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ABSTRACT 
 
Many recent developments surrounding the functional network organization of the human brain 
have focused on data that have been averaged across groups of individuals. While such group-
level approaches have shed considerable light on the brain’s large-scale distributed systems, 
they conceal individual differences in network organization, which recent work has 
demonstrated to be common and widespread. Here our goal was to leverage information about 
individual-level brain organization to identify locations of high inter-subject consensus. We 
probabilistically mapped 14 functional networks in multiple datasets with relatively high amounts 
of data. All networks show “core” (high-probability) regions, but differ from one another in the 
extent of their higher-variability components. These patterns replicate well across datasets with 
different scanning parameters. We produced a set of high-probability regions of interest (ROIs) 
from these probabilistic maps; these and the probabilistic maps are made publicly available, 
allowing researchers to apply information about group consistency to their own work in rest- or 
task-based studies. 
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INTRODUCTION 
 
A key objective of functional magnetic resonance imaging (fMRI) studies has been to gain 
insight into how brain regions respond during tasks and how they interact with one another in 
distributed large-scale systems. To do so, both task- and connectivity-based analyses have 
typically been performed on averages across groups of subjects, to counteract noisy data from 
individuals. Studies using a group-average approach to examine human functional brain 
networks have produced robust and well-validated descriptions of, for example, typical 
functional network architecture (Power et al., 2011; Yeo et al., 2011).  

 
Although the group-average brain has been useful in revealing fundamental qualities of 
functional network organization, recent data have suggested that averaging across subjects 
ignores distinct individual-specific features of cortical organization (Braga & Buckner, 2017; Finn 
et al., 2015; Gordon et al., 2017; Kong et al., 2019; Miranda-Dominguez et al., 2014; Mueller et 
al., 2013). Historically, a major barrier to producing reliable connectivity estimates at the 
individual level using resting-state functional connectivity (RSFC) techniques has been acquiring 
a sufficient quantity of data to counteract sampling variability (Gordon et al., 2017; Laumann et 
al., 2015). Previous work has demonstrated that the reproducibility of connectivity estimates and 
individual-specific features of functional brain networks is drastically improved with greater 
quantities of data per subject (Anderson et al., 2011; Elliott et al., 2019; Laumann et al., 2015; 
Noble et al., 2017). Accordingly, RSFC studies acquiring a typical 5-10 minutes of data per 
subject may not be sufficient to accurately reflect connectivity patterns in a given individual, or to 
examine individual differences in network organization. Several recent works have used higher 
reliability datasets to illuminate regions of high individual difference in functional network 
topography (Braga & Buckner, 2017; Gordon et al., 2017; Seitzman et al., 2019), outlining a 
geography of brain locations that show substantial variability across individuals. 
 
Given the wealth of recent findings on individual variability in functional network architecture, an 
important question for group analyses emerges: how can we be confident that the regions we’re 
measuring are functionally similar across individuals?  To address this issue, our goal here was 
to quantify group commonalities (rather than individual differences) in network topography 
across individuals. Despite individual differences, past data have suggested that commonalities 
in network organization are also large and widespread, with many regions of the cortex showing 
substantial similarity to the typical group-average brain (Gratton et al., 2018; Kong et al., 2019; 
Seitzman et al., 2019). Given that most studies do not contain sufficient data to reliably map 
individual networks, the majority of studies have used group-average approaches in analysis. 
Thus, identifying regions that are consistent across individuals will determine (1) how to 
implement group average analyses to limit confounds from individual differences and (2) the 
extent to which past group average data can be extrapolated to single subjects.  
 
In the present work, we aimed to address this need by mapping and quantifying areas of high 
group consensus: regions where the greatest group convergence in functional network 
organization is observed. Notably, we represent this group-consensus information 
probabilistically, and provide tools that can be directly applied in various experimental contexts 
to quantify the degree of certainty in network assignments.  To create high-data estimates of 
group consensus, we focused our analyses on datasets with relatively higher amounts of data, 
where individual network maps achieve higher reliability. We used a template-matching 
procedure to identify cortical brain networks in higher-data individuals (N = 69 with > 20 min. of 
low-motion resting-state data per individual), and combined the resulting maps to produce a 
cortex-wide probabilistic estimate for each network. We replicated these findings in two other 
high-data datasets (the Midnight Scan Club: N = 9 with > 154 min., and the Human Connectome 
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Project: N = 99, with > 52 min.). Probabilistic maps are presented and quantified at various 
thresholds and are validated by contrasting to past independent results of high variability 
regions. Finally, we provide two tools for research use: (1) a set of network-specific, high-
probability ROIs for use in task- and functional connectivity-based analyses and (2) a point-and-
click tool allowing researchers to explore voxel-by-voxel probabilistic network estimates for 
regions of activation in their own data. The use of high-consensus regions may provide greater 
confidence in ROIs selected as priors in network-informed task and resting-state studies.  
 
