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Summary  

Background 

Voice signal analysis is an emerging non-invasive technique to examine health conditions, and is 

implemented in various real-life applications and devices. The purpose of this study was to 

evaluate the association of voice signals with blood glucose levels in healthy individuals. The 

study aimed to investigate the longitudinal stabilities of voice signals and identify voice 

biomarkers to predict abnormal blood glucose levels.  

Methods 

We created voice profiles composed of 17,552,688 voice signals from 44 participants and their 

1,454 voice recordings. From each voice recording, 12,082 voice-features were extracted. 

Longitudinal stabilities of voice-features were quantified using linear mixed-effect modelling. 

Voice-features that showed significant difference between different blood glucose levels, strong 

intra-stability and the ability to make distinct choice in decision trees were selected as voice 

biomarker. Voice biomarkers were fed into a multi-class random forest classifier to predict high, 

normal, and low blood glucose levels.   

Findings 

In total, 196 voice biomarkers were characterized. Results showed a predictive model with an 

overall accuracy of 78.66%, overall AUC of 0.83 (95% confidence interval is 0.80 – 0.85), and 

0.41 of Matthews Correlation Coefficient (MCC) to discriminate three different blood glucose 

levels in an independent test set.  

Interpretation 

Our voice biomarkers could serve as a noninvasive and conventional surrogate of blood glucose 

monitoring in daily life as well as a screening tool to estimate potential risk of poor glycemic 

control.   

Funding 

This research was internally funded and received no specific grant from any funding agency in 

the public, commercial, or not-for-profit sectors. 
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Introduction  

Human voice is composed of complex signals that are tightly associated with physiological 

changes in body systems1. Due to the depth of signals that can be analyzed, as well as the wide 

range of potential physiological dysfunction that manifest in voice signals, voice has quickly 

gained traction in healthcare and medical research. For example, it has been shown that thyroid 

hormone imbalance caused the hoarseness of voice, and affected larynx development2. Unstable 

pitch and loudness were observed in patients with multiple sclerosis3. Other recent studies also 

demonstrated distinct voice characteristics that were associated with various pathological, 

neurological, and psychiatric disorders, such as congestive heart failure4, Parkinson’s disease5, 

Alzheimer’s disease6, post-traumatic stress disorder7, and autism spectrum disorder8. The human 

voice is now considered as an emerging biomarker, which is inherently non-invasive, low-cost, 

accessible, and easy to monitor health conditions in various real-life settings.  

 

Glucose is an essential component of cellular metabolism, and its concentration in blood is 

regulated and maintained in a controlled, physiological range as a part of metabolic homeostasis9. 

Long-lasting disturbances in blood glucose concentrations can cause diabetes and diabetes-

related complications. Diabetes has a high incidence (10.5% of population in 2018) and is one of 

the main causes of death in the United States (7th leading cause)10. In spite of such risks, 

screening undiagnosed patients is not conducted routinely, and thus about 50% of adult diabetes 

cases are estimated to be undiagnosed, globally11. Therefore, implementing a regular monitoring 

tool for blood glucose into real-life is essential and urgent to identify potential individuals at a 

high-risk of developing prediabetes or diabetes when they are still healthy or asymptomatic. 

Voice analysis in healthy individuals can provide an efficient preliminary evaluation to examine 

glycemic control, which would be vital to reduce the medical and economic burden of diabetes. 

Since blood glucose levels can directly impact the neurologic, vascular, and muscular systems12–

14, all of which are essential components of voice function, it is reasonable to assume that 

changes in the level of blood glucose can subtly influence aspects of voice even in healthy 

individuals. Recent studies have investigated whether Type 2 Diabetes patients have different 

voice characteristics compared to healthy controls15,16, and a higher vocal pitch has been 

observed as a potential clinical symptom of hypoglycemia in Type 1 Diabetes patients17. 

