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Abstract—Diagnosis of mental illness, testing of treatment 

effects, and design of prevention strategies all require brain-
based biomarkers that can serve as effective targets of 
evaluation. The search for such markers often starts with a 
search for neural correlates from brain imaging studies with 
measures of functions and behavior of interest. Yet such an 
approach can produce erroneous results for correlations do not 
guarantee causation. Only when the markers map onto 
neurocomputationally-relevant parameters can such markers 
best serve the intended function. Here we take an alternative 
approach to begin with targeting the neuroanatomically and 
neurophysiologically well-defined neuromoduatory systems that 
are well positioned to serve the computational role of generating 
globally synchronized neural activity for the purpose of 
functional integration [1]. By applying second-order blind 
identification (SOBI) [2], a blind source separation algorithm 
(BSS), to five minutes of resting-state EEG data (n=13), we 
provide evidence to support our conclusion that neuroelectrical 
signals associated with synchronized global network activity can 
be extracted using the detailed temporal information in the on-
going continuously recorded EEG, instead of event-related 
potentials (ERPs). We report reliable extraction of a SOBI 
component, which we refer to as the P3-like component, in every 
individual studied, replicating our earlier report on data from a 
single participant [3]. We show that individual differences in the 
neural networks underlying this P3-like component can be 
revealed in high dimensional space by a vector of hits-based 
measures [4] for each of the P3-like network’s constituent 
structures. Given that resting-state EEG can be obtained with 
greater ease at natural non-hospital settings and at much lower 
cost in comparison with fMRI, and that mobile EEG systems 
have become increasingly available, the present work offers an 
enabling technology to support rapid and low-cost assessment of 
much larger and diverse populations of individuals, addressing 
several methodological limitations in our current investigation 
of brain function. Future opportunities and current limitations 
will be discussed. 

Keywords—neuromarker, biomarker, resting-state 
networks, default mode networks, EEG source imaging, source 
localization, RSN, SOBI, ICA 

I. INTRODUCTION 

Three major reasons have been identified for why 
neurobiology has yet to effectively impact mental health 
practice [5, 6] which we understand as the following. The first 
is the nearly exclusive reliance of these studies on the research 
framework of group comparisons, as in the case of comparing 

diseased populations with healthy controls or two different 
healthy populations. The second is the associated lack of 
sufficient attention to how to provide critical and meaningful 
information about the status and outcomes of a given 
individual. The third is the lack of identification of 
neuromarkers based on neurocomputationally relevant 
parameters. Here, building upon decades of effort on EEG-
based source imaging [7-13], we present an EEG-based 
source-imaging study of the resting-state brain to show that a 
neurobiologically-grounded and network configuration-based 
characterization can be provided for each individual without 
using group data, and that cross-individual variability as well 
as consistency in the involvement of each brain region in a 
globally synchronized cortical network can be quantitatively 
characterized. 

In search of neurocomputationally relevant parameters, we 
capitalize on the extensive psychophysiological and 
neurobiological literature on the neuromodulatory systems 
underlying novelty and uncertainty detection and their well-
documented expression in the form of the EEG-derived P3 
component [1, 14-17]. Ample neurobiological evidence 
indicates that the spatially most extensive and globally 
synchronized innervation of the entire cortical mantel is 
provided by neuromodulatory systems. Cholinergic and 
noradrenergic mediated global modulation are among the 
most extensively studied. These systems consist of projection 
neurons from subcortical structures to the cerebral cortex, and 
are thus capable of producing temporally synchronized 
changes in neuronal excitability and synaptic transmission 
across the entire cerebral cortex. 