METHODS 
 
Datasets and overview 
 
Four independent datasets focused on young neurotypical populations were utilized in this 
paper (Table 1): a Washington University dataset (a subset of the participants reported in Power 
et al., 2012), a Dartmouth dataset (Gordon et al., 2016), the Midnight Scan Club (MSC) dataset 
(Gordon et al., 2017), and the Human Connectome Project (HCP) dataset (Van Essen et al., 
2012). Notably, each dataset we use here consists of subjects with a relatively large amount of 
low-motion data, ranging from a minimum of 20 min. (for N = 69 in the Dartmouth primary 
mapping dataset) to upwards of 154 min. (for N = 9 in the MSC replication dataset). This large 
amount of data dramatically increases the reliability of functional connectivity measurements 
relative to more typical 5-10 min. scans (Gordon et al., 2017; Laumann et al., 2015). 
 

Table 1: Datasets and data details. Low-motion data quantities were measured after correction for 
movements using framewise displacement (see Supp. Methods). 

Dataset N Usage 

Amount of data 
collected per 
subject 
(min. – max.) 

Amount of low-
motion data 
retained per 
subject  
(min. – max.) 

WashU-120 120 Group-average, network 
discovery 

7.6 – 30.2 
minutes 

6.3 –  29.7 
minutes 

WashU-24 
(higher-data 
subset of 
WashU- 120) 

24 Network template creation 44 – 133 minutes 35 – 124 minutes 

Dartmouth 69 Template-matching, 
probabilistic maps 21– 60 minutes 20 – 49 minutes 

MSC 9 Replication of probabilistic 
maps 300 minutes 154 – 281 minutes 

HCP 99 Replication of probabilistic 
maps 60 minutes 52 – 57 minutes 

 

 

The WashU datasets were used to generate group-average cortical network classifications 
based on networks typically found in group decompositions (Laumann et al., 2015; Power et al., 
2011), and to create network templates derived from these descriptions. The larger dataset (the 
“WashU-120”; 60 female, average age 24.7 years) was used for network discovery, and 
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included subjects ranging from 6.3 to 29.7 min. of low-motion data (see Supplementary 
Materials for detailed information). A high-quality group-average connectivity template for each 
of the 14 canonical brain networks described in this paper was generated using a subject 
“subset” of the WashU-120, consisting of 24 high-data subjects (the “WashU-24”). Subjects in 
this subset had at least 35 min. of low-motion data when combining across additional resting-
state scan sessions previously obtained from our group (see Template Generation below for 
more details). These group-average templates were then applied to subjects in the Dartmouth 
dataset to identify brain networks in single individuals. 
 
The Dartmouth dataset (N = 69 subjects [56 female; average age 20.2 years]) included subjects 
with over 20 min. of low-motion data. Given its large sample size and its standard, single-band 
scanning parameters, this dataset was the primary dataset used to determine network 
probabilities across individuals and generate network-specific regions of high inter-subject 
consensus. 

 
The MSC dataset (N = 9 subjects [4 female; average age 29.3 years] with over 154 min. of low-
motion rest data) and subjects from the HCP dataset (N = 99 subjects [52 female; average age 
28.2 years] with at least 52 minutes of data) were used as supplemental datasets to replicate 
findings on the distribution of high-probability brain regions across individuals. Notably, the MSC 
dataset includes very highly-sampled individuals whose functional connectivity maps have been 
demonstrated to have high reliability and validated with functional activation studies. The HCP 
dataset replicates the current findings in a large dataset at high spatial and temporal resolution. 
See Supp. Table 1 for acquisition parameters for functional data across all datasets, and see 
Supplementary Materials for details on all preprocessing and functional connectivity (FC) 
processing procedures. 
 
Template-matching and generation of high-probability ROIs 
 
In this work, we created network maps for high-data individual subjects using a template 
matching approach. These network maps were then overlaid to generate a probabilistic 
estimate of network distributions across subjects. High-consensus ROIs were generated for 
research use from regions of high cross-subject agreement of network assignment. Procedures 
for template-matching in individuals and probabilistic network map generation are illustrated in 
Fig. 1 and described in more detail below. 
 