However, voice characteristics associated with abnormal blood glucose levels (e.g., elevated 
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blood glucose not considered clinically hyperglycemic) in healthy or potentially prediabetic 

individuals remains unknown despite their considerable potential for clinical diagnostic utility. 

 

Here, we investigated whether blood glucose levels were manifested in the voice of healthy 

individuals. To do this, we measured blood glucose levels of individual participants in an 

uncontrolled setting as they went about their daily lives, and had them record voices using a 

typical smartphone at several times throughout the day. We then created voice profiles 

combining with various clinicopathological information, quantified the longitudinal stability of 

those profiles, and showed that voice biomarkers can directly reflect different levels of blood 

glucose. These data were used to create and validate a predictive model to classify high, normal, 

and low blood glucose levels in healthy individuals. 

Methods  

Study design and participants 

For the study, 54 volunteers (aged ≥ 18 years) were recruited from Klick Inc., a technology, 

media, and research company in the healthcare sector based in Toronto, Canada. They were all 

employees of Klick Inc. and volunteered via the company’s intranet system. The study was 

performed in accordance with relevant guidelines and regulations, and informed consent was 

obtained from all participants prior to study entry. The study received full ethics approval from 

Advarra IRB Services (www.advarra.com/services/irb-services), an independent ethics 

committee. Participants’ blood glucose levels were measured using a FreeStyle Libre glucose 

monitoring device (Abbott Diabetes Care), and voice samples of simple spoken sentences (e.g., 

“Hello, how are you? Today is September 5, 2019, 04:06 pm”) were recorded using participants’ 

smartphones. After the 14 days of collection of blood glucose levels and voice samples, data 

from seven participants were eliminated because of a malfunctioning glucose monitoring device 

(e.g., erroneous or missing measurements), and from one participant who failed to record proper 

voice sample. In total, 44 participants, and their 1,454 voice recordings with matched blood 

glucose levels were selected and used for further analyses. From the each voice recording, 

12,072 voice-features were extracted using OpenSmile software (v.2.3.0), an open-source audio 

feature extractor18. The profiles of 17,552,688 voice signals (1,454 recording × 12,072 voice-
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features) were finally generated. Profiles was divided into two groups, Group A and Group B. 

Group A (1,290 voice recording from 39 participants) was used to extract features, measure 

intra-stability, identify voice biomarkers, and train a predictive model. Group B (164 voice 

recording from 5 participants) was used as an independent test set to evaluate a predictive model. 

Intra- and inter variance quantification and generalized intra-stability estimation of voice-

features 

The relative effects of intra- and inter-variance derived from participants as well as high, normal, 

and low blood glucose (BG) groups were assessed via linear mixed-effects modelling using the 

lme4 package (v1.1-21) in R statistical environment. In the model, BG groups and participants 

were specified as random factors to control for their associated intra-class correlation,   

Yij = �0 + (bi/cj) + eij, 

where Yij represents values of BG group i in participant j, �0 is a constant, bi and cj are the 

random effects for BG group i and participant j, respectively. Intercept varies among BG groups 

and participants within a BG group (expressed as bi/cj). eij is an unknown vector of random errors. 

To estimate generalized intra-stability, we calculated the intraclass correlation coefficient (ICC): 

ICC =  
��
�

�
�

�
� ��

�
 , 

Where R represents random effects, b and c (b/c). The ICC represented the proportion of inter- 

b/c variance relative to total intra- and inter- b/c variance explained by a model. A high ICC 

indicates high generalized intra-stability within a BG group and participants within a BG group. 

ICCs of voice-features were estimated using Group A participants. 

Predictive model generation 

To generate a predictive model that distinguishes abnormal high and low BG groups from 

normal BG group, 196 voice biomarkers were identified, and fed into a multi-class random forest 

(RF) classifier. The training set (Group A) and the RandomForestClassifier function built in the 

sklearn package (v.0.23.2) was used to train a model. To find optimal RF parameters 

(n_estimator, max_depth, max_features, and class_weight), grid search with 5-fold cross-

validation was conducted. Five-fold cross-validation set was generated using a stratified group 

K-fold method so that each fold has the same ratio of high, normal and low BG groups. Optimal 

parameters were determined based on the rank product of balanced accuracy (BCC), overall 
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accuracy (ACC) and Matthews correlation coefficient (MCC). Prediction performances (BCC, 

ACC, and MCC) were measured using the pycm package (v.2.8) and sklearn package (v.0.23.2). 

