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Abstract 
  Thanks to the improvement of Next Generation Sequencing (NGS), genome-based diagnosis 

for rare disease patients become possible. However, accurate interpretation of human variants 

requires massive amount of knowledge gathered from previous researches and clinical cases. 

Also, manual analysis for each variant in the genome of patients takes enormous time and effort 

of clinical experts and medical doctors. Therefore, to reduce the cost of diagnosis, various 

computational tools have been developed for the pathogenicity prediction of human variants. 

Nevertheless, there has been the circularity problem of conventional tools, which leads to the 

overlap of training data and eventually causes overfitting of algorithms. In this research, we 

developed a pathogenicity predictor, named as 3Cnet, using deep recurrent neural networks 

which analyzes the amino-acid context of a missense mutation. 3Cnet utilizes knowledge transfer 

of evolutionary conservation to train insufficient clinical data without overfitting. The 

performance comparison clearly shows that 3Cnet can find the true disease-causing variant from 

a large number of missense variants in the genome of a patient with higher sensitivity (recall = 

13.9 %) compared to other prediction tools such as REVEL (recall = 7.5 %) or PrimateAI (recall 

= 6.4 %). Consequently, 3Cnet can improve the diagnostic rate for patients and discover novel 

pathogenic variants with high probability. 
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Introduction 

  Missense variants refer to variants caused by missense mutations in which an amino acid of a 

protein residue is replaced by another amino acid due to the nucleotide change of a gene. 

Missense mutations are common which correspond to 83% of non-synonymous mutations in the 

population and the pathogenicity is less severe than nonsense variants or frameshift variants in 

most cases 1. Nevertheless, many rare diseases are caused by the missense mutations such as 

developmental disorder, heart malformation, and many kinds of syndromic disorders 2–4. Recent 

improvements in the Next Generation Sequencing (NGS) enable finding a massive number of 

mutations in patients. Given the frequent occurrence of missense variants, it is not surprising that 

missense variants are commonly found in the genome of patients suffering rare diseases 5. 

However, clinical pathogenicity of a missense variant is difficult to predict, and it is necessary to 

comprehensively consider the effect of the variant on the protein, on the cell, and eventually on 

the human body 6. Also, identifying the true disease-causing variant among many missense 

variants is crucial for the diagnosis of patients. Therefore, analyzing the effect of missense 

mutations is an important and challenging problem for clinical uses. 

  There is a standard guideline for diagnosing patients based on the interpretation of sequence 

variants recommended by the American College of Medical Genetics and Genomics, that is, the 

ACMG guideline 7.  Based on the guideline, pathogenicity of each variant from patients has been 

reported to a public database, ClinVar 8, as one of the five classes including pathogenic (P), 

likely pathogenic (LP), uncertain significance (VUS), likely benign (LB), and benign (B). 

However, In ClinVar, the number of missense variants recorded with known pathogenicity and 

reliable confidence is less than 100,000. As the possible number of missense mutations within 

the human genome is 82,755,468 according to dbNSFP 9, the pathogenicity of missense 

mutations are rarely known. Also, it takes a lot of time and effort until the disease-causing 

variant is confirmed and the patient is diagnosed, which leads to high failure rate of diagnosis 

and delayed treatment for patients 10. As mentioned, due to the importance of missense mutations 

in rare diseases, there has been unmet needs to specify the pathogenicity of VUS mutations 

found in the patient genome 11. If a prediction algorithm can predict the disease-causing variants 

in advance, it can reduce the time and cost required for diagnosis considerably. PP3 is one of the 

standards in the ACMG guideline which means in-silico assessment criterion. The importance of 
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PP3 is continuously growing because the assessment of missense variants depends largely on in-

silico prediction 11. 

