012) and Neanderthal (Prüfer et al. 2014). Positions with missing or low-quality calls 

(marked as ‘LowQual’ in the original archaic VCF files) in one of the archaic samples were excluded 

during the merging procedure. We kept only sites that had high-quality variant calls in at least 99% of 

samples in the combined modern/archaic dataset. Applying this 99% call-rate filter yielded a total of 

52,443,217 SNPs. However, we removed sites within segmental duplications, repeats, and low 

complexity regions, thus retaining 49,374,343 SNPs. These masks were downloaded from the UCSC 

and Broad Institute genome resources: 

http://hgdownload.soe.ucsc.edu/goldenPath/hg19/database/genomicSuperDups.txt.gz 

http://software.broadinstitute.org/software/genomestrip/node_ReferenceMetadata.html 

Phasing was performed with Eagle v2.4 (Loh, Palamara, and Price 2016). Because our final dataset 

included complete genomes from very diverse human populations together with a large number of 

local Island Southeast Asian and Papuan groups, we did not use any reference datasets to avoid 

potential phasing bias. 

 

Genotype array data processing 

Array data for 42 Indonesian and Papuan individuals was processed in PLINK v1.9 (Chang et al. 

2015). The average missing rate per person in the raw dataset was around 0.45% (min 0.27%, max 

2.5%); 2,194,297 autosomal positions were kept after excluding SNPs with more than 5% of missing 

data. 

 

Array data was imputed with Beagle v5.1 (Browning, Zhou, and Browning 2018) using complete 

genome sequences as a reference. Two imputation reference panels were generated. For the 

imputation of 18 Mentawai samples, we applied a reference panel that included 97 complete genome 

sequences from western Indonesia (Bali, Borneo, Java, Mentawai, Nias, Sulawesi, Sumatra), 

Philippines and Taiwan. For the imputation of 24 Korowai and Sumba samples, we applied a 

reference panel made of 249 complete genomes sequence from eastern Indonesia (Alor, Flores, Kei, 

Lembata, Sumba, Tanimbar) and Papua (Bougainville, New Britain, New Guinea, including Korowai, 

and New Ireland). 

 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 29, 2020. ; https://doi.org/10.1101/2020.09.25.313726doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.25.313726
http://creativecommons.org/licenses/by/4.0/


 
16 

Variant sites were filtered using bcftools and VCFtools (Danecek et al. 2011) to retain only high quality 

imputed sites with dosage R2 >0.95 (estimated squared correlation between the estimated allele dose 

and the true allele dose, DR2). These positions were extracted from the complete genomes from 

Korowai, Mentawai and Sumba (N = 84) to produce a new combined SNP set made of imputed and 

WGS data. These data were filtered to retain SNPs with a proportion of missing data < 0.3 and minor 

allele frequency (MAF) >0.05, which resulted in 4,077,164 variants. Imputed genotypes were further 

filtered to retain genotypes with genotype probability (GP) >0.90. 

 

Local ancestry inference 

We used ChromoPainter v2 CP, (Lawson et al. 2012) to perform local ancestry (LA) inference and 

detect Asian and Papuan ancestry in all published and newly generated complete genomes from 

Korowai (N = 17), Mentawai (N = 38) and Sumba (N = 29). This method relies on phased haplotype 

data and describes each individual recipient chromosome as a mixture of genetic blocks from the set 

of predefined donor individuals. 

 

First, East Asian and Papuan reference panels were generated to assign local genomic ancestry in 

target samples. We selected unadmixed East Asian and Papuan samples by running ADMIXTURE 

v1.3 (Alexander et al. 2009) at K = 3 using all available East and Southeast Asian, European and 

Papuan samples from the combined WGS dataset. For the East Asian reference panel, we kept only 

Asian samples (N = 102) with less than 0.05% of non-East Asian ancestry. For the Papuan reference 

panel, we kept only Papuan samples (N = 63) with less than 0.05% of non-Papuan ancestry and 

excluded all Korowai samples. To balance the sample size of the two reference panels, we randomly 

selected 63 East Asian samples from the unadmixed reference dataset. 

Next, we painted each of 84 target genomes individually using the East Asian and Papuan reference 

panels as donors. We used the following protocol: 

1. The initial CP run was performed with 10 EM steps to estimate prior copying probabilities for 

each individual and chromosome separately. 

2. Estimated prior copying probabilities were averaged across the genome for each individual. 

The main CP run was performed with a recombination scaling constant and global mutation 

probability from the first step, and genome-wide average prior copying probability. 

3. Either East Asian or Papuan ancestry was then assigned to individual SNPs using a probability 

threshold of 0.85. Unknown ancestry was assigned to SNPs with intermediate copying 

probability. 

 

Identifying archaic Denisovan introgression 
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We defined the high confidence Denisovan archaic haplotypes as outlined previously (Jacobs et al. 