Final model was trained on an entire training set with optimal parameters. To achieve the 

generalizability of a predictive model, we repeated this procedure five times. In each repeat, a 

cross-validation set was composed of different participant samples but kept the same BG group 

ratio. Finally, the ensemble model was built by combining all the results from five RF classifiers. 

The ensemble model was applied to an independent test set (Group B). Multi-class ROC was 

measured using the multiROC library (v.1.1.1) in R.  

Statistical analysis 

Linear-mixed effect modelling and multi-class AUC estimation was performed using the 

programming language R (v3.4.0), and any remaining analyses were carried out in the 

programming language Python (v3.7.6) with the aforementioned packages. To examine the 

association of clinicopathological variables with blood glucose levels, p-values were measured 

using the Mann-Whitney U test for binary variables (sex and group), one-way ANOVA for 

multiple categorical variables (ethnicity), Spearman’s rank correlation coefficient for continuous 

variables (BMI, weight, height, diastolic blood pressure, and systolic blood pressure), and 

Kendall’s tau for ordinal variable (age group). A p-value of less than 0.05 was considered 

statistically significant. To evaluate the enriched audio-classes of voice-biomarkers, a 

hypergeometric test was performed. For the visualization of analyses, BPG library (v6.0.1) in R 

was used19.  

Results 

1. Landscape of voice-features at different blood glucose levels 

To understand the voice characteristics with respect to blood glucose (BG) levels, we collected 

1,454 voice recordings at three different BG groups (70 low, 1,295 normal, and 89 high BG 

groups) from 44 healthy participants (Figure 1A) after the removal of unqualified voice 

recordings and participants (see Supplementary Methods). Participants were composed of 21 

females and 23 males (Figure 1B). Study participants had an average age of 32 years and 

included various ethnic backgrounds (East Asian = 32%, Caucasian = 55%, South Asian = 2%, 
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Middle Eastern = 2% and Other = 9%; Table 1). Clinicopathological variables (e.g., height, 

weight, blood pressure, and BMI) of participants were within the normal range (Table 1). For 14 

days, each participant measured BG levels using a continuous glucose monitoring device 

(average BG level was 5.27 mmol/L). No statistically significant relationships between BG 

levels and clinicopathological variables were observed (p-value > 0.1; Figure 1B). On average, 

each participant provided 33 voice samples which were recorded at low (2 samples, BG level < 

3.9 mmol/L), normal  (29 samples, 3.9 mmol/L ≤ BG level ≤ 7.1 mmol/L), and high (2 samples, 

BG level > 7.1 mmol/L) BG levels across all time points (Supplementary Figure 1). Next, we 

divided our dataset into two groups. Group A (90% of the dataset, 1,290 voice recording from 39 

participants) was used to characterize voice-features, evaluate their longitudinal stabilities, and 

build a predictive model to discriminate abnormal (high or low) BG levels from normal BG level. 

Group B (10% of the dataset, 164 voice recording from 5 participants) was used as an 

independent test set to evaluate the performance of the predictive model (Figure 1A).  

 

Voice-features at different BG groups were extracted and profiled from Group A participants. In 

total, 12,072 voice-features were identified using OpenSmile software18. These features 

represented 13 audio-classes representing different extractable signal components from a 

recorded voice (Supplementary Table 1). From the profile, we identified four clusters of voice-

features (A1, A2, A3, and A4; Figure 1C). A2 and A3 showed the strongest signals in high BG 

level, and signals were reduced as BG levels decreased. They were mainly composed of Pulse-

Code Modulation (PCM) and Mel-frequency cepstral coefficient (MFCC)-based features. 