  In the meantime, with the development of machine learning, algorithms and services based on 

artificial intelligence have been developed in many fields. In the field of computational 

genomics, various attempts have been made to develop artificial intelligence-based diagnostics 

using rapidly increasing genomic data. Some of the attempts have been made to predict the 

pathogenicity of variants using machine learning algorithms. Representatively, REVEL 

developed a random forest algorithm that incorporates various pathogenicity predictors to build 

an integrated predictor for missense variants. CADD 12 is another ensemble method which uses 

linear regression to integrate different scoring tools. FATHMM makes use of evolutionary 

information to recognize evolutionarily well-conserved variants 13. VEST4 14, POLYPHEN2 15, 

and SIFT 16 are other well known prediction tools to predict the functionality change based on 

Random Forest, Naive Bayes, and statistical method, respectively. DANN is the first artificial 

neural network which uses 949 features to predict the pathogenicity of nonsynonymous variants 
17. However, there have been critical issues about circularity of the conventional predictors 

caused by making use of scores of other tools 18. Circularity can lead to an overlap between 

training and evaluation datasets and consequently result in overfitting. Also, the shortage and 

bias of clinical data triggers overfitting of AI machines to previous knowledge. 

  On the one hand, there was a novel attempt to solve this problem by applying sequence based 

pathogenicity prediction. PrimateAI makes use of sequences of wild-type and mutant proteins to 

compare the difference and decide the pathogenicity of mutations using Convolution Neural 

Network (CNN) 19. Such an approach which utilizes the protein sequences for pathogenicity 

prediction is promising because it can avoid the circularity problem and overfitting to previous 

knowledge. However, Compared to the adequate number of data to train deep neural networks 

effectively, the number of clinical data available in ClinVar is relatively small. Instead, 

PrimateAI made use of common human variants and variants from primates as benign data while 

simulated variants based on trinucleotide context were used as unlabeled data.  

  The previous studies using deep learning had some limitations for clinical use of the predictors. 

First of all, the performance of pathogenicity prediction for clinical data was too low compared 

to random forest models such as REVEL or VEST. This may be because deep neural networks 

require massive amounts of data for effective training compared to random forests. When a deep 
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neural network is solely trained by clinical data from ClinVar, the model would be overfitted to 

the data so that it can hardly interpret novel pathogenic variants. Nevertheless, the usage of 

clinical data from patients diagnosed based on the ACMG guideline is essential to build accurate 

pathogenicity predictors. Deep neural networks trained without clinical data show low accuracy 

to discriminate pathogenic variants from benign variants for human mutations. We overcame 

such limitations of deep neural networks by transferring the knowledge obtained from 

evolutionary conservation of protein sequences with Recurrent Neural Networks (RNNs). 

  Knowledge transfer in deep learning indicates utilizing data of similar tasks to train a specific 

task more effectively, which generally has insufficient number of data 20. In this study, we 

utilized knowledge transfer to integrate three different types of data: clinical data, common 

variants, and conservation data. Clinical data consist of pathogenic variants and benign variants 

reported to ClinVar based on the ACMG guideline. Common variants indicate variants 

frequently observed in the general human population which can help to find benign variants of 

patients 21. Conservation data is referred to as the simulated variants we generated based on the 

trinucleotide context and evolutionary conservation. We compared three different strategies for 

knowledge transfer, which are single-task learning, multi-task learning, and transfer learning, to 

find the best practice for training. The optimized predictor, named as 3Cnet, was able to evaluate 

the impact of missense variants much more accurately than other deep neural networks (PR-

AUC = 0.885 vs. 0.791) and better find the disease-causing variants of rare disease patients 

compared to ensemble models (recall = 0.139 vs. 0.075). 3Cnet is the first RNN based 

pathogenicity predictor which learns the effect of variants in the context of protein sequences. 

Additionally, we applied knowledge transfer of conservation data for other challenging problems 

regarding variant pathogenicity such as protein stability change and gene expression change in 

the cell. We found that conservation data can also improve the prediction accuracy for those 

problems by reducing overfitting of given data. 

 

Methods 
Curatation of clinical data from ClinVar database 

  We performed 5 fold cross validation for 65,239 missense mutations in ClinVar database 

(released in April, 2020). We first curated the mutations in ClinVar to find missense mutations 

with known molecular consequences and having reliable review status. For that purpose, we 
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collected mutations of which molecular consequence was ‘missense variant’ and excluded 

mutations having unreliable review status such as ‘no assertion for the individual variant’, ‘no 

assertion criteria provided’, and ‘no assertion provided’. As our prediction algorithm makes use 

of protein sequences around mutation sites as input features, each variant was represented as the 

HGVS term in which the transcript ID and the mutation information were given 22. For the 

transcript ID, the canonical transcript in Refseq database 23 was referred. Then, each missense 

mutation was transformed into data representing a protein sequence composed of 201 amino-

acids centered around the mutation site. Sequence data for both wild-type protein and mutant 

protein were generated to compare the difference in the context of amino-acid sequences. 

