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Abstract

Predicting the safety of a drug from preclinical data is a major challenge in drug discovery,
and progressing an unsafe compound into the clinic puts patients at risk and wastes resources.
Methods and analytic decisions known to provide poor predictions are common in drug
safety pharmacology and related fields, which include creating arbitrary thresholds, binning
continuous values, giving all assays equal weight, and multiple reuse of information. In
addition, the metrics used to evaluate models often omit important criteria and assessing how
models perform on new data are often insufficient. Prediction models with these problems are
unlikely to perform well, and published models suffer from many of these issues. We describe
these problems in detail, often demonstrate their negative consequences, and propose simple
solutions that are standard in other disciplines where predictive modelling is used.

Introduction

In early-stage drug discovery, compounds are tested in assays to determine their likelihood of
causing organ toxicity or adverse events in the clinic. The assays often test specific mechanisms
such as blocking key ion channels, inhibiting mitochondrial function, causing cell death, or
damaging DNA. Based on these assay results and other information about the compounds
such as their structural, physical, and chemical properties, project teams decide whether to
progress a compound to animal studies, and eventually to human trials. At each stage of drug
discovery pipeline, decisions are made based on current data, and quantitative methods are
developed to help make these decisions1.

Many current practices make inefficient use of the data and can be misleading. Below we
describe these practices, illustrate their limitations, and demonstrate the benefits of alternative
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approaches. These recommendations complement existing guidelines and best practices on in
silico toxicology models2,3.

Problems with current practices

Using safety margins as predictors

Compounds are often tested in concentration-response assays and the results are typically
summarised by an XC50 value, which is a measure of the potency of the compound, and which
lies between the lowest and highest concentrations tested. Another important quantity for
safety assessment is the peak or maximum concentration that a compound reaches in the
blood (Cmax) – either actual or predicted. Cmax is related to the clinical dose, and compounds
given at higher doses tend to have a greater risk for toxic side effects, making Cmax one of
the best predictors of clinical toxicity4–6. XC50 values are often divided by Cmax values to
give a safety margin or safety factor, where higher values indicate greater safety. Although
safety margins are useful and easy to interpret, they have five problems when used to make
predictions. The first problem is minor: an assumption is created that all combinations of
XC50 and Cmax values with the same margin have the same risk. For example, 1/0.1, 10/1,
100/10 all have a margin of 10, and therefore are assumed to have the same risk. This may be
a reasonable assumption, but it should be verified.

A more damaging consequence of using margins is that mechanistic assays with zero predictive
ability for clinical toxicity can appear useful. For example, mechanistic assays are used to
design out specific liabilities such as mitochondria inhibition or BSEP transporter protein
inhibition. Even if the primary purpose of these assays is for drug design, they are often used
in models to predict clinical toxicity, but the margin values are used instead of the XC50 values.
Using all available data is a good idea, but we show in Figure 1 with simulated data how
margins can mislead. XC50 values for two assays are independently simulated from a uniform
distribution for 100 compounds, and an outcome of clinical interest is also independently
simulated from a uniform distribution. Figure 1A and 1B show no association between the
assay values and the outcome, indicating that the assays have zero predictive ability. Next
we simulate Cmax values that strongly predict the outcome (Fig. 1C), and then calculate the
safety margins. Both margins are now good predictors of the outcome (Fig. 1D and 1E), but
this is completely driven by Cmax, the assays have contributed nothing to the prediction.

A third problem is that the safety margin variables are now correlated, owing to their depen-
dence on Cmax (Fig. 1F), whereas the original assay values are uncorrelated (not shown, but
the values were simulated to be independent). Correlated variables are a problem when creat-
ing prediction models because the models become less stable, the precision of the estimates
decreases, and the apparent importance of the variables can decrease.

A fourth problem is that the predictive information contained in the Cmax values is used
multiple times and thus Cmax receives greater weight. Even if the assays are predictive, Cmax is
one piece of information that should be used only once, not multiple times for each margin.
Furthermore, Cmax is often measured with considerable uncertainty due to variability between
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patients, or it may be predicted from in vitro and in silico data. This measurement noise is
then added to all assay values.
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Figure 1: Using safety margins can mislead. Neither Assay 1 (A) nor Assay 2 (B) predict the
outcome, but Cmax is strongly predictive (C). Safety margins for Assay 1 (D) and Assay 2 (E)
appear predictive, but these relationships are completely driven by Cmax. The assay results are
now correlated, making prediction models unstable (F).