Meanwhile, A1 and A4 showed reverse correlations between voice signals and BG levels and 

were mainly composed of sum of the auditory spectrum coefficients (AudSpec)-based features. 

Next, we investigated differences of feature signals among three BG groups (Figure 1D). To 

examine the directionality of signal changes, we measured dropout score (see Supplementary 

Methods). Negative dropout scores indicated the signal was increased as the BG level increased, 

whereas positive dropout scores indicated a signal that increased as the BG level decreased. The 

signals of 73 voice-features were significantly increased as the BG level increased (Dropout 

score < 0 and false discovery rate (FDR) < 0.05; Figure 1D). Of them, 42.47% were PCM-based 

features (Supplementary Table 1). Meanwhile, 153 features showed increased signals as BG 
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levels were decreased (Dropout score > 0 and FDR < 0.05). Half of features (50.33%) were from 

AudSpec class.   

2. Intra-stability of voice-features 

To generate robust voice biomarkers, it is critical that voice signals remain stable over time 

within the same BG group and are distinctive between BG groups. To understand which voice-

features were most and least stable within a BG group, we measured the between- and within-

group variance of individual features and divided them into four quadrants (Figure 2A). We 

found that 106 voice-features were stable within a BG group (quadrant IV) showing high 

between-group variance (> top 1% of between-group variance) and low within-group variance (< 

bottom 99% of within-group variance). Meanwhile, another 106 voice-features were unstable 

within a BG group (quadrant II). Their within-group variances were more than 4 times as high as 

between-group variances. Over 98% (11,845) of voice-features showed nonsignificant between- 

and within-group variance (quadrant III), and 15 voice-features showed relatively high between- 

and within-group variances (quadrant I) implying that there could be additional factors that 

contribute to the stabilities of voice-features. 

 

Because of the potential to generate variations of voice signals within a participant resulting in 

increased variances within the same BG group, we decided to decode the variabilities derived 

from BG groups and participants, and estimated the generalized intra-stability of each voice-

feature. To do this, we performed linear-mixed-effect modeling, and measured intra-class 

correlation-coefficient (ICC) as a metric for generalized intra-stability (Figure 2B and 2C). The 

higher a voice-feature’s ICC, the more it is stable within a BG group across individuals. A 

majority of voice-features (11,824) showed a lack of stability within a BG group and participants 

within a BG group (unstable voice-features, poor ICC ≤ 0.5; Figure 2B), and 105 features 

showed moderate level of stability (0.5 < ICC ≤ 0.75). Only 143 (1.18%) voice-features were 

stable within a BG group across individuals (stable voice-features, ICC > 0.75). Interestingly, 

stable and unstable voice-features were enriched in different audio-classes (Figure 2C). Stable 

voice-features were significantly enriched in MFCC class (hypergeometric p-value, 7.03×10-6; 

Figure 2C). Meanwhile, unstable voice-features were enriched in AudSpec (hypergeometric p-
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value, 9.27×10-7), logarithmic power of Mel-frequency bands (logMelFreqBand, p-value = 

8.47×10-4) and line spectral pair frequency (LspFreq, p-value = 8.47×10-4) classes.  

3. Voice-features associated with blood glucose levels  

We then generated an optimal set of voice-features that could serve as biomarkers to discriminate 

between the three BG groups. We considered three criteria to select reliable biomarkers (Figure 

3A). Features should show statistically significant differences between BG groups (traditional 

univariate analysis; e.g., small FDR), have high stability within the same BG group across 

participants (e.g., high ICC), and be relevant by having a sufficient ability to make a distinct 

choice in decision trees. To evaluate the decision ability of each voice-feature, we measured Gini 

impurity score and corrected them (Ginic) from multiple comparisons (see Supplementary 

Methods; Figure 3B). Gini impurity and Ginic were positively related. Each voice-feature had 

0.04±0.1 of Ginic (0.08±0.13 of Gini impurity). 3,062 (25.36%) features were irrelevant (Ginic = 

0), and 4 features had significant abilities to make decisions on BG groups (Ginic = 1). We 

selected 34 top ranked voice-features (Ginic > 0.5), which were mainly composed of PCM (12 

features), AudSpec (8 features), and MFCC (6 features) classes (Supplementary Figure 2). 