  There could be multiple reports for a single variant and sometimes they could be in conflict (ex. 

one report is pathogenic while the other report is benign). Therefore, the pathogenicity of each 

variant was determined by integrating pathogenicity reports from ClinVar for the same variant. 

There are 5 labels for pathogenicity which are pathogenic (P), likely pathogenic (LP), variants 

with uncertain significance (VUS), likely benign (LB), and benign (B). We set a standard to 

define pathogenicity for each variant from multiple reports. When there are any reports saying a 

variant is pathogenic or likely pathogenic, we consider the variant is pathogenic except for the 

cases in which there are contrary reports. Similarly, a variant with any reports saying the variant 

is benign or likely benign is considered as a benign variant. We removed variants having 

contrary reports and variants of which reports are VUS only. As a result, we got 22,278 

pathogenic variants and 48,580 benign variants from the ClinVar database. The input features of 

the clinical data are sequence representations of wild-type protein and mutant protein, while the 

output feature is a binary label for pathogenicity. 

  

Augmentation of clinical data using common variants in GnomAD 

  We used the GnomAD database to gather missense mutations frequently observed in the 

general population, namely common variants 24. Such variants are found in the genome of a 

number of general people which means they are probably benign variants. Common variants 

were used as benign variants to train predictors to get better precision by reducing false positives 
25. Firstly, Common variants having allele frequency (AF) higher than 0.1 % were collected. 

Then, those variants were represented as the HGVS term based on the canonical transcripts as we 

did for ClinVar database. Only variants not included in ClinVar database were curated as 
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common variants to avoid conflicts and overfitting due to duplicate samples. In total, 59,375 

variants were found to be common variants and their pathogenicity were labeled as benign. As 

the benign variants including data from ClinVar were much bigger than pathogenic variants 

(22,278 vs. 107,955), pathogenic samples were augmented 4 fold during training for balance. 

After removing a few transcripts inconsistent with the reference sequence of HG19 26, 18,942 

unique transcripts were found in the curated data in total. 

  

Generation of conservation data using Multiple Sequence Alignment 

  For 18,942 transcripts included in the data we curated, multiple sequence alignment (MSA) was 

constructed to see the evolutionary conservation patterns of those proteins. For each transcript, 

the sequence was transformed into FASTA format. Then, a hidden markov model based 

algorithm, HHblits 27, built MSA from the query sequence using UniRef30 (version 2020.02) as 

a sequence database 28. Those MSA results were utilized for two purposes: to derive input 

features of the networks and to generate simulated variants reflecting evolutionary constraint. 

Among the sequences aligned with the query sequence, only sequences having over 30% identity 

and 80% overlap with the query remained. In addition, only residues aligned with more than 10 

sequences except for gaps were utilized for the following processes. 

   The number of variants from clinical data is 130,233 even if common variants are included as 

benign samples. The number is not enough for training a deep neural network having more than 

10,000 features as sequence inputs. Therefore, to avoid overfitting that could occur when the 

amount of data is not sufficient, more mutation data were needed to train our model without bias. 

Based on the conservation patterns derived from MSA, we simulated variants which are 

frequently or hardly found in nature. First, we randomly created variants at each residue of the 

transcripts considering trinucleotide context in their genomes 19. Among those variants, we 

defined the variants that had never been found at the residue as pathogenic variants. On the other 

hand, the variants frequently found with the ratio higher than 50 % out of aligned amino acids 

were defined as benign variants. We randomly selected 10 % variants from all possible simulated 

variants to take reasonable cost for training. We named those variants as conservation data and 

utilized it to train models along with clinical data. Resulting numbers of mutations for each type 

of data are summarized in the table 1. 
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Table 1. The number of pathogenic and benign variants for each type of data 

Data type Data source Pathogenic variants Benign variants 

Clinical Data ClinVar 22,278 48,580 

Common Variants GnomAD 0 59,375 

Conservation Data UniRef30 2,498,763 1,506,304 

Protein Stability VariBench 2,349 5,139 

Cell-line VSP CAGI5 (PTEN) 1,032 2,848 

Cell-line VSP CAGI5 (TPMT) 662 3,094 
 

 