Finally, by combining two variables into one, we’ve reduced our flexibility to make predictions.
For example, Figure 1A in Lazic et al. plots margin values for a cardiotoxicity model, and the
only option to separate the two classes of compounds is the location of a vertical line5. Figure
1B in that paper plots Cmax and the IC50 values from a hERG inhibition assay on two axes, and
now it is easier to separate the groups with a line in two dimensions, as both the slope and
intercept provide greater flexibility. Furthermore, we have even more flexibility because the
separating boundary need not be a straight line – a curved line might be preferable. Reducing
the dimensions of the data by calculating a ratio of two values can be beneficial when faced
with too many predictor variables, but the trade-off is reduced flexibility. Given all these
problems with safety margins, they cannot be recommended for inputs into a predictive model.
Instead, Cmax and XC50 values should be used directly.
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Binning and arbitrary thresholds

A common practice is to categorise compounds into “Active” or “Not active” in an assay based
on their XC50 values or safety margins. This makes as much scientific sense as measuring
people’s height with a noisy ruler and then categorising them into “giants” and “dwarfs”
based on an arbitrary cutoff. There is little gained by such a procedure and much is lost, as
statisticians have repeatedly argued7–17.

XC50 values, like human height, are continuous variables (at least to the measured precision)
and should be treated as such. Binning compounds into Active/Not active has three problems.
First, considerable information is discarded. All compounds within a category are considered
equal, but scientific sense tells us that a compound just below a threshold will differ from
another compound in the same category that is far from the threshold. Similarly, compounds
just on either side of a threshold do not have dramatically different risks. Second, binning
creates categories that do not exist in Nature, but are then taken as real. This is known as
the reification fallacy, or the fallacy of misplaced concreteness, where a concept is mistaken
for a physical property. This leads to surprise when compounds that are “negative” in all
assays show clinical toxicity later on. Being negative in an assay is not a physical property of
a compound, it’s an arbitrary designation we’ve assigned. A compound with a weak signal
in several assays may be deemed safe because the XC50 values were below a threshold, but
this does not reflect the true risk. An additive or multiplicative combination of several weak
signals could potentially indicate a high-risk compound.

Third, binning ignores the often substantial uncertainty in the assay values – 95% confidence
intervals for XC50 values can sometimes span several orders of magnitude. If an assay were
run again, compounds close to the threshold could fall on the opposite side. This procedure
therefore introduces misclassification errors in the data. Thresholds are only needed when a
decision or action is taken, which occurs after a prediction has been made (or based on assay
values directly if no prediction is made; for example, selecting compounds to progress from a
high-throughput screen). When building predictive models, the numeric assay values should
be used.

Deriving arbitrary “scores”

To rank compounds or make a decision, the information contained in multiple variables that
predict clinical safety need to be combined. These variables are often on different scales and
are not directly comparable; for example, assay results are often XC50 values, physical and
chemical properties such as cLogP may have no units, and compounds satisfying Lipinski’s
Rule-of-5 may be binary Yes/No variables. One motivation for binning continuous variables is
that all become binary and can be combined into a score by summing them, but ensuring that
the value of “1” is interpreted as “higher risk” for all variables:

Score = Variable1 +Variable2 + · · ·+Variablen. (1)

The score can range from zero to the number of variables n, and the hope is that the
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score predicts the clinical outcome. We refer to this as the “bin-and-sum” method, which
was previously used at AstraZeneca and other companies18,19. Fortunately, the above score
equation is the beginning of a standard statistical model. In Equation 2 below we convert the
above score equation into a statistical model by using the measured variable values directly to
predict the clinical outcome y, which could be QTc prolongation for a cardiotoxicity model or
liver enzyme levels for a liver toxicity model (we assume y is a continuous variable for this
discussion, but the equation below can be easily modified for other types of outcomes). We also
introduce parameters (β’s, which are called weights in the machine learning literature) that
are estimated from the data. The above bin-and-sum method also implicitly has parameters,
but they are fix to β0 = 0 and the other β’s to a value of one and therefore have no influence.
Why fix the β’s? It is better to learn their optimal values from the data. Note how in the
equation below we are using the variables to directly predict the outcome y, not to sum to a
score which we hope will be associated with the outcome in a later step. Also, the variables
do not need to be on the same scale or have the same units.