 

In total, 196 voice-features were identified as a set of biomarkers (Figure 3A). They were 

composed of 33 FDR-specific (< 0.01), 120 ICC-specific (> 0.75), 13 Ginic-specific (> 0.5) 

features, and 30 biomarkers selected by at least two criteria. Biomarkers were involved in 11 out 

of 13 audio-classes (Figure 3C). The majority of biomarkers were involved in MFCC (37), PMC 

(81) and AudSpec (54) classes. The MFCC class was significantly enriched in our biomarkers set 

(p-value = 7.76×10-5). Furthermore, we found that biomarkers selected by different criteria were 

enriched in different audio-classes. For example, smoothed fundamental frequency contour 

(F0Fianl)-based biomarkers tended to be selected by FDR by having strong discriminatory power. 

MFCC-based biomarkers were likely to be selected by ICC indicating they were stable within a 

BG group and participants within a BG group. Voicing probability of the final fundamental 

frequency candidate with unclipped voicing threshold (VoicingFianlUclipped) and 

logMelFreqBand-based biomarkers were likely to be selected by Ginic suggesting they had 

important roles to choose BG groups in decision trees. Taken together, our selected biomarkers 
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could capture various profiles of the voice signals and avail information for the BG group 

classification. 

4. Predictive models to classify distinct blood glucose levels 

We then integrated our optimized voice biomarkers into a unified predictor that accurately 

discriminated between distinct BG groups (Figure 4A). Previously characterized 196 biomarkers 

were fed into a multi-class random forest (RF) classifier with hyperparameter optimization in the 

training set (Group A, 1,290 voice samples). We performed five-fold cross-validation to find an 

optimal set of parameters for a RF classifier and trained a predictive model (see Methods). To 

ensure generality of the prediction, we repeated the procedure five times by alternating voice 

samples in each fold and generated five different predictive models. Finally, the ensemble model 

was built by combining all the results from five models and applied to the independent test set 

(Group B, 164 voice samples). The ensemble model correctly predicted the BG groups in the test 

set (overall accuracy = 78.66%, balanced accuracy = 75.05%; Table 2). Over 80% of normal 

(recall = 80.71%) and low (recall = 83.33%) BG groups, and 61.11% of the high BG group were 

correctly predicted. The model had an overall Area Under the Curve (AUC) of 0.83 (micro AUC, 

95% confidence interval (CI) = 0.80 to 0.85) and a corrected AUC of 0.71 (macro AUC, 95% CI 

= 0.64 - 0.77; Figure 4B). We also found that the predictive model outperformed any models 

generated by biomarkers which were selected by only FDR, only ICC and only Ginic. The 

predictive model showed the highest AUC (Figure 4C), and correctly predicted BG groups 1.07 

~ 2.53 times more than individual biomarkers selected by single or two criteria. Other 

performance measurements, Matthews Correlation Coefficient (MCC = 0.41) and corrected F1 

score (macro F1 = 0.64), were 2.42±0.74 and 1.76±0.33 fold higher in the predictive model than 

single/double criteria-based biomarkers, respectively (Table 2). Additionally, to evaluate the null 

distribution of voice biomarkers, we generated 1,000 random sets of 196 voice-features and built 

a model from each. Indeed, our biomarker model outperformed the majority of random models 

across all performance evaluation metrics (Figure 4D).  

 

Voice-biomarkers were selected from a training set using three criteria. To examine how much 

individual biomarkers contributed to the prediction of a test set, we performed Local 

Interpretable Model-agnostic Explanations (LIME) analysis, a technique to add interpretability 
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and explainability to black box models20 and ranked 196 biomarkers based on their importance. 