2019), but using a larger group of sub-Saharan African individuals (61 sub-Saharan Africans in total, 

Supplementary Table 3) For each individual, we started with Denisovan introgressed haplotypes as 

inferred by CP; then filtered out those that did not overlap (by >0.001%) the Denisovan introgressed 

haplotypes as inferred by a previously published hidden Markov model (HMM) (Jacobs et al. 2019); 

then filtered out those that did not overlap (by >0.001%) archaic introgressed haplotypes inferred by 

the another HMM approach (Skov et al. 2018); and finally filtered out any of the remaining haplotypes 

that did overlap (by >0.001%) Neanderthal introgressed haplotypes as inferred by CP. We then 

annotated each SNP found in several target sample groups (i.e., monomorphic SNPs in that group are 

skipped, as are any that are masked out by the alignability/gap mask) according to how often the 

REF/ALT state appears on an inferred high confidence Denisovan introgressed haplotype in that 

group. This was done for three separate groups: 1) all Korowai individuals, 2) all Korowai individuals, 

Sumba individuals and those Mentawai individuals who are from the new dataset, and 3) all 

individuals in the 'Papuan' continental group, which includes all Papuans and Melanesians except 

Baining. An analogous process was used to annotate Neanderthal ancestry SNPs, beginning instead 

with Neanderthal introgressed haplotypes inferred by CP before requiring intersection with 

Neanderthal introgressed haplotypes inferred by the HMM and archaic haplotypes inferred by 

HMMArchaic and removing those intersecting CP Denisovan haplotypes. 

 

DNA methylation data processing 

DNA methylation data were processed as previously described (Natri et al. 2020) using minfi v1.30.0 

(Aryee et al. 2014) The two arrays were combined and preprocessed to correct for array background 

signal. Signal strength across all probes was evaluated and probes with signal p < 0.01 in >75% of 

samples were retained. To avoid potential spurious signals due to differences in probe hybridization 

affinity, we discarded 6,072 probes overlapping known SNPs segregating in any of the study 

populations based on previously published genotype data (Jacobs et al. 2019). The final number of 

probes retained was 859,404. Subset-quantile Within Array Normalization (SWAN) was carried out 

using the ‘preprocessSWAN’ function (Maksimovic, Gordon, and Oshlack 2012). Methylated and 

unmethylated signals were quantile normalized using lumi v2.36.0 (Du, Kibbe, and Lin 2008). 

 

Gene expression data processing 

RNA sequence data were processed as in (Natri et al. 2020) FASTQ read files underwent quality 

control with FastQC v0.11.5 (Andrews 2010), and leading and trailing bases below a Phred score of 

20 were removed using Trimmomatic v0.36 (Bolger, Lohse, and Usadel 2014). Reads were aligned to 

the human genome (GRCh38 Ensembl release 90: August 2017) with STAR v2.5.3a (Dobin et al. 
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2013) and a two-pass alignment mode. Read counts were quantified with featureCounts v1.5.3 (Liao, 

Smyth, and Shi 2014) against a subset of GENCODE basic (release 27) annotations that included 

only transcripts with support levels 1–3. Coordinates were converted to hg19 with the R package 

liftOver v1.8.0 (Bioconductor Package Maintainer 2020). Gene expression data were filtered to retain 

12,539 genes with FPKM >0.1 and read count of >6 in at least 50 samples. The distributions of FPKM 

in each sample and gene were transformed into the quantiles of the standard normal distribution. 

 

Accounting for population structure and non-genetic sources of variation in the QTL analyses 

Principal Component Analysis (PCA) of the genotype data was carried out using the R package 

SNPRelate v1.18.1 (Zheng et al. 2012). Five genotype PCs were included as covariates in QTL 

analyses to account for population structure. We used a probabilistic estimation of expression 

residuals (PEER, (Stegle et al. 2012)) to infer hidden sources of variation in expression and 

methylation data. These latent factors were used as surrogate variables for unknown technical batch 

effects and included as covariates the QTL analyses. 29 hidden factors (25% of the number of 

samples) were included in models, as recommended in (Stegle et al. 2012). 

 

eQTL and methylQTL analyses 

Variant effects on gene expression and CpG methylation were identified by linear regression as 

implemented in QTLtools (Delaneau et al. 2016). Genotype, gene expression and methylation data 

were available for 115 individuals: 48 Mentawai, 48 Sumba, and 19 Korowai (Supplementary Tables 1 

and 2). Variants within 1Mb of the gene/CpG under investigation were considered for testing. p-values 

of top-associations adjusted for the number of variants tested in cis were obtained using 10,000 

permutations. False discovery rate (FDR) adjusted p-values were calculated to adjust for multiple 

phenotypes tested. Significant associations were selected using an FDR adjusted p-value threshold of 

0.01. Nominal p-values for all sites within the cis-window were obtained using the QTLtools nominal 

pass. QTL power calculations were carried out using the R package powerEQTL v0.1.7 (Dong et al. 

2017).  