1.  Template Matching  
 
Brain networks were identified in individual subjects by a winner-take-all procedure (similar to 
that employed in Gordon et al., 2017) which assigned each cortical gray matter voxel in a 
particular subject to one of 14 network templates. Networks used in this analysis are previously 
described in (Gordon et al., 2017) and (Laumann et al., 2015) and include the default mode 
(DMN), visual, fronto-parietal (FP), dorsal attention (DAN), ventral attention (VAN), salience, 
cingulo-opercular (CO), somatomotor dorsal (SMd), somatomotor lateral (SMl), auditory, 
temporal pole (Tpole), medial temporal lobe (MTL), parietal medial (PMN), and parieto-occipital 
(PON). Rather than using a data-driven community detection approach to map individualized 
networks, this template-matching approach was chosen based on our goal of investigating 
known, previously-described brain networks to allow for a reliable comparison of network 
structure across individuals. Template generation and individual matching are described in more 
detail below. 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 29, 2020. ; https://doi.org/10.1101/2020.09.28.313791doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.28.313791
http://creativecommons.org/licenses/by-nc-nd/4.0/


1.1.  Template generation 
 

Templates were generated based on a map of group-average network assignments in the 
cortex using the WashU-120 dataset. This analysis was performed in volume space with 3 mm 
isotropic voxels after applying a cortical gray matter mask. A voxelwise correlation matrix was 
calculated by correlating each cortical voxel’s BOLD timeseries with the timeseries of every 
other cortical voxel, resulting in a 57,544 by 57,544 matrix. Correlation matrices were Fisher 
transformed and averaged across subjects. The inverse Fisher transform was then applied to 
the resulting group-average matrix.  

 
Next, the data-driven community detection InfoMap algorithm (Rosvall & Bergstrom, 2008) was 
applied to the group average matrix to identify cortical brain networks across a range of edge 
density thresholds (from 0.5% to 5% by increments of 0.1%; closely following Gordon et al., 
2017). Thresholding was applied after excluding edges to nodes within 20 mm from a given 
voxel. Fourteen canonical consensus networks were defined by an automated algorithm 
(Seitzman et al., 2019), which summarizes assignments by weighting communities across 
thresholds. The algorithm allows smaller networks to contribute more heavily by allotting greater 
weight to the sparser thresholds at which those communities are commonly detected. 

 
A second layer of averaging was then applied, in this case using the higher-sampled WashU-24. 
For each of these subjects, the mean timeseries of all voxels labeled as a given network in the 
group-average consensus map was extracted. This average timeseries was then correlated with 
all other gray matter voxel timeseries, resulting in a network seedmap, which was averaged 
across subjects. This procedure was repeated for each network, producing a group-average 
template connectivity map for each brain network (see Supp. Fig.1 for a schematic of the 
creation of network templates and a view of all network templates). 
 
1.2.  Applying a template-matching procedure to identify networks in individuals 

 
After the group-average templates were generated, they were used to identify individual specific 
network assignments in the primary Dartmouth dataset, as well as the supplementary datasets 
for replication. Specifically, for each individual subject, a voxelwise correlation matrix was 
generated by correlating each voxel’s BOLD timeseries with the timeseries of every other voxel 
in the cortical mask, resulting in a 57,544 by 57,544 correlation matrix per subject.  
This matrix was binarized to the top 5% of connectivity values across voxels. Each voxel’s 
binarized map was iteratively compared with the 14 (also binarized, see Supp. Fig. 1) network 
templates and matched to its “best fit,” resulting in a cortex-wide, individual-specific network 
map. Fit was measured using the Dice coefficient of overlap between the binarized voxel 
connectivity map and each binarized template map (Fig. 1A). This procedure was repeated for 
all voxels in the individuals cortical mask (Fig. 1B). Same-network clusters of less than 108 mm3 
(4 contiguous voxels) were removed from each individual’s network map. 
 