We observed that biomarkers which were relevant in a training set also played important roles in 

predicting BG groups in the test set. Of 30 biomarkers selected by at least two criteria (Figure 

3A), 20 (66.67%) were ranked within the top 50, and 28 (93.33%) were ranked within the top 

100 relevant biomarkers to predict BG groups in a test set. Notably, 4 out of 5 (80%) biomarkers 

selected by all three criteria were ranked within the top 25 relevant biomarkers (Figure 4E). 

Next, we selected the top-10 positively and top-10 negatively associated biomarkers for BG 

group prediction to understand how biomarkers were combined and decided each BG group 

(Figure 4F). For the prediction of high BG level, PCM-based biomarkers were likely to be 

associated positively (i.e., high values affected correct prediction). Meanwhile, MFCC- and 

AudSpec-based biomarkers tended to be associated negatively with the prediction (i.e., low 

values affected correct prediction). For predicting low BG levels, AudSpec-based biomarkers 

were positively associated, showing their ability to track with both elevated and decreased BG 

level groups. In normal BG levels, jitter- and harmonic-to-noise ratio (HNR)-based biomarkers 

showed positive associations, which were opposite of their association for high BG prediction. 

AudSpec- and PCM-based biomarkers showed both positive and negative associations. 

Discussion 

It has been shown that one-third of type 2 diabetes patients do not present symptoms until 

complications appear21, and undiagnosed diabetes is associated with higher risk of mortality 

compared to normoglycemic individuals22. Such diagnostic limitations suggested the need for 

effective screening techniques to differentiate an individual at high-risk from one at low-risk of 

having the disease in the future. Earlier identification of potential prediabetic individuals, and 

their monitoring and treatment can reduce the economic and social burden of diabetes and its 

complications. In this study, we demonstrated, for the first time, the association between voice 

signals and blood glucose levels in healthy individuals. Specifically, we identified 196 voice 

biomarkers to identify abnormally high and low BG levels. These voice biomarkers may serve as 

a non-invasive and conventional surrogate of blood glucose monitoring in daily life as well as a 

preliminary screening tool to identify individuals with potential prediabetes or those at risk of 

developing diabetes in the future. 
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We provided a new strategy to identify robust non-invasive voice biomarkers through parallel 

evaluation of feature importance. Repetitive voice recordings allowed us to quantify signal 

variances of voices within and between BG groups across all participants. From this longitudinal 

analysis, we could generalize intra-stabilities of voice-features and identify relevant biomarkers 

that present consistent signals to classify BG groups, regardless of time and individual to record 

voices. Traditional univariate analysis provided information to estimate the power of voice-

features to discriminate abnormal BG groups. Lastly, Gini impurity score measured the 

probability of each voice-feature to decide a correct BG group in decision trees, and prioritized 

features. By integrating three biomarker selection strategies, we penetrated various different 

profiles of the voice-features and enhanced both accuracy and reliability of our predictive model.  

 

Our biomarker discovery strategy successfully identified voice biomarkers that were 

physiologically associated with blood glucose levels and perhaps diabetes development. MFCC 

features have been studied to classify voices at risk for pathological conditions23 and to build a 

regression model to estimate blood glucose levels24. The other biomarkers, representing the 

changes of jitter, shimmer, loudness, and harmonic-to-noise ratio (HNR), captured the instability 

of oscillating patterns and closure of vocal folds. It has been shown that abnormal blood glucose 

levels caused the loss of fine motor muscle control25 and laryngeal sensory neuropathy26. Also, 

patients with Type 1 and 2 diabetes commonly showed dry mouth and decreased salivary flow 

rates27, which caused difficulty in phonation due to decreased lubrication mechanism of larynx28. 

Such physiological changes would affect vocal frequency and amplitude alternating phonation 

function.  

 

In general, the normal hormonal changes in the morning increase blood glucose level regardless 

of health conditions to help individuals to have enough energy to get up and start the day29. 