 

Variant annotation and variant set enrichment analyses 

To understand the genomic context of the putative eQTLs and methylQTLs, top-SNPs from the 

permutation-based analyses and the target CpGs of methylQTLs were annotated using the R package 

annotatr v1.10.0 (Cavalcante and Sartor 2017). Genic annotations (1-5Kb upstream of the TSS, the 

promoter (< 1Kb upstream of the TSS), 5ʹ UTR, first exons, exons, introns, coding sequences (CDS), 

3ʹ UTR, and intergenic regions) were obtained using the TxDb.Hsapiens.UCSC.hg19.knownGene R 

package v3.2.2 (Carlson & Bioconductor Package Maintainer 2015), CpG annotations using the 
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AnnotationHub R package v2.16.1 (Morgan & Shepherd 2020), and enhancer annotations from 

FANTOM5 (Andersson et al. 2014) 

 

We tested for the enrichment of the eQTL and methylQTL variants among genomic features using the 

VSE R package v0.99 (Ahmed et al. 2017). A null-distribution was constructed based on 100 matched 

random variant sets. Consolidated ChIP-seq peaks for histone marks derived from primary 

mononuclear cells from peripheral blood were downloaded from the NIH Epigenomics Roadmap FTP 

site (Chadwick 2012). Additionally, annotations for DNaseI hypersensitivity peaks and histone marks 

for K562 and GM12878 cell lines were downloaded from the ENCODE portal (Davis et al. 2018). 

 

We tested for the overrepresentation of the Indonesian population-specific eGenes among GO terms 

and canonical pathways using clusterProfiler 3.14.3 (Yu et al. 2012). 

 

eQTL-methylQTL colocalization analysis 

We used a Bayesian test, as implemented in the R package coloc v4 (Giambartolomei et al. 2014; 

Wallace 2020), to assess the probability of co-localization of methylQTL and eQTL signals between 

3,057 pairs of CpGs and genes. We used masking to allow for multiple causal loci for each trait. 

Masking implemented in coloc allows for multiple causal variants per trait with the assumption that if 

multiple causal variants exist for any individual trait, they are in linkage equilibrium. All SNPs 

independently associated within a dataset were identified with finemap.signals(). For the pairs of CpGs 

and genes with multiple signals, colocalization analysis was performed for each pair of signals, 

restricting the search space to SNPs not in LD with any-but-one of each signal SNP. The p-value 

threshold for calling a signal was set to 1×10-6, and the maximum r2 between two SNPs for them to be 

considered independent was 0.01. 

 

Pairs with the posterior probability for a CCV > 0.8 and the ratio of the posterior probability for a CCV 

and different causal variants (DCV) CCV/DCV >5 were considered to show strong evidence of co-

localization. As the posterior probability for colocalization is dependent on the prior probability, we 

used the coloc post-hoc sensitivity analysis to determine the range of prior probabilities (1.0×10−8 to 

1.0×10−4) for which colocalization is supported. Pairs passing the colocalization threshold with a range 

of ppCCV values from <1.0×10−6 to 1.0×10−4 (lower bound of ppCCV below 1.0×10−6) were considered 

as showing robust support for colocalization. 

 

Colocalization with European eQTLs and blood trait GWAS loci 
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Similarly to eQTL-methylQTL colocalization, we used coloc v4 to test for colocalization between 3,300 

permutation-based eQTLs detected here with an FDR-adjusted p < 0.10 and data from the (Lepik et 

al. 2017) blood dataset (N = 491). Lepik et al. 2017 eQTL summary statistics were obtained using the 

EBI eQTL catalog API (Kerimov et al., n.d.). The methods used to call the eQTLs in the EBI eQTL 

catalog are comparable to the methods used in this study. Out of the 3,300 genes selected for testing, 

3,049 were present in the European data and had shared variant with the Indonesian data. We 

identified colocalized genes with the threshold CCV > 0.8 and a ratio CCV/DCV > 5. To identify genes 

that do not show support for colocalization even with a relaxed threshold, we used a threshold of CCV 

> 0.5 and CCV/DCV > 2. To connect the QTLs detected here to blood traits, we tested for 

colocalization between the FDR-significant permutation-based QTLs and 36 hematological traits using 

genome-wide summary statistics from (Astle et al. 2016). GWAS summary statistics were downloaded 

from the GWAS catalog (MacArthur et al. 2017). As no LD information was available, these 

colocalization analyses were carried out without allowing for multiple causal variants. 

 

Selection scanning 

We performed an nSL scan (Ferrer-Admetlla et al. 2014), as implemented in Selscan v1.2.0 (Szpiech 

and Hernandez 2014). This test identifies ongoing positive selection in the genome by looking for the 

tracts of extended haplotype homozygosity and is capable of identifying both sweeps from standing 

variation and incomplete sweeps. To identify the traces of positive selection in three target 

populations, we used our combined dataset of WGS and imputed genotyping array data represented 

by approximately 4M SNPs. The following Selscan parameters were used: maximum allowed gap 

between loci of 50 Kb, the gap scale parameter of 5 Kb, maximum extent of haplotype homozygosity 

decay curve of 1,333 loci (approximately 1Mb given the obtained SNP density). Raw nSL results were 

normalized with Selscan’s norm package in 50Kb non-overlapping genomic windows using ten allele 

frequency bins. Windows with less than 21 SNPs were discarded. The proportion of absolute nSL 

scores > 2 in each 50Kb genomic window was used as a test statistic. Windows with a proportion of 

SNPs with an absolute nSL > 2 of 30% were considered to be outliers and showing evidence of past 

positive selection. 