2.  Creating network-specific probabilistic maps 

 
After individual specific network maps from the Dartmouth dataset had been generated with the 
template mapping procedure, these maps were overlapped to produce a cross-subject 
probabilistic map for each network (Fig. 1C). To generate this cross-subject probabilistic map, 
individual network assignments at each brain location were tallied to calculate the total 
occurrence (in number of subjects with a given network assignment out of the total N = 69). This 
produced a continuous probabilistic map for each network which specified the probability of a 
given network assignment at every voxel within the cortical mask. Frequency values of network 
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assignments were divided by the number of subjects within the primary dataset and were 
converted to percentages to illustrate the probability of network membership at each voxel. 
Probabilistic maps were created in the same manner from both the MSC and HCP datasets 
based on the number of subjects included (9 and 99, respectively), and were compared to the 
results from the primary dataset. Thresholded versions of the network-specific probabilistic 
maps were also produced (Fig. 1D), allowing for visualization of the network assignment 
frequencies at various probability thresholds (e.g., in 50, 60, 70, 80, or 90 percent of subjects). 
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Figure 1: Template-matching procedure (A) and creation of probabilistic network maps (B-D). A set of 
group-average network templates were created from the WashU dataset. These group-average templates
were binarized at the top 5% of connectivity values. Next, for each single individual in the Dartmouth 
dataset, a voxelwise correlation matrix was calculated between all gray matter voxels. Seedmaps were 
thresholded at the top 5% of values across voxels. The individual’s voxel-level binarized map was then 
iteratively compared (by Dice overlap) with each group-average network template (also thresholded to the 
top 5% of values), and the network with the highest Dice coefficient was assigned to the voxel (A). Once 
all voxels were assigned in all subjects (B), the number of network assignments at each voxel were tallied 
across subjects (C) to generate probabilistic maps of networks. These probabilistic maps were then 
thresholded (D) to represent locations with network consensus in a large majority of subjects. Note that 
while all steps were performed in volume (Talairach) space, results are mapped onto a template surface 
for visualization purposes only. 
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3.  Creating ROIs of high group consistency for studies in other modalities 
 

Once probabilistic maps were defined, we next set out to create a set of regions of interest 
(ROIs) with high group consensus for use in future (and retrospective) studies. These ROIs 
were created by contrasting the probabilistic maps generated above from the Dartmouth dataset 
with 248 (of 264) ROIs of the larger set previously proposed in Power et al. (2011) found in the 
cerebral cortex. 

 
Specifically, high group consensus regions were derived from the probabilistic maps of the 
Dartmouth dataset by identifying locations that showed consistent network assignments across 
a large majority (i.e., > 75%) of subjects. A spherical 7 mm diameter region was placed on each 
of the center coordinates reported in Power et al. (2011). ROIs were identified as “high-
probability” if their average probability (across voxels) was ≥ 75%. If a region failed to meet the 
75% criteria to be identified as “high-probability,” it was shifted one voxel in space (i.e., 3 mm in 
the x, y, or z direction) and was retained if this shift produced an average ROI probability that 
met the threshold, resulting in a total of 44 ROIs shifted from their original position. ROIs that 
failed to meet the high consensus definition with a single voxel shift were dropped from the final 
group. 
 
4.  Creating point and click voxel-wise network tool 

 
Finally, we created a tool for displaying the probability of network membership at each cortical 
voxel for research use. Specifically, a scene file was created using the Connectome Workbench 
software that contains each network’s probabilistic map in volume space and allows for point-
and-click usability to identify the probability (across subjects) that a given voxel is associated 
with each network. 
 
 
RESULTS 
 
Overview of results 

 
In this work, we sought to characterize high-consensus network locations for use in analysis and 
interpretation of group research studies. To this end, we compiled network assignments in a 
large sample of relatively high-data subjects to create a reliable cross-subject probabilistic map 
of network definitions. We replicated these findings in two additional datasets to demonstrate 
their stability. Using these datasets, we explored the degree of consensus for networks across 
different probability thresholds. Finally, we created two tools for use in future research studies: 
(1) a set of “high-probability” regions of interest, and (2) a publicly available point-and-click tool 
for determining network probabilities in researcher-specified locations.  
 
Estimated probabilistic maps of 14 canonical networks 
 
As described in the Methods, we used a template-matching approach to determine a voxel-
based network assignment for each individual (N = 69) in our primary Dartmouth dataset, based 
on templates created from the WashU cohort. We then overlapped the individuals’ network 
maps within the Dartmouth dataset for each canonical network. This overlap was used to 
generate a cross-subject probabilistic map (Fig. 2; see Supp. Fig. 2 for maps for the remaining 8 
canonical networks we examined). As can be seen, all networks demonstrated some regions 
with high-group consensus (warm colors), but also a spread of lower-consensus locations. 
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Figure 2: A probabilistic representation of 6 association networks. Cooler colors represent regions with 
the least confidence in network assignment across subjects, while warmer colors represent brain regions 
with the highest group consistency– in bright red regions, up to 100% of subjects converged on a given 
network assignment. (See Supp. Fig. 2 for probabilistic maps produced for both hemispheres and for all 
14 networks.) 