Featurization of sequences and MSA 

  To train deep neural networks, each variant needed to be transformed into the real value 

features which represent the amino-acid sequence around the mutation site. A sequence can be 

interpreted as sequential inputs of amino acids. Each type of amino-acid could have unique traits 

represented as a feature vector. We applied feature embedding to represent an amino acid in the 

form of a feature vector 29. As a result, a sequence was transformed into a feature matrix filled 

with sequential feature vectors representing amino-acids (Figure 1). As the length of overall 

sequences are various depending on the transcripts, we made use of only 201 residues around the 

mutation site (former 100 AAs to latter 100 AAs) to build the data. If the mutation site was too 

close to the start point or endpoint of the sequence so that some positions in the data cannot be 

matched to specific amino acids, such positions were filled with vectors with zeros (zero 

padding). Both wild-type sequence and mutant sequence were transformed into feature matrices 

and used as input features. 

  Along with sequence data of the transcripts, we made use of conservation patterns in MSA as 

input features as well. As such features can represent evolutionary constraints imposed on the 

residues of transcripts, those features could be crucial for pathogenicity prediction. Therefore, 

each residue in the sequence was imposed with a vector containing the ratio of amino acids 

evolutionarily found in the residue based on MSA (figure 2). For those residues of which the 

number of aligned sequences is less than 10, values of the vector were filled with zeros. As a 

result, 8,726,858 residues from the 18,942 transcripts were imposed with ratio vectors while 
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3,693,654 residues were padded with zeros. As we did for sequence data, we selected 201 

residues around the mutation site and built a feature matrix for those residues. The feature matrix 

is also used as input features to train pathogenicity predictors. 

 

 
Figure 1. Transformation of a protein sequence into a feature matrix 

 

 
Figure 2. Transformation of MSA into a feature matrix 
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Network architecture of the pathogenicity predictor 

  The model network we built can be divided into two modules based on their functions. The 

former part of the network is named as feature extractor, as the module extracts a feature vector 

of a variant based on the feature matrices of sequences and MSA (Figure 3). The latter part of the 

network is pathogenicity classifier which decides whether the variant is pathogenic or benign 

based on the feature (Figure 4). 

  The feature extractor is composed of 2 parallel layers utilizing Long Short-Term Memory 

(LSTM) networks, a type of RNN 30. The first layer consists of bi-directional LSTM networks 

which featurize three different input feature matrices independently, which are the wild-type 

sequence feature matrix, MSA feature matrix, and mutant sequence feature matrix. The output 

feature matrices can conceive the context of the sequences through the recurrent networks to 

consider the influence of one amino-acid to other amino-acids. Then, the output matrix from 

wild-type sequence and that of MSA are merged to make a concatenated feature matrix. Features 

for the same residue are concatenated so that the network can compare the amino-acid of the 

sequence with evolutionarily conserved amino-acids at that residue. output matrices of mutant 

sequence and MSA are also merged. Then, those two concatenated features (wild-type and 

mutant) are featurized once more using LSTM networks. In this time, however, only the last 

feature vector for each recurrent network remains. Finally, the output feature vector of wild-type 

and that of mutant are concatenated to become an extracted feature vector. 

  On the other hand, the pathogenicity classifier is composed of two fully connected (FC) layers. 

The first FC layer is expected to extract the difference between wild-type and mutant as a feature 

vector. a dropout layer was applied to the first layer to avoid overfitting. Then the final FC layer 

is used to decide pathogenicity of a variant by applying softmax activation classifying the variant 

into pathogenic class or benign class. The binary cross entropy between labels and the predicted 

classes becomes the loss function of the network. 
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Figure 3. Deep recurrent neural network for feature extractor 
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Figure 4. Neural network for pathogenicity classifier 

 

Training models using various data and knowledge transfer 

  At first, we trained the model only using clinical data which were curated from ClinVar. Also, 

we trained the model with the clinical data along with common variants gathered from the 

GnomAD database which were used as benign samples. We checked the performance of the 

models using 5 fold cross validation of the clinical data. Only clinical data from ClinVar were 

used as the test set of cross validation. In another model, conservation data generated from MSA 

were used to train a predictor. As the patterns of evolutionary conservation are widely used to 

predict pathogenicity of genomic mutations, the model trained only with the conservation data 

might be able to predict the pathogenicity to some extent 12,13,15. Note that, in this study, 

hyperparameters of the network were not optimized to the data to compare different architectures 

and test data without bias. Also, we tried to transfer the knowledge obtained from evolutionary 

conservation to train clinical data without overfitting. Three different learning methods were 

adapted for knowledge transfer, which were single-task learning, multi-task learning 31 and 

transfer learning 32 (Figure 5).  