 

Identifying eQTL effects driven by local ancestry 

We calculated the variance explained by modern LA in the genotype of each significant (FDR-p < 

0.01) permutation-based eQTL and methylQTL as in (Gay et al. 2019). For each eVariant and 

methylVariant, we fit the linear model V = α * PAP + β, where V is the genotype vector (number of 

QTL B alleles), and PAP is the LA covariate, representing the number of alleles assigned to the 

Papuan population. This analysis was carried out using the 73 WGS (30 Mentawai, 29 Sumba, 14 
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Korowai) samples included in the LA inference. Variants with an absolute R2 > 0.7 were considered to 

exhibit a high correlation with LA. Similarly, we calculated the variance explained by archaic 

Denisovan and Neanderthal ancestry. 

 

Data availability 
 

All genotype data, RNA sequencing reads, and Illumina Epic iDat files are available through the Data 

Access Committee of the official data repository at the European Genome-phenome Archive (EGA; 

https://www.ebi.ac.uk/ega/home). Illumina Omni 2.5M genotyping array data are deposited in study 

EGAS00001003670 and the whole genome data in study EGAS00001003654. The RNA sequencing 

data are deposited in study EGAS00001003671 and the methylation data are deposited in study 

EGAS00001003653. Matrices of unfiltered read counts (doi:10.26188/5d12023f77da8) and M-values 

(doi:10.26188/5d13fb401e305) for all samples, including replicates, are freely available on Figshare 

(https://figshare.com). Supplementary Files 3 and 4 containing the nominal eQTL statistics for all 

tested SNP-gene pairs and the nominal methylQTL statistics for the all SNPs tested for the targets of 

the permutation-significant methylQTLs are available on Figshare with doi:10.26188/12871007 and 

doi:10.26188/12869969, respectively. 
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Extended Data 

 

Extended Data Figure 1. Proportions of inferred Papuan ancestry and Denisovan introgression are 

highly correlated (Pearson’s correlation coefficient 0.995). 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 29, 2020. ; https://doi.org/10.1101/2020.09.25.313726doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.25.313726
http://creativecommons.org/licenses/by/4.0/


 
23 

 

Extended Data Figure 2. Enrichment of methylQTLs (a) and eQTLs (b) among DNase hypersensitive 
sites (DHS) and histone marks in ENCODE GM12878 and K562 cell lines. 
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Extended Data Figue 3. Effect sizes of colocalized eQTLs in the Indonesian and European datasets. 
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Extended Data Figure 4. Modern ancestry and archaic introgression driven eQTLs overlapping 
genomic windows that show evidence of recent positive selection in each of the three study 
populations. Variance in QTL genotype explained (R2) is shown on the x-axis of each plot. Variants 
with R2 > 0.7 were considered to be highly correlated with ancestry (vertical line). Proportion of 
positions within 50Kb windows that show an nSL > 2 is shown on the y-axis. Genomic windows with 
this proportion >0.3 were considered to be showing evidence of positive selection (horizontal line). 
The target genes of eQTLs showing both a significant correlation with ancestry and evidence of 
selection are labeled. 
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Extended Data Figure 5. Modern ancestry and archaic introgression driven methylQTLs overlapping 
genomic windows that show evidence of recent positive selection in each of the three study 
populations. Variance in QTL genotype explained (R2) is shown on the x-axis of each plot. Variants 
with R2 > 0.7 were considered to be highly correlated with ancestry (vertical line). Proportion of 
positions within 50Kb windows that show an nSL > 2 is shown on the y-axis. Genomic windows with 
this proportion >0.3 were considered to be showing evidence of positive selection (horizontal line). 
The target CpGs of methylQTLs showing both a significant correlation with ancestry and evidence of 
selection are labeled. 

Supplementary Information 

Supplementary_information.doc 

• Supplementary Notes 1-4, Supplementary Figures 1-6 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 29, 2020. ; https://doi.org/10.1101/2020.09.25.313726doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.25.313726
http://creativecommons.org/licenses/by/4.0/


 
27 

Supplementary Tables 1-10 

• Supplementary Table 1: Sample information. 
• Supplementary Table 2: Sequencing batch information for RNAseq samples. 
• Supplementary Table 3: Sub-Saharan African samples used in archaic introgression 

inference. 
• Supplementary Table 4: Indonesian eGenes (FDR-p < 0.1) that do not colocalize with and 

are not eGenes (nominal p < 5×10−4) in the European data. Columns: Gene ID, gene 
name, European top SNP, European nominal p-value. 

• Supplementary Table 5: GO and KEGG enrichment analysis on the 166 Indonesia-specific 
eGenes. 

• Supplementary Table 6: Enrichment analysis of ancestry-driven QTLs among genomic 
regions under positive selection. 

• Supplementary Table 7: Ancestry-driven QTLs overlapping genomic regions under positive 
selection. 

• Supplementary Table 8: methylQTL-GWAS and eQTL-GWAS colocalization summary. 
• Supplementary Table 9: Denisovan-driven methylQTLs that colocalize with platelet count 

GWAS. 
• Supplementary Table 10: Megablast results for the four Denisovan/platelet count CpGs. 

 
Supplementary Files 

• Supplementary File 1: Permutation-significant eQTLs. Columns: target, chromosome, target 
start, N of tested SNPs, top-SNP distance to the target, rsID, top-SNP position, slope, nominal 
p, FDR-p 

• Supplementary File 2: Permutation-significant methylQTLs. Columns: target, chromosome, 
target position, N of tested SNPs, top-SNPdistance to the target, rsID, top-SNP position, slope, 
nominal p, FDR-p 

• Supplementary File 3: Nominal eQTL statistics. Columns: target, target chromosome, target 
start, N of tested SNPs, SNP distance to the target, rsID, SNP position, nominal p, slope. The 
file is available on Figshare with DOI 10.26188/12871007. 