Recent applications of second-order blind identification 
(SOBI), a blind source separation algorithm, to EEG data offer 
evidence that such global synchronizations can be extracted 
from EEG. SOBI was able to recover, from different tasks 
conditions (oddball as well face perception tasks), the P3 
component whose scalp projection and subsequent source 
location all revealed a globally distributed network involving 
the frontal, temporal, parietal, and occipital lobes [4, 18, 19]. 
The recovery of these SOBI P3 components are as expected in 
principle because SOBI works by using temporal information 
in the ongoing EEGs, not averaged ERPs computed using task 
parameters. Essentially, signals originating from different 
brain structures but with identical time courses will be 
separated from other functionally distinct signals into a single 
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component. Thus, by definition, the activity of the SOBI-
recovered P3 component reflects synchronized neuroelectrical 
activity across all constituent parts of the whole underlying 
network. 

Because SOBI works by using cross-correlations from the 
continuous EEG data instead of using event related 
information, it should be able to recover source signals 
associated with functionally distinct neural networks without 
requiring the use of task related information, such as event-
related potentials (ERPs). Indeed, our earlier case study [3] 
partially confirmed this prediction. Among the components 
recovered by SOBI from a few minutes of resting-state EEG 
data (collected from a single individual attending a US 
university), we found one whose scalp projection pattern 
closely resembled that of the SOBI-recovered P3 component 
from EEG collected during a visual oddball task. This 
observation motivated us to consider this P3-like component 
as a potential novel neuromarker to capture the synchronized 
global activity. 

The present study has the following aims: (1) replicating 
the earlier finding of extracting this P3-like component from 
resting-state EEG data by investigating a larger sample from 
13 individuals attending a university in Hong Kong; (2) 
determining whether the SOBI-recovered P3-like components 
can be localized using similar methods used for localizing the 
SOBI-recovered P3 component; (3) providing quantitative 
characterization of the spatial configuration of the P3-like 
components using a recently introduced hits-based analysis 
method [4, 19]. 

II. METHODS 

A. Experimental procedures 

Approval for this study was granted by the Human 
Research Ethics Committee of the University of Hong Kong. 
We report data from five minutes of resting-state EEG data 
collected from thirteen right-handed participants sitting 
quietly with their eyes closed (6 males) between 19-33 years 
of age (M = 26.50 ± 4.48 years) with no reported neurological 
conditions. Continuous reference-free EEG data were 
collected in an unshielded room using an active 128-channel 
Ag/AgCl electrode cap, ActiCHamp amplifier, and PyCorder 
data acquisition software (Brain Vision, LLC) with a sampling 
rate of 1000 Hz. Data collection began only after the 
impedance of all electrodes was below 10 KΩ. Before 
additional processing, a 50 Hz notch filter was applied to raw 
EEG data in order to remove line noise. Data were spatially 
down-sampled to 64-channel to allow for comparison with our 
previous work on localization [4, 18]. 

B. Extraction of the P3-like component using second-order 
bind source separation (SOBI) 

SOBI [2] was applied to continuous EEG data to 
decompose the n-channel EEG data into n-components (Fig. 
1, Step 1), each of which corresponds to a recovered putative 
source that contributes to the scalp recorded EEG signals. 
Detailed descriptions of SOBI’s usage [3, 20-24], SOBI 
validation [25, 26], and review of SOBI usage [27-29] can be 
found elsewhere. For further details about the use of SOBI on 
continuous EEG data, please see the Methods section of our 
companion paper [4]. 

Fig. 2. The starting dipole configurations used for the localization 
of the P3-like components in BESA. AB. starting tempate shown 
in schematic and sMRI views. C. scalp projection of the template. 

Fig. 1. The analysis pipeline used for processing of individual 
data. (1) appication of SOBI to continuous EEG data, (2) 
identification of P3-like component using P3 component's spatial 
characteristics, (3) localizing the generators of the P3-like 
component via equivalent current dipole (ECD) modeling, and 
(4) hits-based analysis of P3-like network configuration. 
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Here, SOBI-recovered P3-like components (hereafter, P3-
like components) were identified according to spatial 
information alone given in the scalp projection pattern of the 
SOBI component derived from unmixing matrix W (Fig. 1 
Step 2). Here, the P3-like component is operationally defined 
by its scalp projection pattern displaying a bilaterally 
symmetric concentric dipolar field pattern similar to the scalp 
projection of the P3 component [4, 18]. 