y = β0 + β1Variable1 + β2Variable2 + · · ·+ βnVariablen (2)

To complete the statistical model we also need an error term (ε), which captures the difference
between the prediction based on the variables and the true value of the outcome:

y = β0 + β1Variable1 + β2Variable2 + · · ·+ βnVariablen + ε. (3)

The bin-and-sum method has several problems. First, the predictor variables are binned,
which was discussed in the previous section. Second, all variables are given equal weight in
calculating the score, implying that all variables are equally effective in predicting the outcome,
but this is unrealistic. Third, the outcome – the target of our prediction – is not used to create
the prediction rule, which is an inefficient use of the data. Fourth, even simple interactions
between variables cannot be captured. Figure 2 illustrates this point with simulated data. 100
compounds are defined as either toxic (red triangles) or safe (blue circles) based on a clinical
outcome. These compounds are run on two assays (Fig. 2A and 2B) and the measured values
are obtained (e.g. XC50 values). Both assays are predictive as they (imperfectly) separate
the toxic/safe groups, and the vertical dashed lines are optimal thresholds that minimise
the misclassification error. If a compound is to the right of the dashed line it is considered
“positive” in the assay and given a value of 1, otherwise a value of 0. Combining the assay
results by summing these values results in a total score of either 0, 1, or 2. Compounds with a
score of 2 fall in the top right quadrant of Figure 2C. These compounds are all toxic, but many
toxic compounds are in other quadrants. Compounds with a score of at least 1 fall into the
top left, top right, and bottom right quadrants. Although all the toxic compounds are in these
three quadrants, so are some safe compounds.

Table 1 reports the sensitivity, specificity, and accuracy of each assay and their combination
using two rules: call a compound “toxic” if it is positive in at least one assay, or call a compound
“toxic” if it is positive in both assays. This approach is sub-optimal compared with fitting a
statistical model to the data, which perfectly classifies the compounds, indicted by the solid
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Figure 2: The bin-and-sum method misses simple patterns. Two assays predict a clinical
outcome (A, B), but summing the number of positive assay results for each compound
provides poor predictions. These compounds can be perfectly separated with a statistical
model, represented by the diagonal solid line (C). Dashed lines are the optimal univariate
thresholds.

diagonal line (Fig. 2C). The dashed lines are the same optimal univariate thresholds obtained
from Figure 2A and 2B.

[Insert Table 1]

The final problem with the bin-and-sum method is that it cannot capture cases when two or
more weak signals are highly predictive of toxicity. Alternatively, values for two or more assays
may be correlated because they are measuring a similar process or mechanism, such as cell
death. Compounds will tend to be positive or negative on all the correlated assays, leading to
“double-” or “triple-counting”. Both of these effects can be captured with interaction terms in a
statistical model.

Methods to prevent overfitting are inadequate

Overfitting occurs when a prediction model or prediction rule is too flexible and accounts
for idiosyncratic aspects of the available data that will not be observed in future data. An
overfit model will predict the current data well but will predict future data poorly, and it
is very easy to overfit. Figure 3 illustrates overfitting, where data were simulated for 100
compounds, 50 toxic and 50 safe. Four predictor variables (x1 to x4) were generated from
a uniform distribution and have no predictive value. Even so, we can build a decision tree
with 70% accuracy using the following decision rules (Fig. 3A). First, if a compound has a
value for x3 less than 0.17, classify it as toxic (right branch). 14 out of 18 compounds with
x3 < 0.17 are toxic. If a compound has a value for x3 ≥ 0.17 then variable x1 is used for the
next decision. If x1 ≥ 0.9 then a compound is classified as safe, and all 7 compounds in this
far-left branch are correctly classified. And so on for the other decision points. This tree had
several constraints to minimise the complexity, otherwise, we could keep creating decision
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points until we perfectly classify all compounds. The constraints are: (1) a maximum of four
splits could be made (potentially one for each variable), a split was not made if there were
fewer than 20 compounds in a branch, and a split was not made if it would lead to a final
node with less than five compounds. Despite these constraints, we achieved 70% accuracy
when the predictor variables are random noise.