• Supplementary File 4: Nominal statistics for permutation-significant methylQTLs. Columns: 
target, target chromosome, target start, N of tested SNPs, SNP distance to the target, rsID, 
SNP position, nominal p, slope. The file is available on Figshare with DOI 10.26188/12869969. 

• Supplementary File 5: eQTL-methylQTL colocalization results for robust colocalized pairs. 
Columns: Target CpG, Target gene, number of tested SNPs, Tag SNP 1 and Tag SNP 2 
(testing between all independent signals), PP0, PP1, PP2, PP3, PP4, PP4/PP3, lower bound 
of prior probability for colocalization (p12) that passes the threshold. 

• Supplementary File 6: European colocalization results, significant genes. Columns: Target 
gene, number of tested SNPs, posterior probabilities for no association in either trait (PP0), 
association in trait 1 but not in trait 2 (PP1), association in trait 2 but not in trait 1 (PP2), 
association in both traits, different SNPs (PP3), and association in both traits, shared causal 
SNP (PP4), PP4/PP3, lower bound of prior probability for colocalization (p12) that passes the 
threshold. 

• Supplementary Files 7: eQTL-LAI correlation results for Papuan ancestry. Columns: chr, pos, 
R2, p target 

• Supplementary Files 8: eQTL-LAI correlation results for Denisovan introgression. Columns: 
chr, pos, R2, p, target 

• Supplementary Files 9: eQTL-LAI correlation results for Neanderthal introgression Columns: 
chr, pos, R2, p, target 

• Supplementary Files 10: methylQTL-LAI correlation results for Papuan ancestry. Columns: chr, 
pos, R2, p, target 
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• Supplementary Files 11: methylQTL-LAI correlation results for Denisovan introgression. 
Columns: chr, pos, R2, p, target 

• Supplementary Files 12: methylQTL-LAI correlation results for Neanderthal introgression 
Columns: chr, pos, R2, p, target 

 

  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 29, 2020. ; https://doi.org/10.1101/2020.09.25.313726doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.25.313726
http://creativecommons.org/licenses/by/4.0/


 
29 

References 

Ahmed, Musaddeque, Richard C. Sallari, Haiyang Guo, Jason H. Moore, Housheng Hansen He, and 

Mathieu Lupien. 2017. “Variant Set Enrichment: An R Package to Identify Disease-Associated 

Functional Genomic Regions.” BioData Mining. https://doi.org/10.1186/s13040-017-0129-5. 

Andersson, Robin, Claudia Gebhard, Irene Miguel-Escalada, Ilka Hoof, Jette Bornholdt, Mette Boyd, 

Yun Chen, et al. 2014. “An Atlas of Active Enhancers across Human Cell Types and Tissues.” 

Nature 507 (7493): 455–61. 

Andrews, S. 2010. “FastQC A Quality Control Tool for High Throughput Sequence Data.” 

Http://www.bioinformatics.babraham.ac.uk/projects/fastqc/. 2010. 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/. 

Aryee, Martin J., Andrew E. Jaffe, Hector Corrada-Bravo, Christine Ladd-Acosta, Andrew P. Feinberg, 

Kasper D. Hansen, and Rafael A. Irizarry. 2014. “Minfi: A Flexible and Comprehensive 

Bioconductor Package for the Analysis of Infinium DNA Methylation Microarrays.” Bioinformatics  

30 (10): 1363–69. 

Astle, William J., Heather Elding, Tao Jiang, Dave Allen, Dace Ruklisa, Alice L. Mann, Daniel Mead, et 

al. 2016. “The Allelic Landscape of Human Blood Cell Trait Variation and Links to Common 

Complex Disease.” Cell 167 (5): 1415–29.e19. 

Auwera, Geraldine A., Mauricio O. Carneiro, Christopher Hartl, Ryan Poplin, Guillermo del Angel, Ami 

Levy-Moonshine, Tadeusz Jordan, et al. 2013. “From FastQ Data to High-Confidence Variant 

Calls: The Genome Analysis Toolkit Best Practices Pipeline.” Current Protocols in Bioinformatics. 

https://doi.org/10.1002/0471250953.bi1110s43. 

Ávila-Arcos, María C., Kimberly F. McManus, Karla Sandoval, Juan Esteban Rodríguez-Rodríguez, 

Viridiana Villa-Islas, Alicia R. Martin, Pierre Luisi, et al. 2020. “Population History and Gene 

Divergence in Native Mexicans Inferred from 76 Human Exomes.” Molecular Biology and 

Evolution 37 (4): 994–1006. 

Bioconductor Package Maintainer (2020). liftOver: Changing genomic coordinate systems with 

rtracklayer::liftOver. R package version 1.12.0, 

Bolger, Anthony M., Marc Lohse, and Bjoern Usadel. 2014. “Trimmomatic: A Flexible Trimmer for 

Illumina Sequence Data.” Bioinformatics  30 (15): 2114–20. 