 Similar to the modeling of the SOBI recovered P3 
components, the generators of this P3-like component were 
also modeled as a set of ECDs using BESA (BESA Research 
6.1, Brain Electrical Source Analysis). From previous 
localization of SOBI-recovered P3 components, we know that 
such a global network typically consists of 4±1 pairs of 
symmetrically placed dipoles. Using this prior knowledge, we 
started the ECD modeling with a starting configuration, 
consisting of the same previously used ECD starting template, 
that is a model consisting of four pairs of bilaterally 
symmetrically placed dipoles at broadly-distributed locations 
roughly covering all four lobes of the cerebral cortex (Fig. 2). 
For other details, see our companion paper [4]. 

Unlike data collected during an oddball task, resting-state 
EEG data do not afford any event-related potentials (ERPs), 
which are typically projected onto the scalp when localizating 
P3 components. In determining what could serve as 
alternative signals used as input to BESA, we note the fact that 
SOBI components’ scalp projections are time-invariant (see 
equation in Fig. 1, Step 2). Therefore, the waveforms should 
not, in priciple, affect the localization solution. Therefore, to 
avoid numerical issues, a single ERP waveform from the P3 
component of the same participant was used in the 
computation of Fig. 1 Step 3. The solution of the source 
location was given in dipole coordinates [30] and used as input 
to the following fits-based analysis. 

C. Analysis of hits associated with anatomical structures 

Talairach Client (version 2.4.3) [31] takes BESA output 
as inputs and outputs structures and associated hits numbers 
at lobe, gyrus, and cell type levels. Similar to the analysis of 
the P3 components from the same set of individuals, we 
report the probability of each structure being observed as part 
of the P3-like network and the % of total hits that a given 
structure makes up in each individual’s total hits for the P3-
like components. Statistical analyses were performed 
similarly to those for the P3 components. 

III. RESULTS 

A. Reliable recovery of P3-like components from resting-
state EEG using SOBI  

Through visual inspection of all of the scalp projections 
of SOBI components recovered from individual resting-state 
EEG data, we were able to identify, in each of the 13 
participants, at least one component whose scalp projection 
patterns mirrored those of the classic P3 components (the 
exact binomial test, p < 0.001). Similar to the P3 scalp 
topographies (Fig. 3B), these resting-state EEG derived P3-

like scalp projections (Fig. 3A) all have bilaterally 
symmetric and nearly concentric scalp projection patterns, 
with variations in their centers along the midline, some 
centered over the central sulcus, and others more anterior or 
posterior. Note that although the precise topography of these 
components differs across individuals, the average scalp 
projections of the two components are rather similar. These 
results demonstrate that SOBI performs robustly in 
extracting the P3-like component from each individual’s 

EEG data. 

B. Variable neural generators underlying the SOBI P3-like 
component 
To determine the underlying neural networks that 

generate the P3-like components, the scalp topography of 
each individual’s component was modeled as a network of 
ECDs with an average goodness of fit (GoF) of 97.36 ± 0.4% 
(n=13). Fig. 4A shows an example from one individual, for 
whom, the scalp projection of the P3-like component (Fig. 
4A: Data) is well fitted by the similar model scalp projection 
(Fig. 4A: Model) with little remaining unexplained variance 
(Fig. 4A: Residual). The ECDs of the model are shown 
against the structural MRI of an average brain provided in 
BESA (Fig. 4B). 