x3 >= 0.17

x1 >= 0.9

x2 < 0.2

x2 >= 0.67

Safe
7 / 7

Safe
8 / 9

Safe
12 / 18

Toxic
29 / 48

Toxic
14 / 18

yes no

Decision treeA

0.60 0.65 0.70 0.75 0.80 0.85

Accuracy distribution

Accuracy values from 5000 simulations

B

Figure 3: Overfitting. A decision tree predicts a toxic or safe outcome using four variables (x1
to x4) that are pure noise with 70% accuracy (A). Simulating this process with 5000 datasets
gives a distribution of accuracy values with a mean of 72% and a range of 60% to 85% (B).

To better appreciate how easy it is to get a respectable prediction with pure noise, 5000
datasets were generated and analysed as above, and the accuracy values are plotted in Figure
3B. The average accuracy was 72%, with a range of 60% to 85%.

A common way to prevent overfitting is to split the data into a training set that is used to
develop a model and a test set that is used to evaluate the final model. When building
a model, many analytical decisions must be made and values for parameters that are not
learned from the data must be selected. Cross-validation and bootstrapping are common
methods to ensure that decisions don’t lead to overfitting20. A benefit of the recent interest
in machine learning and artificial intelligence is a greater awareness of assessing predictive
performance on an independent test set. If standard machine learning methods are used
for these prediction problems then often standard workflows will include an assessment of
overfitting. However, many prediction models in industry are still hand-crafted or created by
those with little training in predictive modelling.
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Ignoring uncertainty

Uncertainty exists in almost all aspects of making predictions, and for most toxicology and
safety pharmacology applications, uncertainty needs to be incorporated into models and
reported with the final predictions. For example, if a climate model predicts a 2oC increase in
global temperature in the next 20 years, one’s interpretation differs if the uncertainty in this
value is 1.8 to 2.2oC versus -8 to 12oC. In the latter case the uncertainty is so great that no
sensible actions can be taken (should we prevent global warming or global cooling?).

As mentioned above, the data are a source of uncertainty; assay values are often measured
with considerable error and some predictor variables may themselves be predictions, such
as Cmax values. Parameters in statistical models (β’s in Equations 2 and 3 above) are also
uncertain. Since predictions from such models are based on the β values, greater uncertainty
in the parameters will lead to greater uncertainty in the predictions. As the sample size
increases, uncertainty in parameters decreases, but more samples enables more complex
models to be fit, and so parameter uncertainty rarely reduces to zero in practice, even with a
large sample size.

The models used to make predictions are also uncertain; we do not have a “true” model that we
take as given and use for predictions. Many models may provide similar predictions, with no
single model dominating. For example, if we have ten x variables (assays, physical/chemical
properties, Cmax, etc.) in Equation 3, which combination of these variables should we use in
a regression model? Do we include any interactions to allow for the multiplicative effect of
weak signals, and if so, between which predictors? Are all the relationships linear between
the x’s and the outcome, or do we expect some “U” or inverted-U relationships? We also
need not restrict ourselves to a regression model but can also consider random forests,
support vector machines, or neural network models. Although many predictive models can be
created, predictions are typically only made from one model and thus model uncertainty is
ignored. Model uncertainty can be incorporated into predictions using ensembles, stacking, or
model-averaging21,22.

Finally, even if all the above sources of uncertainty are reduced to near zero, the predictions
themselves will still be uncertain because we can rarely make perfect predictions of clinical
outcomes from preclinical assays and the properties of compounds. Unfortunately, many
prediction models only report a point prediction or the “best estimate”, and this is used to make
decisions. Bayesian methods provide a principled approach to quantify, integrate, and report
uncertainty in predictions, and which are now used in production for cardiotoxicity and liver
toxicity5,6, and are increasingly being developed for other applications23–28. Note that we are
not referring to naive Bayes classifiers, which do not place priors on all unknowns and update
them with data29, but rather fully Bayesian versions of standard statistical or machine learning
methods, such as logistic regression and neural networks, as well as Gaussian processes and
Bayesian Additive Regression Trees (BART).
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Narrowly focusing on a few metrics

After a model is developed, its performance must be assessed, but the metrics commonly
examined are limited. The discussion below mainly applies to classification tasks, where the
aim is to predict a binary outcome (safe/toxic), but is also relevant for categorical outcomes
(safe/apoptosis/necrosis) and ordered categorical outcomes (safe/mild/severe). Four types of
metrics should be examined: classification, discrimination, calibration, and overall fit.