 
Consensus locations replicate across multiple datasets 
 
Next, we implemented the probabilistic map procedure in two supplemental datasets (consisting 
of 9 MSC subjects and 99 HCP subjects). This analysis yielded results that largely replicated 
the findings from the Dartmouth dataset (Fig. 3). Despite differences in participant populations, 
scanners, and acquisition parameters (most notably in the HCP dataset; see Supplementary 
Materials for further information), probabilistic network assignments generally replicate, with 
results from the three test datasets visually appearing similar at the 50 percent probability 
threshold and experiencing similar patterns of network “dropout” as the probability of 
assignment increases at 70 and 90 percent. We note that more dropout is observed in the HCP 
dataset, perhaps due to the lower SNR associated with these scans (Ji et al., 2019; Seitzman et 
al., 2019) 
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Figure 3: Thresholded probabilistic maps across 3 datasets. Probabilistic maps were generated from two 
additional datasets (MSC and HCP). For each dataset, network assignments consistent across 50%, 
70%, and 90% of subjects are displayed. 

 
Individual networks vary in the size of their core and the span of surrounding 
components 
 
While core regions of high consensus exist in all of the canonical networks investigated here, 
the networks vary in the extent of their more peripheral (i.e., low consensus) regions. As shown 
in Fig. 4, networks retain cortical territory at varying rates as the probability threshold (i.e., 
consensus across subjects) increases. For example, while the visual network consistently 
remains the most highly-represented network across the highest probability thresholds, the 
inverse is true for FP: it is the third-most highly represented network across at least 50% of 
individuals, but when group consensus is examined at 80% or 90% of individuals, cortical 
representation of FP diminishes significantly.  
 
Differences in the rate of network “dropout” seem not to be driven purely by a distinction of 
sensorimotor vs. association networks. While sensorimotor networks tend to have higher 
consensus, some association networks also maintain a relatively high group consensus across 
thresholds, including DMN and CO. It appears unlikely that network size alone is driving the 
effect (i.e., that smaller networks taper off more quickly across probability thresholds); while 
some smaller networks experience relatively fast dropout (e.g., VAN), others (e.g., PON and 
MTL) remain consistent across a high percentage of subjects. Regardless, all networks have 
some core regions of high inter-subject consensus, and networks vary in the cross-subject 
variability observed in locations surrounding these core regions. 
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Figure 4: Representation of the proportion of cortical territory covered by each network at each probability 
threshold. Each bar represents the total percentage of the cortex covered at a given probability threshold, 
and stacks represent network coverage. Stacks are ordered by most to least coverage from top to 
bottom. 

 
Non-core areas overlap with previously-described locations of network variants 
 
Next, we sought to confirm our findings by examining how consensus regions compared with 
previously identified locations of individual variability in functional network organization. 
Transparent white regions in Fig. 5 show “network variant” locations across 752 HCP subjects 
from (Seitzman et al., 2019) where a given individual’s correlation pattern differs significantly 
from the group-average. Despite differences in methodological approaches used for identifying 
consensus probabilistic assignments (via template-matching) and individual variants (via low 
spatial correlations), we find that there is a good contrasting correspondence between these two 
methods. As would be expected, regions of high consensus lie mostly outside of the boundaries 
of network variants, and appear to fill in gaps where there is the greatest inter-subject variability 
in network assignment (e.g., temporoparietal junction, lateral frontal cortex). 
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Figure 5: The spatial distribution of network variants across 752 HCP subjects (as identified in Seitzman 
et al., 2019) is displayed in transparent white, overlaid on the network map at 75% probability. The 
distribution displayed here is thresholded to show variant locations exhibited by at least 11% of subjects. 
Notably, the variants distribution appears to fill in gaps where there is the most inter-subject variability in 
network assignment, including temporoparietal junction and the left and right lateral frontal cortex. 

 
Generation of a high-probability set of ROIs and point-and-click tool 
 
We sought to refine previous group-average ROI definitions based on these probabilistic 
network assignments to generate a set of high-consensus ROIs for future research. To this end, 
we began with the 248 cortical ROIs from the commonly used 264 regions from Power et al. 
(2011). We then restricted this set to regions where the average network assignment probability 
was ≥ 75% within the 7 mm diameter ROI. This resulted in 153 cortical ROIs. Thirteen of the 14 
canonical networks were represented (no ROIs were retained for the temporal pole network), 
although the quantity of high-probability ROIs kept varied by network (see Fig. 6A for locations 
and network descriptions of ROIs). While the regions cover much of the cortex, some higher-
variability areas such as the temporo-parietal junction and the lateral frontal cortex are more 
sparsely represented, as expected (e.g., see Gordon et al., 2017; Laumann et al., 2015; Mueller 
et al., 2013; Seitzman et al., 2019). ROIs with the highest peak probabilities were identified 
largely in dorsal somatomotor and visual regions, with relatively lower peaks in lateral frontal 
and orbitofrontal regions (Fig. 6B). 
 