Consistent with the variable 2D scalp projection patterns 
in Fig. 3A, the spatial distribution of the ECDs are also 
variable cross-individual, as indicated by the overlaid ECD 
solutions from all participants (Fig. 4C). Because highly 
consistent patterns across individuals would result in 
clustered distribution of ECDs, the lack of clustering 
indicates a high degree of variation in the spatial 

Fig. 3. Reliable identification of P3-like components by SOBI and 
individual differences. Compare the scalp projections of the P3-like 
components (A: from resting EEG) with the P3 components (B: from 
EEG during a visual oddball task). Note the similarity between the 
average scalp projections despite cross-individual differences. 
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configuration of the P3-like network. A similar broadly-
distributed set of underlying neural generators were observed 
for a SOBI-recovered P3 component from visual oddball data 
[4], suggesting that both of these networks are similar in their 
variable configurations. 

C. Quantifying cross-individual variability in network 
configuration 

The probability of a given brain structure’s involvement 
in the P3-like network was used to quantify the cross-
individual variability. Hits were found in the frontal lobe in 
100% of the participants studied (13 out of 13, exact binomial 
test, p < 0.001 ), in the parietal, temporal, and occipital lobes 
in 77% of the participants (10 out of 13, exact binomial test, 
p < 0.05), in the limbic lobe in 31% of participants (not 
significant), and in the cerebellum in 15% participants (not 
significant). The “gyrus” and “cell type” levels of analysis 
also show a greater cross-individual reliability for frontal 
structures than the remaining structures. At the “gyrus” level, 
although hits were found in 30 structures out of a possible 55, 
only MFG and SFG were observed reliably with statistical 
significance (77%, in 10 of 13 participants, p < 0.05). At the 
“cell type” level, while hits were found in 30 out of a possible 
71 structures, none of the remaining structures are reliably 
involved across individuals, with BA9 and BA18 having the 
highest probability of being observed in 62% (8 of 13) of the 
participants. 

Fig. 4. ECD modeling of SOBI-recovered P3-like components. AB: 
example from a single participant. C. overlaid ECD solutions from all 
individuals. A. Data: an individual's P3-like component scalp 
projection; model: the ECD model projection; residual: the difference 
between data and model. B. ECD solution shown against the structural 
MRI (sMRI) of an average brain provided by BESA. C. Overlaid dipoles 
from all participants’ P3-like components showed no focal clustering. 