Classification metrics are the most common and include accuracy, sensitivity, and specificity.
Although easy to interpret, they can be misleading when the classes are unbalanced. For
example, if 90% of compounds are non-toxic, we can achieve 90% accuracy by ignoring any
experimental data and always predicting “safe”. A better option is to report the balanced
accuracy, which is the average accuracy of the two classes. Table 2 shows the result of a
hypothetical prediction model. The standard accuracy calculation is 92%:

Accuracy :
85 + 7

85 + 7 + 3 + 5
× 100 = 92%.

[Insert Table 2]

Such a high accuracy may appear impressive, but we can get 90% accuracy by always
predicting a compound is safe. The balanced accuracy is only 82%, which indicates that the
model is worse than always predicting the most frequent class, at least based on the accuracy
criterion:

Balanced accuracy :

(
85

85 + 5
+

7

7 + 3

)
/2× 100 = 82%.

A second problem is that to calculate these metrics we have silently converted a continuous
prediction probability into a class using a threshold that may not be meaningful. A logical
threshold is 0.5, with compounds classified as toxic if the prediction is > 0.5, and safe if the
prediction is ≤ 0.5. However, another threshold might better reflect the costs of misclassifying
a safe compound as toxic, and vice versa. Furthermore, this is another example of losing
information by binning. Many predictive methods such as logistic regression, naive Bayes,
and neural networks provide a continuous value for the probability of toxicity, and models are
better assessed on this. Consider a model (or a person) that predicts the probability of toxicity
for a compound is 0.55, and another model predicts 0.95. If the compound is indeed toxic,
and if we take 0.5 as a threshold for toxicity, both models made correct predictions, but the
second made a much stronger prediction and should therefore be considered a better model.
Similarly, if the drug is safe, the model that predicted a 0.95 probability of toxicity should be
penalised more than the model that predicted 0.55. Both models made wrong predictions, but
one was more wrong than the other. Methods that assess the quality of a prediction are known
as scoring rules or scoring functions, and good scoring rules distinguish between the above
situations30. Accuracy fails, but so do sensitivity and specificity, which also depend on the
balance of the classes and require converting a continuous probability into a binary category.
Furthermore, sensitivity and specificity do not tell us what we want to know when making a
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prediction for a new compound, which is the probability that a compound is safe, given that
it is predicted to be safe: P(safe | predicted safe). Instead they tell us the probability that
a compound is predicted to be safe, given that it is actually safe: P(predicted safe| actually
safe)31. Although classification metrics tend receive considerable attention, they do not tell
the full story.

Discrimination is the ability of a model to distinguish between classes. A common measure is
the concordance index (c-index), which equals the area under the receiver-operating curve
(AUC) when the variable to be predicted has two classes32. The c-index is a number between
0 and 1 giving the probability that a randomly selected toxic compound has a predicted score
higher than a randomly selected non-toxic compound. Perfect discrimination gives a c-index
of 1 and a model with no predictive ability will give a value of 0.5. The c-index requires
no arbitrary threshold and is unaffected by class imbalances. We use data from Pollard et
al. to illustrate discrimination and the other metrics33. This dataset is used to predict QT
prolongation, a binary (Yes = 1 / No = 0) outcome based on clinical Cmax values and IC50
values from a hERG inhibition assay. Further details on the data and model can be found in
Lazic et al.5, and in the supplementary material. The c-index for the model equals 0.94, and
for comparison, accuracy = 89.7%, sensitivity = 90.9%, and specificity = 88.9%. Although
uncommon, the c-index can be represented as a number between 0-100% if the other metrics
are also on a percentage scale.

Calibration measures the agreement between the predictions and the true outcomes. A model
is calibrated when the predicted probabilities match the observed probabilities, for all values
of the predicted probabilities. Even if a model has reasonable accuracy, it can still over- or
under-predict the true probabilities, and this is often assessed graphically. Figure 4A plots the
predicted probabilities on the x-axis and the observed proportions on the y-axis, with perfectly
calibrated predictions falling along the diagonal red line. The curved blue line shows the
results from the model and the grey band indicates the 95% confidence interval. The blue line
is close to the red, but with few compounds, substantial uncertainty is present. Calibration
curves and methods to summarise them are discussed in20,31.