Interestingly, voice sounds in the morning are relatively deeper compared to the sound during the 

day since vocal cords are relaxed (unused through night), swollen and thickened by the 

concentration of fluids in the upper body during sleeping. These unique physiological changes 

would affect the prediction of blood glucose levels from voices in the morning. Indeed, from our 

independent test set, we observed the lowest accuracy of BG level prediction in the morning 

between 6am to 12pm (25% of accuracy; Supplementary Figure 3). There were four voice 
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samples that were recorded at high BG levels in the morning. Of them, three failed to predict BG 

levels correctly. Use of additional participants and their voice recordings may refine the 

assessment of longitudinal stability of voice features and improve biomarker discovery and time-

dependent BG level prediction. 

 

Overweight, high BMI, and high blood pressure are well known risk factors for both prediabetes 

and diabetes30. Integration of clinicopathological variables could improve the prediction 

accuracy of individuals, especially those at high-risk of disease in the future. Indeed, we 

observed that one individual in our test set (Group B) who had a relatively high BMI and blood 

pressure yielded low accuracy (42.85%) to predict BG groups. Meanwhile, four other healthy 

individuals, who showed a normal range of BMI and blood pressure, yielded 79.69% of accuracy 

to predicted BG groups (Supplementary Figure 4). We suspected that integration of abnormal 

range of clinicopathological signals may aid better prediction. One limitation of our study is that 

further investigation in larger and more diverse participants are required to ensure the 

generalizability of our findings.   

 

Human voice signals can be a rich source of clinically relevant information while being non-

invasive to measure, cost-effective, scalable, and accessible 24 hours a day in remote locations 

around the world. This work reinforces the idea that combining voice signals and machine 

learning techniques makes it possible to create a reliable and efficient system to identify 

abnormal blood glucose levels in otherwise healthy individuals. Glucose levels are traditionally 

measured with invasive continuous glucose monitoring (CGM) devices or finger prick tests. 

However, our novel method of analyzing voice biomarkers has the potential of being 

implemented in either healthy, prediabetes, or undiagnosed diabetes individuals during regular 

physician checkups. The fact that voice samples were also recorded on personal smartphones 

without any specific audio filters gives extra support for its potential use in everyday situations 

for patients of all demographics. The long-term implications include reducing specialized 

healthcare equipment costs and resources associated with diabetes-related treatment, as well as 

enhancing overall health and quality of life. 
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Data sharing 

The training and validation sets, which are composed of voice-features and blood glucose levels, 

will be available for academic purpose only after approval by corresponding author. The 

machine-learning algorithm is a third-party product that we have no rights to share. 
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Figure Legends 

Figure 1. Voice profiles of healthy individuals. (A) Overview of analysis of voice signals and 

blood glucose (BG) levels in healthy individuals. (B) Landscape of BG levels, voice recordings, 

and clinicopathological information of 44 healthy individuals. Relationship between individual’s 

average BG levels and clinicopathological parameters were shown as p-values. (C) Profile of 

voice features. Values of 176 voice-features, which showed FDR < 0.05 and absolute dropout 

score > 0.05, were presented. (D) Volcano plot between dropout scores and FDRs of voice-

features. Voice-features with FDR < 0.05 were coloured in blue. 

 

Figure 2. Intra-stability of voice-features. (A) Within- and between-BG group variance. Red 

dashed lines indicated top 1% of between-group variance (horizontal) and within-group variance 

(vertical). (B) The distribution of generalized intra-stability of 12,027 voice-features. 

Generalized intra-stability is estimated using intraclass correlation coefficient (ICC). (C) 

Distribution of ICCs depending on audio-classes. Enrichment of audio-classes in stable voice-

features and unstable voice-features were shown. 