B

A

Data

Model

Residual

SFG

PrG

MTG

Cun

C

Structure Range M  (SEM) % of Total Z p

Frontal 206 - 3155 1566 (238) 45% 3.180 .001

Parietal 0 - 1230 402 (122) 10% 2.803 .003

Temporal 0 - 2777 635 (216) 15% 2.803 .003

Occipital 0 - 1692 644 (150) 17% 2.803 .003

Limbic 0 - 839 80 (65) 3% 2.739 .034

Structure Range M  (SEM) % of Total Z p

IFG 0 - 1468 341 (152) 11% 2.023 .022

MeFG 0 - 133 21 (12) 1% 2.023 .022

MFG 0 - 1147 443 (114) 13% 2.803 .003

SFG 0 - 962 404 (100) 11% 2.803 .003

PrG 0 - 1034 294 (118) 8% 2.366 .009

PoG 0 - 601 102 (48) 2% 2.201 .014

SPL 0 - 682 94 (58) 2% 2.023 .022

ITG 0 - 496 76 (46) 2% 2.201 .014

MTG 0 - 2000 349 (163) 8% 2.201 .014

STG 0 - 1367 231 (123) 5% 2.201 .014

IOG 0 - 726 169 (67) 5% 2.023 .022

MOG 0 - 1209 220 (99) 6% 2.521 .006

LgG 0 - 371 83 (39) 2% 1.826 .034

Cun 0 - 798 115 (65) 3% 1.826 .034

Structure Range M  (SEM) % of Total Z p

BA 10 0 - 1057 269 (118) 7% 1.826 .034

BA 9 0 - 525 198 (57) 6% 2.521 .006

BA 44 0 - 896 125 (72) 4% 1.826 .034

BA 8 0 - 1080 306 (120) 11% 2.023 .022

BA 6 0 - 1625 380 (169) 11% 2.201 .014

BA 4 0 - 344 87 (32) 3% 2.201 .014

BA 3 0 - 217 23 (17) 1% 1.826 .034

BA 7 0 - 1230 214 (107) 6% 2.201 .014

BA 40 0 - 909 118 (73) 4% 1.826 .034

BA 38 0 - 1205 206 (114) 5% 2.023 .022

BA 21 0 - 977 224 (104) 6% 2.023 .022

BA 20 0 - 589 113 (61) 4% 1.826 .034

BA 19 0 - 829 259 (89) 7% 2.366 .009

BA 18 0 - 774 282 (89) 8% 2.521 .006

BA 17 0 - 504 128 (49) 4% 2.023 .022

Lobe Level

Gyrus Level

Cell Type Level

A

B

C

Table. 1. Hits analysis of P3-like network at the Lobe (A), Gyrus 
(B), and Cell Type (C) levels reveal large overlap between the P3-
like and P3 networks. Nhits: the number of hits associated with a 
structure. % of total hits: average % of total hits per structure 
(n=13). Z and p: statistics from one-sample Wilcoxon signed-rank 
test (1-tailed). Shared structures between the P3-like and P3 
networks are highlighted. 
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These results show that the P3-like components consists 
of a combination of more reliable frontal lobe structures and 
other less consistently found non-frontal structures. The more 
consistent cross-individual involvement of the frontal lobe 
suggests that even under non-task conditions, the frontal lobe 
can still play a dominant role in this global network while the 
more variable involvement of other brain structures in this 
network may reflect individual differences in how the frontal 
lobe engages with the rest of the brain.  

D. Quantifying cross-individual variations in network 
configuration 

That percentage of total hits that each of the constituent 
structure makes up was used to quantify the relative 
contribution of each structure towards the overall P3-like 
network. Table 1 reveals at all three levels of analysis, the 
average % of total hits over all individuals and their Z 
statistics. Analysis of the % of total hits variable showed that 
4 structures at the lobe level, 14 at the gyrus level, and 15 at 
the cell type level made statistically significant contributions 
to the whole P3-like network (Wilcoxon signed rank tests, 1-
tailed). The highest % of total hits measures were 45% for the 
frontal lobe: 13% for MFG, and 11% for both BA6 and BA8. 

Comparing the network underlying the P3-like 
components with those underlying P3 components reported 
in our companion paper [4], we found that the four lobes of 
the cerebral cortex are shared, indicating that both networks 
cover all lobes of the cerebral cortex. At the gyrus level, 12 
out of the 14 gyri were shared (Table. 1. shaded lines). P3-
like components additionally involved the PoG and IOG 
while P3 components included the Pcun and FuG. At the cell 
type level, 11 of the 15 reported Brodmann areas were shared 
(Table. 1. shaded lines). As expected, these regions cover all 
four lobes of the cerebral cortex.  

Additional Brodmann areas unique to the P3-like network 
included BA44, BA4, BA3, and BA40 while the P3 network 
included BA46 and BA47. These differences may in part 
reflect the engagement of language areas of the brain under 
resting conditions and the engagement of more executive 
functions during task performance. Thus, the hits-based 
analysis revealed not only substantial overlap between the 
P3-like and P3 networks, but subtle differences between these 
highly similar networks, captured by measures of the network 
configuration. 

Note that most of the average % of total hits values are 
fairly small (Table. 1). This may reflect small contributions 
in all participants or large contributions by a few participants 
only, i.e. zero contributions by the rest of the participants. To 
disambiguate between these two possibilities, we show 3D 
plots of the % of totals for each individual and each lobe, with 
Fig. 5A highlighting the highly variable spatial configuration 
of the P3-like network across different individuals (different 
colors labeling different individuals) and Fig. 5B contrasting 
the more consistent cross-individual involvement of the 
frontal lobe with the highly variable involvement of temporal, 
parietal, and occipital lobes (different colors labeling 

different structures). These plots demonstrate that large 
individual differences can be revealed through this multi-
dimensional hits-based analysis of P3-like components. 