  For single-task learning, the conservation data and clinical data are trained alternately for a 

single network. As the number of the conservation data is much bigger than clinical data, clinical 
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data are trained repeatedly to the network until all the conservation data are trained. On the other 

hand, for multi-task learning, the model utilizes the same feature extraction network, but 

independent pathogenicity classifiers are used for conservation data and clinical data. The 

extracted features are common features explaining both types of data, but the pathogenicity that 

each classifier predicts is separated. We named the classifier trained by the conservation data as 

fatality classifier because the pathogenic variants of conservation data are fatal which cannot be 

observed in nature. Finally, Transfer learning is a learning technique in which the model is pre-

trained with the conservation data and then further trained with clinical data. By freezing layers 

for the feature extractor and only training the pathogenicity classifier, we can make use of 

features extracted based on conservation patterns. 
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Figure 5. pathogenicity predictors using knowledge transfer (A) single-task (B) multi-task (C) 

transfer learning 
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Result 
Cross validation for ClinVar variants 

  At first, we tested the performance of pathogenicity predictors using internal ClinVar variants 

using 5 fold cross validation (5FCV). Receiver operating characteristic (ROC) curve and 

precision-recall (PR) curve were measured and the area under curve (AUC) was calculated for 

each. Various types of training data and knowledge transfer were examined through cross 

validation and those AUC values were used as standards to compare different training strategies. 

Based on ROC-AUC and PR-AUC for various strategies, we chose the optimized prediction 

model for discovering pathogenicity of mutations. Note that only mutations in ClinVar data were 

cross-validated because only ClinVar mutations were labeled based on the ACMG guideline. 

  The Table 2 compares the performance of various training strategies in terms of ROC-AUC and 

PR-AUC. The result shows the predictor trained by clinical data along with common variants 

better predicts pathogenicity compared to the model trained only with clinical data. This result 

indicates that common variants with high allele frequency in the general population can be 

considered as benign mutations for training. Also, conservation data can be used to train a model 

as well, which was less accurate for prediction of clinical pathogenicity. Also, we checked the 

performance of the model trained by both clinical data and conservation data using various 

knowledge transfer techniques (see Method). In the case of multi-task learning, the prediction 

scores for validation were the scores from the layer trained by clinical data rather than 

conservation data. 

  The result clearly shows that the performance of the model using multi-task learning between 

clinical data and conservation data is much better than other models using clinical data and 

conservation data respectively (Figure 6). We named the best model as 3Cnet. The superior 

performance of 3Cnet may come from the fact that the number of clinical data (65,239 mutations 

in ClinVar database) is insufficient to train a prediction model without bias 33. Although 

mutations from conservation data (about 40,000,000 variants) were artificially generated based 

on MSA and pathogenicity for each mutation had not been examined in clinical cases, such data 

could help to avoid overfitting of clinical data and enable the model to extract essential features 

reflecting evolutionary constraints of the proteins. 
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Table 2. Accuracy, ROC-AUC, and PR-AUC of 5-fold cross validation for ClinVar data 

Model (CV5) Accuracy ROC-AUC PR-AUC 

Clinical data 0.764 0.829 0.698 

Clinical data with common variants 0.796 0.858 0.754 

Conservation data 0.685 0.735 0.611 

Single-task learning 0.761 0.878 0.803 

Multi-task learning 0.832 0.893 0.824 

Transfer learning 0.753 0.775 0.643 
 

  
Figure 6. Cross validation performance for ClinVar variants. “clinical” means the model trained 
solely with ClinVar variants, while “clinical+common” indicates the model trained by clinical 
data along with common variants having AF > 0.1 % from GnomAD. “Conservation” is the 
model trained solely with conservation data. “clinical+common+conservation” stands for the 
model trained by multi-task learning between clinical data and conservation data. (left) ROC 
curve. (right) PR curve. 
 