Additionally, we provide each network’s probabilistic maps as a series of downloadable volume 
images, available with the 153 ROIs at https://github.com/GrattonLab. For researchers using 
Connectome Workbench, a scene file was created to allow researchers to explore network 
probabilities at every cortical voxel. Fig. 7 displays an example of this tool’s utility by exploring 
the DMN map, including an “Information” window with probabilities listed across all networks. 
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Figure 6: (A) 153 high-probability ROIs colored by their network description. (B) ROIs colored by peak 
probability across voxels within the ROI. (C) Histograms of peak probability values across all 153 ROIs 
(top) and mean probability values (bottom). 
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Figure 7: Schematic of publicly-available research tool for exploring network probabilities. The DMN map 
is displayed, and probabilities of network membership to all 14 networks for the given voxel are listed in 
the “Information” window with non-zero probabilities outlined in red. 

 
 
DISCUSSION 
 
Here, we probabilistically mapped functional networks across a group of high-data individuals. 
We found that there are “core” locations of high group consensus within each network. 
Networks vary in the extent and peak probability of their core regions, suggesting that networks 
with a higher group consensus may be more amenable to group-level analyses. The ability to 
identify locations with high group consensus allows for better-informed group studies, using 
either task or functional connectivity approaches. To facilitate this process, we provide a set of 
voxelwise probability maps for each of 14 canonical networks. In addition, we provide two tools 
for research use: (1) a set of network-specific, high-probability ROIs for use in task- and 
functional connectivity-based analyses and (2) a point-and-click tool allowing researchers to 
explore voxel-by-voxel probabilistic network estimates for regions of activation in their own data.
 

a. 
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Probabilistic approaches in imaging 
 
In imaging literature, probabilistic atlases have been utilized as a way to quantify spatial 
distributions of anatomical structures or functional areas to pinpoint locations of high consensus 
across a group. Many popular probabilistic atlases of the brain are based on anatomical data – 
e.g., the cerebellum (Diedrichsen et al., 2009), subcortical nuclei (Pauli et al., 2018), the basal 
ganglia (Keuken & Forstmann, 2015), tissue type, lobes, and sulci (Mazziotta et al., 1995) – to 
provide references for cross-subject comparisons. However, functional areas (at least in the 
cortex) do not necessarily conform well to anatomical definitions (Eickhoff et al., 2018; Gordon 
et al., 2016), suggesting that anatomical atlases are less well-suited for definition of functional 
ROIs in task-based or resting-state fMRI. The current cortical probabilistic atlas based on 
functional network mapping fills this gap.  
 
Utility of a probabilistic mapping approach to functional networks 
 
We have adopted a probabilistic approach in this study given past evidence for both individual 
differences and group consensus in functional neuroanatomy (Gordon et al., 2017; Gordon et 
al., 2017; Gratton et al., 2018; Power et al., 2011; Yeo et al., 2011) . It became increasingly 
apparent in our own work that, rather than qualitative statements about the magnitude of 
variability or the extent of similarity, it would be useful to have a quantitative probabilistic view of 
the variability associated with each cortical location and each network to evaluate the 
consistency of findings. Identifying regions of group consensus provides a wealth of opportunity 
for more well-informed future research on brain networks.  
 
The network probabilistic maps that we have produced can be used by researchers in a number 
of ways. First, these maps can be thresholded to create regions of interest for future (or 
retrospective) group analyses. For example, these maps may be thresholded to select regions 
of the frontoparietal and cinguloopercular system where we have high confidence in group 
consensus. This would allow for a re-analysis of past task dissociations between these two 
systems (Dubis et al., 2016; Gratton et al., 2017; Neta et al., 2015; Power & Petersen, 2013), 
but now accounting for potential individual variability in network assignments. To facilitate this 
application, we have provided a set of 153 ROIs that identify high-consensus regions within 13 
of the 14 networks examined. Should a researcher wish to perform task-based or rest-based 
analyses at the group level, high-probability ROIs would be crucial in ensuring that the brain 
regions being analyzed are those which are most consistent across individuals; researchers can 
be more assured that a majority of individuals are providing information from the same network. 
 