IV. CONCLUSION 

This present work shows that methodologically (1) a P3-
like component can be reliably extracted by SOBI from each 
of the individuals’ (n=13) five minutes of resting-state EEG; 
and, (2) the spatial configuration of the neural network 
underlying this P3-like component can be localized using 
ECD models with high goodness of fit; (3) the network 
structure of the P3-like component can be quantitatively 
characterized for each individual through a hits-based 
analysis. Specifically, the spatial configuration of each 
individual’s P3-like network can be characterized as a vector 
of % of total hits whose length is defined by the number of 

Fig. 5. P3-like network configuration in all individuals. (AB): same data 
are plotted with different colors assigned to different individuals (A) and 
different structures (B). 
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constituent structures within the P3-like network and the 
values defined as the percentage of total hits that each of the 
constituent cortical structures make up for the whole network. 
We consider this P3-like network reflecting high temporal 
resolution synchrony of neuronal signaling across the cerebral 
cortex, which differs from the various networks reported by 
resting-state MRI work [32] reflecting synchronized BOLD 
signal changes, that are indirect measures of neuronal 
signaling. We note that although current work focuses on the 
characterization of the network spatial configuration, the more 
frequently used frequency domain analysis [7] can be used 
together to offer both spatial and temporal information in 
quantifying individual differences. 

Because each SOBI component has a fixed scalp 
projection and a time course of activity, the P3-like 
component can be interpreted as reflecting synchronized 
neural network activity originating from multiple but spatially 
discontinuous structures. Through ECD source localization 
and hits-based analysis, we provided quantitative 
neuroanatomical characterization of the spatial configuration 
of the underlying neural generators. Similar to the neural 
network underlying the P3 component recovered from a visual 
oddball task, this P3-like network consists of cortical 
structures across all four lobes of cerebral cortex, matching 
well with the broad innervation of the neocortex by the major 
neuromodulatory systems. Therefore, we consider the 
quantitative characteristics of the P3-like network recoverable 
from resting-state brain as neural computationally relevant 
parameters, thus potentially good candidates for being 
effective neuromarkers. 

Furthermore, because the traditional use of P3 amplitude 
and latency are sensitive to stimulus intensity, frequency, 
inter-trial interval, and past history of experiencing similar 
stimuli, neuromarkers based on characteristics derived from 
task-free and resting-stating EEG are, in principle, more likely 
to capture trait-like individual differences, not “contaminated” 
by variations associated with these other factors. Similar to the 
study of the resting-state brain activity using fMRI, here, the 
quantitative characterization of the P3-like network from 
resting-state EEG data also has all the benefits of not requiring 
tasks to be performed by the individual under investigation. 
Different from the resting-state MRI studies, the resting-state 
EEG studies are substantially less expensive and more 
convenient for both the study participants and the 
investigators. This increased feasibility of obtaining the P3-
like network parameters as neuromarkers from resting-state 
EEG also affords a wider range of applications beyond 
biomedical research and clinical treatment, to include basic 
research in understanding the brain in natural context. 

The hits-based analysis method, recently introduced by 
our group (see companion paper [4]), offered a novel approach 
to quantitatively characterize the spatial configuration of a 
distributed network at the level of individuals. With this 
method, each individual can be described by a vector, whose 
length is determined by the number of all observed grey matter 
brain structures across all participants, and whose elements are 
defined by each of the structure’s hits contribution to the total 
grey matter hits in that individual. In such a high dimensional 
space, reliability or variability of each brain structure or each 

subnetwork in this P3-like global network can be observed and 
quantified. In such a space, individual differences in any of its 
sub-spaces can potentially reveal clusters associated with 
different disease conditions or different cognitive and 
emotional regulation capacities. The present work lays the 
methodological foundation for future studies of individual 
differences in health and disease and in both experimental and 
natural contexts. 
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