The overall fit of a model is typically used by machine learning algorithms to optimise the
model, but it less common to report these metrics as they are not intuitive and difficult
to interpret. One metric that is relatively easy to understand is the Brier score (BS)34. It
is appropriate for predicting binary outcomes with models that produce a probability (see
Semenova et al. for an extension to an ordered categorical outcome28). The BS is the squared
difference between the prediction – a value between 0 and 1 – and the actual category, which
is either 0 or 1:

BS =

N∑
i=1

(predictedi − actuali)
2

N
.

N is the number of compounds and i indexes the compounds. The greater the difference
between the actual and predicted values, the larger the Brier score, and so low scores are
better. We get a BS for each compound, and by summing all the scores and dividing by N we
get an average BS for the dataset. The grey squares in Figure 4B are the true values for QT
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Figure 4: Model evaluation metrics. A calibration curve plots the predicted versus actual
outcomes, and a well-calibrated model (blue line) will be close to the red diagonal line (A).
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values (B). The relationship between predictions and Brier score when the true class is 1 (C).
The difference in BS between a null and full model shows the improvement in BS for most
compounds (D).
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prolongation from the Pollard et al. data and the blue circles are the predicted values33. The
square of the length of the line connecting the two points is the BS for that compound.

Figure 4D shows the difference in BS for two models. The first is a “null” model that does
not contain any predictor variables. The model can still achieve a 59% prediction accuracy
because 59% of compounds do not increase the QT interval. The second model uses Cmax
and hERG IC50 and is called the “full” model. Since the BS is expected to be higher for the
null model (worse predictions), positive values for the difference BSNull – BSFull indicate
compounds that were better predicted when using Cmax and hERG IC50, compared with not
using this information. The average BS for the null model is 0.24 and for the full model is 0.09,
indicating a large improvement. Even though the prediction for three compounds is worse
when including the Cmax and hERG data, the average performance is better. The average BS
estimates the overall model fit, and the individual Brier scores indicate which compounds are
hard to predict. These can be further investigated to understand why the model was unable to
predict their outcome. For example, they may inhibit other cardiac ion channels.

Another way to express the Brier score is to scale it between 0 and 1 using the following
equation35:

BSscaled = 1− BS

BSMax

BSMax is the maximum possible BS calculated when we always predict the most frequent class,
and averaged over all of the compounds (the null model). A scaled BS of 0 means we predict
no better than always choosing the most frequent class, and a value of 1 means we always
predict the true class with maximum probability. It can also be interpreted as an R2 value,
or the proportion of variance in the outcome that is explained by the predictors36. For this
example, the scaled Brier score is 0.62.

The commonly reported metrics of accuracy, sensitivity, and specificity have limitations and do
not fully describe the performance of a prediction model. Hence, we suggest also examining
discrimination, calibration, and overall model fit metrics when making decisions37.

Not assessing the domain of applicability

Once a suitable prediction model has been built and is put into production, it can still perform
poorly if the new compounds differ from those used to build the model. A final problem
therefore is that the similarity between new (test) compounds and old (training) compounds
is often not assessed; in other words, the model may be applied outside of its relevant domain.
New compounds may differ structurally from the training compounds as new chemical space
is explored, and this may translate into different physiochemical properties and different
assay results. If new compounds differ by having values outside of the training data in
multidimensional space, prediction becomes a form of extrapolation, which is a dangerous
procedure. Another situation is when a new compound is located within the training data,
but in a region with few observations. The model is interpolating (which is less dangerous
than extrapolating), but in regions of sparse data, and so predictions may be worse than in
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regions of dense data. Some models such as Gaussian Processes can account for both of these
situations by allowing the uncertainty in the prediction to increase, but this is not possible for
most standard machine learning models.

Assessing the similarity of a new compound to the old compounds should therefore be routine
when making predictions. Many methods are available to detect if a data point is unlike others,
known as outlier detection or anomaly detection38. To illustrate this point and one solution,
the hERG IC50 and Cmax data and the model from the previous section are used5. The idea is
to characterise the hERG IC50 and Cmax values with a mixture of Gaussian distributions, which
is a form of clustering or unsupervised machine learning39. Then for a new compound, we
calculate its distance to the nearest cluster. If this distance is large, we can flag the compound
as an outlier and be more suspicious of the prediction. We use Mahalanobis distance, which
takes the shape and orientation of the clusters into account when calculating the distance to
the cluster centre.