Secondly, these regions may be used to help interpret ambiguous results in group studies. For 
instance, a region which is assigned to the CO network in 70% of subjects and the salience 
network in the other 30% of subjects may serve as a meaningful distinction from a region which 
is assigned to CO in 70% of subjects but FP in the other 30%. Thus, while the high-probability 
ROIs focus on regions of group similarity, useful information on the locations and forms of 
individual variability can also be gleaned from the point and click probabilistic tool. In the future, 
researchers may use the probabilities associated with this paper to provide quantitative 
estimates for the typical (and atypical) network assignments associated with findings of interest. 
 
Third, probabilistic network mapping may deepen our understanding of the clinical utility of 
mapping functional brain networks by providing reliable quantitative priors about the network 
assignments of each region. This probabilistic approach may provide a basis for more precisely 
identifying network deviations in individuals with specific diagnoses, as well as network changes 
across development. For example, one possible future investigation may be to examine whether 
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individuals with a given clinical diagnosis vary predictably from the probability map of any 
network of interest; perhaps in clinical groups there will be more variability in higher-probability 
regions. 
 
Group consensus in core regions within large-scale networks     
 
Our probabilistic maps demonstrated that each network was comprised of a set of “core” 
regions exhibiting very little or, in some cases, no variability (note that our use of “core” is based 
on anatomical location, separate from the graph theoretical connotation of the word). This 
suggests that the core areas of each network are relatively fixed across individuals, with little 
possibility for variation, and these regions complement previously described locations of high 
individual variability (see Fig. 5). The consensus areas of each network were larger in 
sensorimotor than association systems, consistent with the idea that association systems are 
more variable across individuals, maturation, and evolution, which has been suggested to be 
due to a lack of genetically encoded tethering markers in these areas (Buckner & Krienen, 
2013). However, we found a consistent core in each of the association systems as well, which 
would appear to be at odds with a strong interpretation that association networks lack fixed 
constraints (Buckner & Krienen, 2013). Indeed, the consistency of association networks differed 
markedly between systems with, e.g., relatively robust consensus in the DMN and CO and high 
variability in the FP, despite their similar overall sizes and complex “high level” natures. 
Exploring the basis for commonalities and plasticity in association networks will be an 
interesting avenue for future work. 
 
Limitations 
  
The findings presented here have several limitations that are worth noting. First, in an effort to 
optimize the tradeoff between data quantity and the number of subjects retained for our 
probabilistic estimates, the amount of data required per subject was set to a minimum of 20 
minutes of low-motion data. While this represents relatively higher-data subjects than a majority 
of group studies (which collect 5-10 min. of data), most of these subjects did not reach the 30-
45 minute threshold that is ideal to produce asymptotic individual-subject reliability (Laumann et 
al., 2015),. However, we were able to repeat the probabilistic analyses within the smaller but 
high-data Midnight Scan Club (MSC) dataset, which produced comparable results. 
 
Further, while there was general agreement in the probabilistic maps from the 3 datasets 
examined here, there were some differences, which may be driven by differences in scan 
parameters or dataset size/quality. This was particularly the case in the probabilistic map 
generated from the Human Connectome Project (HCP) dataset relative to the other two 
datasets. The probabilistic maps displayed in Fig. 3 reveal that some high-consensus regions 
that are conserved across probability thresholds in the Dartmouth and MSC datasets show a 
lower degree of consensus in the HCP dataset. Such differences might be driven by the smaller 
voxel size and higher spatial and temporal resolution of the HCP dataset, which may lead to a 
lower signal-to-noise ratio (SNR). Thus, the extent to which the probabilistic assignments 
replicate in datasets using similar acquisitions as the HCP is less certain, and may require 
further investigation. Given this potential concern, we have also separately released the HCP-
specific probabilistic network maps to allow those using acquisition parameters similar to the 
HCP dataset to have a reference for comparison. 
  
Lastly, we note that probabilistic assignments were calculated at the level of 14 canonical 
functional networks and not at an areal level. A consistent network assignment across 
individuals is not a guarantee that a region belongs to the same brain area across those 
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individuals. We know from past work based on functional localizers that there is variability 
across subjects at the areal level as well (e.g., Kanwisher et al., 1997; Wang et al., 2015); 
variation at the areal level may also carry information about individual differences, and will be 
important in studies requiring area-level precision. Still, an understanding of the probabilistic 
composition of functional networks (particularly association networks in frontal and parietal 
cortex, in light of the more prominent individual variability that has been observed there) will 
serve as an important improvement to the interpretation of many task and resting-state studies. 
 