Browning, Brian L., Ying Zhou, and Sharon R. Browning. 2018. “A One-Penny Imputed Genome from 

Next-Generation Reference Panels.” American Journal of Human Genetics 103 (3): 338–48. 

Carlson M, Maintainer BP (2015). TxDb.Hsapiens.UCSC.hg19.knownGene: Annotation package for 

TxDb object(s). R package version 3.2.2. 

Cavalcante, Raymond G., and Maureen A. Sartor. 2017. “Annotatr: Genomic Regions in Context.” 

Bioinformatics  33 (15): 2381–83. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 29, 2020. ; https://doi.org/10.1101/2020.09.25.313726doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.25.313726
http://creativecommons.org/licenses/by/4.0/


 
30 

Chadwick, Lisa Helbling. 2012. “The NIH Roadmap Epigenomics Program Data Resource.” 

Epigenomics 4 (3): 317–24. 

Chang, Christopher C., Carson C. Chow, Laurent Cam Tellier, Shashaank Vattikuti, Shaun M. Purcell, 

and James J. Lee. 2015. “Second-Generation PLINK: Rising to the Challenge of Larger and 

Richer Datasets.” GigaScience 4 (February): 7. 

Danecek, Petr, Adam Auton, Goncalo Abecasis, Cornelis A. Albers, Eric Banks, Mark A. DePristo, 

Robert E. Handsaker, et al. 2011. “The Variant Call Format and VCFtools.” Bioinformatics  27 

(15): 2156–58. 

Davis, Carrie A., Benjamin C. Hitz, Cricket A. Sloan, Esther T. Chan, Jean M. Davidson, Idan 

Gabdank, Jason A. Hilton, et al. 2018. “The Encyclopedia of DNA Elements (ENCODE): Data 

Portal Update.” Nucleic Acids Research 46 (D1): D794–801. 

Delaneau, Olivier, Halit Ongen, Andrew Anand Brown, Alexandre Fort, Nikolaos Panousis, and 

Emmanouil Dermitzakis. 2016. “A Complete Tool Set for Molecular QTL Discovery and Analysis.” 

bioRxiv, January. https://doi.org/10.1101/068635. 

Dobin, Alexander, Carrie A. Davis, Felix Schlesinger, Jorg Drenkow, Chris Zaleski, Sonali Jha, 

Philippe Batut, Mark Chaisson, and Thomas R. Gingeras. 2013. “STAR: Ultrafast Universal RNA-

Seq Aligner.” Bioinformatics  29 (1): 15–21. 

Duncan, L., H. Shen, B. Gelaye, J. Meijsen, K. Ressler, M. Feldman, R. Peterson, and B. Domingue. 

2019. “Analysis of Polygenic Risk Score Usage and Performance in Diverse Human Populations.” 

Nature Communications 10 (1): 3328. 

Du, P., W. A. Kibbe, and S. M. Lin. 2008. “Lumi: A Pipeline for Processing Illumina Microarray.” 

Bioinformatics. https://doi.org/10.1093/bioinformatics/btn224. 

Ferrer-Admetlla, Anna, Mason Liang, Thorfinn Korneliussen, and Rasmus Nielsen. 2014. “On 

Detecting Incomplete Soft or Hard Selective Sweeps Using Haplotype Structure.” Molecular 

Biology and Evolution 31 (5): 1275–91. 

Gay, Nicole R., Michael Gloudemans, Margaret L. Antonio, Brunilda Balliu, Yoson Park, Alicia R. 

Martin, Shaila Musharoff, et al. 2019. “Impact of Admixture and Ancestry on eQTL Analysis and 

GWAS Colocalization in GTEx.” bioRxiv. https://doi.org/10.1101/836825. 

Giambartolomei, Claudia, Damjan Vukcevic, Eric E. Schadt, Lude Franke, Aroon D. Hingorani, Chris 

Wallace, and Vincent Plagnol. 2014. “Bayesian Test for Colocalisation between Pairs of Genetic 

Association Studies Using Summary Statistics.” PLoS Genetics 10 (5): e1004383. 

Jacobs, Guy S., Georgi Hudjashov, Lauri Saag, Pradiptajati Kusuma, Chelzie C. Darusallam, Daniel J. 

Lawson, Mayukh Mondal, et al. 2019. “Multiple Deeply Divergent Denisovan Ancestries in 

Papuans.” Cell. https://doi.org/10.1016/j.cell.2019.02.035. 

Kerimov, Nurlan, James D. Hayhurst, Jonathan R. Manning, Peter Walter, Liis Kolberg, Kateryna 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 29, 2020. ; https://doi.org/10.1101/2020.09.25.313726doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.25.313726
http://creativecommons.org/licenses/by/4.0/


 
31 

Peikova, Marija Samoviča, et al. n.d. “eQTL Catalogue: A Compendium of Uniformly Processed 

Human Gene Expression and Splicing QTLs.” https://doi.org/10.1101/2020.01.29.924266. 

Landry, Latrice G., Nadya Ali, David R. Williams, Heidi L. Rehm, and Vence L. Bonham. 2018. “Lack 

Of Diversity In Genomic Databases Is A Barrier To Translating Precision Medicine Research Into 

Practice.” Health Affairs. https://doi.org/10.1377/hlthaff.2017.1595. 