 

Figure 3. Identification of voice biomarkers. (A) Procedure to define voice biomarkers. In total, 

196 voice-biomarkers were selected from three criteria (FDR, ICC, and Ginic). (B) Relevance of 

voice-features. Gini impurity scores were measured to evaluate the ability of each voice-feature 

to make distinct choice in decision trees (left), and were corrected from multiple comparisons 

(Ginic, right). (C) Enriched audio-classes of voice biomarkers. Hypergeometric p-values were 

shown on the top of bars. 

 

Figure 4. Evaluation of the predictive model. (A) Overview of the predictive model design. (B) 

The performance of the predictive model in the test set. Receiver operating characteristic (ROC) 

curves of micro average (blue) and macro average (red) were shown. (C) Performance of 

characterized voice biomarkers. Macro AUC of 196 biomarker-based predictive model 

(FDR+RF+ICC) was compared with those of models generated by individual biomarkers that 

were selected by only FDR, only RF, only ICC, FDR+RF, FDR+ICC, and ICC+RF. (D) 

Performance comparison between the predictive model and random models. Red asterisk 

indicated BCC, ACC, MCC, F1, and macro AUC of the predictive model. Error bars indicated 
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standard deviation of performance matrix in 1,000 random models. (E) Importance of voice 

biomarkers to predict BG groups in the test set. Dard blue, light blue, and white bars indicated 

voice biomarkers that were selected by all three criteria, two criteria, and one criterion, 

respectively. (F) Relevant voice biomarkers to predict high, normal, and low BG groups. Top 10 

voice biomarkers that were positively and negatively associated with BG groups were compared. 

Last four characters of voice-features (IC10, IC11, IC12, and IC13) indicated the origin of pre-

defined feature set which OpenSmile provided. 
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Tables 

Table 1. Demographics and audio characteristics 

  Total (n= 44) Group A (n = 39) Group B (n = 5) 

Ethnicity    
East Asian 14 13 1 

South Asian 1 1 0 

Caucasian 24 20 4 

Middle Eastern 1 1 0 

Others 4 4 0 

Sex 
   

Female 21 18 3 

Male 23 21 2 

Age, years 32.32±6.04 31.92±6.06 35.40±5.41 

BMI 25.95±5.44 26.11±5.64 24.78±3.72 

Height (cm) 173.32±9.66 172.64±9.28 178.60±12.07 

Weight (kg) 78.55±20.36 78.44±20.98 79.40±16.53 

Systolic Blood Pressure (mmHg) 120.84±14.89 120.49±14.30 123.60±20.77 

Diastolic Blood Pressure (mmHg) 75.07±9.39 75.26±9.41 73.60±10.19 

Total number of voice recordings 1,454 1,290 164 

high BG  89 71 18 

normal BG 1,295 1,155 140 

low BG 70 64 6 

Number of recordings per participants 33±21 33±21 33±19 

high BG 2±3 2±2 4±4 

normal BG 29±19 30±19 28±18 

low BG 2±3 2±3 1±1 

 

  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 28, 2020. ; https://doi.org/10.1101/2020.09.25.314096doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.25.314096


 22

Table 2. Performance of predictive models 

Features BCC (%) ACC (%) MCC Macro F1 Macro AUC (95% CI) 

FDR 69.97 39.63 0.21 0.35 0.69 (0.64-0.72) 

LMM 52.17 39.02 0.13 0.33 0.59 (0.45-0.71) 

Gini.c 52.30 31.10 0.12 0.29 0.69 (0.64-0.73) 

FDR + LMM 59.18 65.24 0.22 0.48 0.69 (0.64-0.76) 

FDR + Gini.c 65.85 42.68 0.20 0.36 0.69 (0.64-0.74) 

LMM + Gini.c 61.53 49.39 0.20 0.45 0.68 (0.59-0.77) 

FDR + LMM + Gini.c 75.05 78.66 0.41 0.64 0.71 (0.64-0.77) 

Random* 37.83 ± 6.28 58.74 ± 30.77 0.02 ± 0.05 0.27 ± 0.14 0.60 ± 0.03 

* 1,000 random models were generated using 196 randomly selected voice-features 
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