CONCLUSIONS 
 
Here, we produce a probabilistic representation of distributions of functional network 
assignments across a group of high-data subjects. While individual networks vary in the span of 
their “core” high-probability locations, all networks examined showed regions of high group 
consensus, and core regions replicated reasonably across datasets. High-probability ROIs 
produced from this analysis will allow researchers to interrogate task or resting-state data in 
locations that have been demonstrated to show high degrees of group consensus. 
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SUPPLEMENTARY MATERIALS 
 
 
Supplemental Methods 
 
 
Preprocessing and FC processing of BOLD data 

WashU, Dartmouth, MSC datasets 

All functional data were preprocessed to remove noise and artifacts, following Miezin et al. 
(2000). In the WashU, Dartmouth, and MSC datasets, slice timing correction was performed 
using sinc interpolation to account for temporal misalignment in slice acquisition time. Next, 
whole-brain intensity values across each BOLD run were normalized to achieve a mode value of 
1000. Motion correction was performed within and across BOLD runs via a rigid body 
transformation. Next, subject data were aligned to a template atlas (Lancaster et al., 1995) 
conforming to Talairach stereotactic atlas space (Talairach & Tournoux, 1988) using an affine 
transformation. The atlas transformation was performed in the WashU, Dartmouth, and HCP 
datasets by registering the BOLD volumes directly to a T1 structural image. In the MSC, 
functional data were registered first to the T2 image and then to the T1. All transformations were 
simultaneously applied along with resampling to 3 mm isotropic voxels.  
 
Following Power et al. (2014), additional denoising was applied to the resting-state data for FC 
analysis. Temporal masks for each subject’s timeseries were created in the WashU and MSC 
datasets by censoring all frames with a framewise displacement (FD; (Power et al., 2012)) 
greater than 0.2 mm, and in the Dartmouth dataset by censoring frames with FD greater than 
0.25 mm. Across all datasets, segments with fewer than 5 contiguous frames were censored. 
FreeSurfer 5.0 segmentation using each subject’s T1 image generated a white matter and a 
cerebrospinal fluid nuisance mask per individual. After BOLD data was demeaned and 
detrended, Regression of nuisance signals was implemented, regressing out global signal, 
cerebrospinal fluid, and white matter, as well as the six rigid-body motion regressors and their 
expansion terms (Friston et al., 1996). Data from high-motion frames were interpolated over via 
a spectra-matching interpolation technique. Data were then bandpass temporally filtered 
between 0.009 Hz to 0.08 Hz was. Finally, the data were spatially smoothed at FWHM (6 mm). 
 

HCP dataset 

Preprocessing and FC processing of HCP subjects were carried out similarly to the other 
datasets with several differences. First, slice-timing correction was not performed, following the 
recommendations of the minimal preprocessing pipeline guidelines (Glasser et al., 2013). 
Second, prior to censoring high-motion frames, motion parameters were low-pass filtered at 0.1 
Hz to mitigate effects of respiratory artifacts on motion estimates attributable largely to the multi-
band, fast-TR data acquisition (Fair et al., 2020; Siegel et al., 2017). Following this, a filtered FD 
threshold  of 0.1 mm was applied to censor frames. Data were originally processed in MNI atlas 
space with 2 mm isotropic voxels, and were transformed into Talairach space with 3 mm 
isotropic voxels in a single step prior to spatial smoothing as described above. 
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Supplemental Tables 
 
 
Supplemental Table 1 

Supp. Table 1: Acquisition parameters for functional MRI runs. 
  

Dataset Scanner TR (s) TE (ms) Flip angle Num. 
slices 

Voxel size 
(mm) 

WashU-120 
and WashU-24 

Siemens Trio 
3T 2.5 27 90º 32-36 4 x 4 x 4 

Dartmouth Philips 
Achieva 3T 2.5 35 90º 36 3 x 3 x 3.5 

MSC 
Siemens Trio 
3T 2.2 27 90º 36 4 x 4 x 4 

HCP Custom HCP 
Skyra 3T 

0.72; 
MB = 8 33 52º 72 2 x 2 x 2 
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Supplemental Figures 
 
 
Supplemental Figure 1 
 

 
Supp. Fig. 1: Creation of network templates and binarized versions of network templates for 
each of the 14 networks analyzed in this study. 
 
 
  

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 29, 2020. ; https://doi.org/10.1101/2020.09.28.313791doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.28.313791
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplemental Figure 2 
 

 
Supp. Fig. 2: Probabilistic overlap maps for all 14 networks. 
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