Figure 5A plots the hERG IC50 and Cmax training data (black circles) and the shaded blue
regions show the three clusters that describe the data. The optimal number of clusters was
determined by fitting 1-4 Gaussian distributions to the data and assessing their fit while
penalising overly complex descriptions. We do not interpret the clusters and merely use them
to describe the structure of the data. The four red diamonds labelled A–D are the hypothetical
new compounds and were not used to form the clusters.
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Figure 5: Outlier detection. The training data (black circles) are described by a mixture of
three Gaussian distributions (shaded regions; A). The distance of four new data points (red
diamonds, A–D) to the nearest cluster centre are calculated (B). Compounds with a large
distance are unlikely to be from one of the clusters and their predictions may be unreliable.

Figure 5B plots the distance to the nearest cluster centre for the original and the four new
compounds. Compound D is furthest from the original data in Figure 5A and has the largest
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distance. Note that compound D does not have the lowest hERG IC50 value nor the largest
Cmax value, and so looking at one variable at a time would not indicate that compound D is
unusual. Compound A is closer to the bulk of the data but still near the edge, and thus has
a large distance. Compound B lies well within the interior of the data but in a region with
few observations. It therefore has a larger distance. Compound C lies at the mean of the
middle cluster and therefore has the smallest distance of all the compounds, both old and new
(although this cannot be seen in Fig. 5B due to the small amount of binning required to stack
the data points).

With only two predictor variables, visualising an unusual data point is simple, but it is much
more difficult in higher dimensions. Formal methods to flag unusual compounds are therefore
useful to highlight compounds for which predictions may be unreliable38,40,41.

Discussion and recommendations

Why do poor practices persist? First, inertia: methods become established in a field or a
company and they become the standard operating procedure, despite their shortcomings, and
especially when a method’s limitations are discovered years after adoption. Second, many
of the above practices are simple to use and easy to understand. Many people who develop
and use these predictive models may not have a statistics, data science, or machine learning
background, and therefore rely on simpler but less suitable methods. Finally, there is little
learning from failure at the institutional level in pharmaceutical companies, where these
models are developed and used. A long lag exists between making a preclinical decision and
learning the eventual clinical outcome. Often years pass, and with staff turnover, there may
be few people around to reflect on the decision or method they used to make the prediction.
By documenting the decision and reasons for it – ideally in a machine-readable format – this
information can be fed back to improve decisions years later.

We discussed several common practices that can lead to problems when predicting toxic-
ity. These problems happen at all stages of model development, including preprocessing
(converting continuous variables into binary variables using arbitrary thresholds), feature
engineering (using margins), model building (using scores, overfitting, ignoring uncertainty),
assessment (evaluation metrics), and production (similarity of old and new compounds). This
paper provided a high-level summary of current practices and the references cited throughout
provide more theoretical background and technical details on implementing these methods. In
addition, the data and R-code are provided as supplementary material to facilitate the uptake
of these methods.

Many recommendations are simple to apply: avoid binning variables, use the measured
continuous values instead; avoid using margins in predictive model, use IC50 and Cmax
values directly; and when evaluating the suitability of a predictive model, consider four
types of metrics: classification, discrimination, calibration, and overall fit. If classes are
unbalanced, prefer balanced accuracy to overall accuracy. Other recommendations will require
a collaboration with quantitative researchers, such as avoid hand-crafted arbitrary scores
and use statistical or machine learning models to predict outcomes. Similarly, assessing the
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domain of applicability is more difficult as many options are available, but any method is
better than none. Quantifying and propagating uncertainty is a large topic that was only
briefly mentioned, but Bayesian methods are the standard way of handling uncertainty and
are becoming more popular for predictive models in safety pharmacology23–28. Large and
small pharmaceutical and biotechnology companies, contract research organisations, and
other industries involved in drug development need to understand the limitations of using
these assays out of context. A robust statistical framework is required to maximise predictivity,
prevent errors of judgement, and significant cost from incorrect use.
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