Lan, Tianming, Haoxiang Lin, Wenjuan Zhu, Tellier Christian Asker Melchior Laurent, Mengcheng 

Yang, Xin Liu, Jun Wang, et al. 2017. “Deep Whole-Genome Sequencing of 90 Han Chinese 

Genomes.” GigaScience 6 (9): 1–7. 

Lawson, Daniel John, Garrett Hellenthal, Simon Myers, and Daniel Falush. 2012. “Inference of 

Population Structure Using Dense Haplotype Data.” PLoS Genetics. 

https://doi.org/10.1371/journal.pgen.1002453. 

Lepik, Kaido, Tarmo Annilo, Viktorija Kukuškina, eQTLGen Consortium, Kai Kisand, Zoltán Kutalik, 

Pärt Peterson, and Hedi Peterson. 2017. “C-Reactive Protein Upregulates the Whole Blood 

Expression of CD59 - an Integrative Analysis.” PLoS Computational Biology 13 (9): e1005766. 

Liao, Yang, Gordon K. Smyth, and Wei Shi. 2014. “featureCounts: An Efficient General Purpose 

Program for Assigning Sequence Reads to Genomic Features.” Bioinformatics  30 (7): 923–30. 

Li, Heng. 2011. “A Statistical Framework for SNP Calling, Mutation Discovery, Association Mapping 

and Population Genetical Parameter Estimation from Sequencing Data.” Bioinformatics  27 (21): 

2987–93. 

Li, Xiajun, Mitsuteru Ito, Fen Zhou, Neil Youngson, Xiaopan Zuo, Philip Leder, and Anne C. Ferguson-

Smith. 2008. “A Maternal-Zygotic Effect Gene, Zfp57, Maintains Both Maternal and Paternal 

Imprints.” Developmental Cell 15 (4): 547–57. 

Loh, Po-Ru, Pier Francesco Palamara, and Alkes L. Price. 2016. “Fast and Accurate Long-Range 

Phasing in a UK Biobank Cohort.” Nature Genetics 48 (7): 811–16. 

MacArthur, Jacqueline, Emily Bowler, Maria Cerezo, Laurent Gil, Peggy Hall, Emma Hastings, 

Heather Junkins, et al. 2017. “The New NHGRI-EBI Catalog of Published Genome-Wide 

Association Studies (GWAS Catalog).” Nucleic Acids Research 45 (D1): D896–901. 

Maksimovic, Jovana, Lavinia Gordon, and Alicia Oshlack. 2012. “SWAN: Subset-Quantile within Array 

Normalization for Illumina Infinium HumanMethylation450 BeadChips.” Genome Biology 13 (6): 

R44. 

Malaspinas, Anna-Sapfo, Michael C. Westaway, Craig Muller, Vitor C. Sousa, Oscar Lao, Isabel 

Alves, Anders Bergström, et al. 2016. “A Genomic History of Aboriginal Australia.” Nature 538 

(7624): 207–14. 

Mallick, Swapan, Heng Li, Mark Lipson, Iain Mathieson, Melissa Gymrek, Fernando Racimo, Mengyao 

Zhao, et al. 2016. “The Simons Genome Diversity Project: 300 Genomes from 142 Diverse 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 29, 2020. ; https://doi.org/10.1101/2020.09.25.313726doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.25.313726
http://creativecommons.org/licenses/by/4.0/


 
32 

Populations.” Nature 538 (7624): 201–6. 

Meyer, Matthias, Martin Kircher, Marie-Theres Gansauge, Heng Li, Fernando Racimo, Swapan 

Mallick, Joshua G. Schraiber, et al. 2012. “A High-Coverage Genome Sequence from an Archaic 

Denisovan Individual.” Science 338 (6104): 222–26. 

Mogil, Lauren S., Angela Andaleon, Alexa Badalamenti, Scott P. Dickinson, Xiuqing Guo, Jerome I. 

Rotter, W. Craig Johnson, Hae Kyung Im, Yongmei Liu, and Heather E. Wheeler. 2018. “Genetic 

Architecture of Gene Expression Traits across Diverse Populations.” PLoS Genetics 14 (8): 

e1007586. 

Morgan M, Shepherd L (2020). AnnotationHub: Client to access AnnotationHub resources. R package 

version 2.20.0. 

Natri, Heini M., Katalina S. Bobowik, Pradiptajati Kusuma, Chelzie Crenna Darusallam, Guy S. 

Jacobs, Georgi Hudjashov, J. Stephen Lansing, et al. 2020. “Genome-Wide DNA Methylation and 

Gene Expression Patterns Reflect Genetic Ancestry and Environmental Differences across the 

Indonesian Archipelago.” PLoS Genetics 16 (5): e1008749. 

Perdomo-Sabogal, Álvaro, and Katja Nowick. 2019. “Genetic Variation in Human Gene Regulatory 

Factors Uncovers Regulatory Roles in Local Adaptation and Disease.” Genome Biology and 

Evolution 11 (8): 2178–93. 