External Validation for independent ClinVar variants 

  To compare other prediction tools with 3Cnet, we built an external dataset independent of the 

training dataset used for cross-validation 34. As the ClinVar dataset which we used as training 

data was released in April, 2020, we can make use of novel mutations in ClinVar released in 

August, 2020 as external data. After excluding all the overlapped mutations with training data, 

we gathered 10,262 pathogenic mutations and 12,041 benign mutations as external validation 

data. We tested the performance of 3Cnet using the external validation set and compared with 
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other pathogenicity prediction algorithms. Scores for other tools including VEST4, PolyPhen2, 

SIFT, FATHMM, CADD, DANN, and REVEL are gathered from dbNSFP (version 4.0), while 

scores of PrimateAI are from Illumina website. Even though we were not able to specify every 

single mutation used to train those tools because of the use of commercially available database 

HGMD 35 and the circularity problem, we assumed that the external mutation data we built was 

distinctive from the mutations used to train other tools. The result in the figure 7 indicates that 

pathogenicity prediction of 3Cnet (PR-AUC = 0.885) is nearly as accurate as that of REVEL 

(PR-AUC = 0.912) or VEST4 (PR-AUC = 0.902) unlike other deep learning based predictors, 

PrimateAI (PR-AUC = 0.791) and DANN (PR-AUC = 0.649). Also, 3Cnet outperformed SIFT 

(PR-AUC = 0.841), PolyPhen (PR-AUC = 0.811), CADD (PR-AUC = 0.786), and FATHMM 

(PR-AUC = 0.783) which are widely used to confirm variant pathogenicity. The result indicates 

that 3Cnet can classify pathogenicity of variants more accurately compared to many other 

methods without making use of scores from other algorithms. 

 

 
Figure 7. External validation performance for independent ClinVar variants and comparison with 
different prediction tools. Solid lines indicate the deep learning algorithms utilizing sequence 
inputs, 3Cnet and PrimateAI. Dotted lines mean the other conventional methods. (left) ROC 
curve. (right) PR curve. 
 

Patients data in diagnosis cases 

  We also checked how effectively 3Cnet can distinguish pathogenic variants from other 

missense variants of patients using the scores. As a matter of fact, such an application is more 

practical for diagnosis because we need to discover the disease-causing variant from a large 
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number of missense mutations found in the genome of patients. We checked the cases of rare 

disease patients, and gathered missense variants found in the genome of 107 patients who were 

diagnosed based on the ACMG guideline 36. The disease-causing variants confirmed by medical 

doctors were annotated as positive samples while other missense variants from those patients 

were curated as negative samples. To test a reasonable number of variants, we removed variants 

having AF > 0.01 % in the general population. As some patients can have two disease-causing 

mutations for autosomal recessive diseases, there were 173 disease-causing variants and 29,473 

uncertain variants to examine. We compared the PR curve of 3Cnet with those of REVEL and 

PrimateAI. ROC curves were not compared in this case because of the imbalance between 

positive and negative samples 37. Also, we compared the recall rate of the disease-causing variant 

for top-k variants of a patient, which represents the probability to find the true disease-causing 

mutations among high rank variants (Figure 8). 

  The result shows that 3Cnet can find disease-causing variants more effectively (PR-AUC = 

0.137) compared to REVEL (PR-AUC = 0.106) or PrimateAI (PR-AUC = 0.054). 3Cnet shows 

20 % recall rate maintaining a reasonable precision rate (around 40 %) compared to other 

methods (10~15 %). However, the precision was high for REVEL when recall rate is less than 

3%. Such a performance indicates that REVEL can verify pathogenic variants with high 

accuracy for a few variants but it neglects most of disease-causing mutations. In addition, top-k 

recall of 3Cnet was significantly higher than REVEL or PrimateAI representing the strength to 

find disease-causing variants of patients with better sensitivity. 
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Figure 8. Comparison of performances for finding disease-causing variants among other 
missense variants of patients. (left) Precision-recall curve. (right) top-k recall 
 