Plant, Katharine, Benjamin P. Fairfax, Seiko Makino, Claire Vandiedonck, Jayachandran 

Radhakrishnan, and Julian C. Knight. 2014. “Fine Mapping Genetic Determinants of the Highly 

Variably Expressed MHC Gene ZFP57.” European Journal of Human Genetics: EJHG 22 (4): 

568–71. 

Poplin, Ryan, Valentin Ruano-Rubio, Mark A. DePristo, Tim J. Fennell, Mauricio O. Carneiro, 

Geraldine A. Van der Auwera, David E. Kling, et al. n.d. “Scaling Accurate Genetic Variant 

Discovery to Tens of Thousands of Samples.” https://doi.org/10.1101/201178. 

Prüfer, Kay, Fernando Racimo, Nick Patterson, Flora Jay, Sriram Sankararaman, Susanna Sawyer, 

Anja Heinze, et al. 2014. “The Complete Genome Sequence of a Neanderthal from the Altai 

Mountains.” Nature 505 (7481): 43–49. 

Sirugo, Giorgio, Scott M. Williams, and Sarah A. Tishkoff. 2019. “The Missing Diversity in Human 

Genetic Studies.” Cell 177 (4): 1080. 

Skov, Laurits, Ruoyun Hui, Vladimir Shchur, Asger Hobolth, Aylwyn Scally, Mikkel Heide Schierup, 

and Richard Durbin. 2018. “Detecting Archaic Introgression Using an Unadmixed Outgroup.” 

PLoS Genetics 14 (9): e1007641. 

Stegle, Oliver, Leopold Parts, Richard Durbin, and John Winn. 2010. “A Bayesian Framework to 

Account for Complex Non-Genetic Factors in Gene Expression Levels Greatly Increases Power in 

eQTL Studies.” PLoS Computational Biology 6 (5): e1000770. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 29, 2020. ; https://doi.org/10.1101/2020.09.25.313726doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.25.313726
http://creativecommons.org/licenses/by/4.0/


 
33 

Stegle, Oliver, Leopold Parts, Matias Piipari, John Winn, and Richard Durbin. 2012. “Using 

Probabilistic Estimation of Expression Residuals (PEER) to Obtain Increased Power and 

Interpretability of Gene Expression Analyses.” Nature Protocols. 

https://doi.org/10.1038/nprot.2011.457. 

Stranger, Barbara E., Stephen B. Montgomery, Antigone S. Dimas, Leopold Parts, Oliver Stegle, 

Catherine E. Ingle, Magda Sekowska, et al. 2012. “Patterns of Cis Regulatory Variation in Diverse 

Human Populations.” PLoS Genetics 8 (4): e1002639. 

Szpiech, Z. A., and R. D. Hernandez. 2014. “Selscan: An Efficient Multithreaded Program to Perform 

EHH-Based Scans for Positive Selection.” Molecular Biology and Evolution. 

https://doi.org/10.1093/molbev/msu211. 

Tehranchi, Ashley, Brian Hie, Michael Dacre, Irene Kaplow, Kade Pettie, Peter Combs, and Hunter B. 

Fraser. 2019. “Fine-Mapping Cis-Regulatory Variants in Diverse Human Populations.” eLife. 

https://doi.org/10.7554/elife.39595. 

Vernot, Benjamin, Serena Tucci, Janet Kelso, Joshua G. Schraiber, Aaron B. Wolf, Rachel M. 

Gittelman, Michael Dannemann, et al. 2016. “Excavating Neandertal and Denisovan DNA from 

the Genomes of Melanesian Individuals.” Science 352 (6282): 235–39. 

University of Tartu “UT Rocket.” share.neic.no. https://doi.org/10.23673/PH6N-0144. 

Wallace, Chris. 2020. “Eliciting Priors and Relaxing the Single Causal Variant Assumption in 

Colocalisation Analyses.” PLoS Genetics 16 (4): e1008720. 

Xianjun Dong, Tzuu-Wang Chang, Scott T. Weiss and Weiliang Qiu (2017). powerEQTL: Power and 

Sample Size Calculation for eQTL Analysis. R package version 0.1.3. 

https://github.com/sterding/powerEQTL 

Yu, Guangchuang, Li-Gen Wang, Yanyan Han, and Qing-Yu He. 2012. “clusterProfiler: An R Package 

for Comparing Biological Themes Among Gene Clusters.” OMICS: A Journal of Integrative 

Biology. https://doi.org/10.1089/omi.2011.0118. 

Zeberg, Hugo, Michael Dannemann, Kristoffer Sahlholm, Kristin Tsuo, Tomislav Maricic, Victor Wiebe, 

Wulf Hevers, Hugh P. C. Robinson, Janet Kelso, and Svante Pääbo. 2020. “A Neanderthal 

Sodium Channel Increases Pain Sensitivity in Present-Day Humans.” Current Biology: CB, July. 

https://doi.org/10.1016/j.cub.2020.06.045. 

Zheng, Xiuwen, David Levine, Jess Shen, Stephanie M. Gogarten, Cathy Laurie, and Bruce S. Weir. 

2012. “A High-Performance Computing Toolset for Relatedness and Principal Component 

Analysis of SNP Data.” Bioinformatics  28 (24): 3326–28. 

 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 29, 2020. ; https://doi.org/10.1101/2020.09.25.313726doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.25.313726
http://creativecommons.org/licenses/by/4.0/