Prediction of protein stability change 

  We also tried to make use of the training strategy of 3Cnet to predict other types of 

pathogenicity such as protein stability change of mutations gathered from the VariBench 

database 38. The change in Gibbs free energy change (ddG) was used as the standard to measure 

protein stability change as it is a well known metric to predict the impact of a single point 

mutation 39 40. In general, ddG larger than 0.5 indicates destabilization of the mutated protein 

while ddG smaller than 0.5 is considered neutral or even more stable. In this study, we assumed 

that variants with ddG larger than 0.5 are pathogenic mutations while variants with ddG smaller 

than 0.5 are benign mutations. Consequently, there were 2,349 pathogenic variants and 5,139 

benign variants in terms of protein stability. 

  Compared to the cross validation of clinical data described above, only clinical data is 

substituted into protein stability data and conservation data was utilized as same. Common 

variants were not used as benign samples in this practice. The performance of protein stability 

prediction was measured for different strategies using cross validation (Table 3 and Figure 9). 

The result shows that prediction performance was optimized when both protein stability data and 

conservation data were trained using multi-task learning. It indicates that conservation data we 

generated can be used not only for clinical data but for general purposes to train the impact of 

missense mutations. It also supports the thesis that conservation data can help training the 

pathogenicity predictor by reducing overfitting. 
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Table 3. Accuracy, ROC-AUC, and PR-AUC of 5-fold cross validation for protein stability data 

Model (CV5) Accuracy ROC-AUC PR-AUC 

Stability data 0.681 0.587 0.392 

Conservation data 0.576 0.552 0.343 

Single-task learning 0.660 0.698 0.505 

Multi-task learning 0.678 0.71 0.510 

Transfer learning 0.591 0.565 0.359 
 

 
Figure 9. The performance of cross validation for protein stability prediction. 
“stability+conservation” means the model trained by multi-task learning between protein 
stability data and conservation data. (left) ROC curve. (right) PR curve 
 

Prediction of gene expression change in the cell 

  There was the fifth Critical Assessment of Genome Interpretation (CAGI) competition at 

september 2019, and one of the challenges was to predict the effect of missense mutations on 

PTEN and TPMT protein stability 41. The protein stability change caused by mutations was 

measured by variant stability profiling (VSP) assay which detects the fluorescence from EGFP 

fused to the mutated protein. Therefore, the outcome of VSP indicates the gene expression of 

mutated proteins compared to wild-type proteins in the cell. According to the variant stability 

scores provided by CAGI, we assumed that variants with scores less than 0.5 are pathogenic 

while benign variants have scores higher than 0.5. As a consequence, there were 1,032 
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pathogenic variants and 2,848 benign variants for PTEN. In the case of TPMT, the number of 

pathogenic variants was 662 and that of benign variants was 3,094. 

  The result of performance using cross validation is described in Table 4 and Table 5. The result 

reassures the fact that multi-task learning with conservation data helps to make pathogenicity 

prediction to be accurate. Especially for these data, only if any types of knowledge transfer were 

applied, the performance of those models were generally superior to models using only one type 

of data. This may be because the pathogenic data used for training was relatively small and 

thereby conservation data was highly effective to reduce the overfitting. We also compared the 

performance with REVEL and PrimateAI for the same variants we tested for PTEN and TPMT 

(Figure 10). The superior performance of 3Cet indicates that transferring knowledge from 

evolutionary conservation is also effective to predict impacts of mutations in the cell. 

 

Table 4. Accuracy, ROC-AUC, and PR-AUC of 5-fold cross validation for PTEN stability data 

Model (CV5) Accuracy ROC-AUC PR-AUC 

PTEN data only 0.790 0.820 0.616 

Conservation data 0.605 0.717 0.432 

Single-task learning 0.818 0.844 0.702 

Multi-task learning 0.820 0.853 0.704 

Transfer learning 0.791 0.810 0.627 
 

Table 5. Accuracy, ROC-AUC, and PR-AUC of 5-fold cross validation for TPMT stability data 

Model (CV5) Accuracy ROC-AUC PR-AUC 

TPMT data only 0.814 0.729 0.369 

Conservation data 0.732 0.728 0.388 

Single-task learning 0.790 0.777 0.476 

Multi-task learning 0.774 0.781 0.500 

Transfer learning 0.784 0.773 0.488 
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Figure 10. Precision-Recall curve for the prediction of gene expression changes in the cell. (left) 
PTEN. (right) TPMT 
 

Discussion 

  3Cnet, the first deep learning network using knowledge transfer to solve the pathogenicity 

prediction of human variants, has two strengths for clinical use. One is the accuracy of the model 

when classifying pathogenic variants and benign variants defined by the ACMG guideline. 

Variant classification using 3Cnet is nearly as accurate as ensemble based methods such as 

REVEL, even without making use of other scoring methods. The other is the capability of 

finding the disease-causing variant among a number of uncertain variants. 3Cnet found disease-

causing variants of patients with higher sensitivity compared to other algorithms. Such a 

performance was possible because 3Cnet simultaneously trained various types of data, which 

were clinical data examined based on the ACMG guidelines, common variants found in the 

general population, and the conservation data generated based on the trinucleotide context and 

evolutionary conservation. Multi-task learning between clinical pathogenicity and evolutionary 

fatality, made it possible to train the pathogenic variants without overfitting despite the 

insufficient number of clinical data. Also, MSA features given as inputs of 3Cnet enabled the 

predictor to identify viable amino-acids for each residue conserved throughout the evolution. 

Moreover, we checked whether knowledge transfer also works for other types of pathogenicity 

prediction including protein stability changes and gene expression changes in the cell. The result 

is meaningful because it proves the fact that the conservation data can explain general impacts of 

mutations in the protein, in the cell, and in the human body. What makes it possible to train such 
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sparse clinical data without biases was the general knowledge transferred from the conservation 

data. 

  Owing to the high performance of 3Cnet, the application of 3Cnet can be diverse depending on 

the purpose of researchers or medical doctors. One application would be finding the true disease-

causing variant from the gnome of a patient. On average, there were around 100~400 rare 

missense mutations within the genome of a patient 42. Among those mutations, only one or two 

mutations are known to cause the symptoms while the others are merely benign variants. 

Therefore, 3Cnet can be used to narrow down the candidate variants based on the scores thereby 

reducing time and cost spent for diagnosis. Thanks to the high recall rate, 3Cnet can help 

improving diagnostic rate significantly. However, relatively low precision for high thresholds 

needs to be enhanced for score-based diagnosis. One of the solutions would be to integrate 

known gene and protein information of which conventional prediction tools make use 14. In 

addition, scoring variants using 3Cnet can be used to find novel gene-disease association. Some 

genes may not be designated to any diseases in OMIM, a gene-disease mapping database 43, but 

they could have variants that seem to be pathogenic based on 3Cnet scores. If multiple 

pathogenic variants are found in a single gene and the symptoms of those variants are similar to a 

specific disease, we can estimate that the gene is correlated with the disease. Last but not least, 

the features extracted from the deep neural network can be utilized to train other deep learning 

models in which the pathological impact of a variant is important. For example, those features 

can be utilized to predict the functional domains of genes based on the sequence. 

  Even though 3Cnet can only predict the pathogenicity of missense variants at the moment, other 

variants such as nonsense variants or frameshift variants could be trained by 3Cnet. As 3Cnet 

makes use of the protein sequences as the input features and zero-padding can be applied for 

residues where the corresponding amino acids are missing, the network has the possibility to deal 

with different types of mutations other than missense mutations. Also, 3Cnet is the first RNN 

based model utilizing sequence inputs to predict pathogenicity. Instead of RNN, we can also 

make use of attention based networks such as a transformer to train the model. As a popular 

technique for natural language processing, transformers can train the context of a protein 

sequence and associate amino-acids at distant residues using the attention layer 44. Finally, as the 

input features of 3Cnet is the exon sequence, multiple nucleotide variants (MNVs) of a patient, 

with which the algorithms for single nucleotide mutations cannot deal, can be considered for 
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patient diagnosis. In some cases, individual variants within MNVs seem benign but the 

integrated consequence is pathogenic, and vice versa. Such effects cannot be predicted using the 

pathogenicity prediction of single point mutations. Further data accumulation and extension of 

the network would make it possible to predict the integrated pathogenicity of multiple variants 

within a gene based on the overall sequence. 
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