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Abstract

Simulation of genomic data is a key tool in population genetics, yet, to date, there is no
forward-in-time simulator of bacterial populations that is both computationally efficient and
adaptable to a wide range of scenarios. Here we demonstrate how to simulate bacterial pop-
ulations with SLiM, a forward-in-time simulator built for eukaryotes. SLiM has gained many
users in recent years, due to its speed and power, and has extensive documentation showcasing
various scenarios that it can simulate. This paper focuses on a simple demographic scenario,
to explore unique aspects of modeling bacteria in SLiM’s scripting language. In addition, we
illustrate the flexibility of SLiM by simulating the growth of bacteria on a Petri dish with antibi-
otic. To foster the development of bacterial simulations based upon this recipe, we explain the
inner workings of its code. We also validate the simulator, by extensively testing the results of
simulations against existing simulators, and against theoretical expectations for some summary
statistics. This protocol, with the flexibility and power of SLiM, will enable the community to
simulate bacterial populations efficiently under a wide range of evolutionary scenarios.

1 Introduction

Bacterial population genomics aims to reconstruct past evolutionary events and better understand
the ongoing evolutionary dynamics operating in present-day populations. Demographic changes,
selection, and migration are examples of processes whose genotypic signals remain in present-day
populations. Trying to recover these signals from ever-growing sequencing data is a major goal of
population genomics. In the context of epidemiological surveillance the inference of these types
of events can be useful, since pathogens are known to undergo frequent demographic changes [1].
Similarly, a better understanding of the evolutionary forces operating in pathogen populations
can help to inform public health policy [2]. For instance, one can assess the impact of a vaccination
campaign or the efficacy of a new antibiotic on a given pathogen population [3], [4]. Beyond these
clinical settings, bacterial population genomics can also be useful to describe natural population
diversity [5].

Simulations are essential to population genetics [6]. They are useful for testing and validating
population genetics methods (whether based on simulations or not), since they provide data
generated by known evolutionary forces (unlike, typically, empirical sequence data). Notably, they
can be used to assess the performance of statistical methods when assumptions are violated [7],
[8]. They are also helpful for predicting the impact of an environmental change on a population,
or the expected response to intervention [9], [10].

Many methods inferring past evolutionary events also rely on simulated data. In Approximate
Bayesian Computation (ABC), probably the most famous likelihood-free inference framework in
our field, simulations enable estimation of the posterior distribution of parameters of interest [11].
Other methods, based on machine learning, also require simulations to train a model to learn
the mapping between input sequence data and evolutionary processes [12]. Increasingly, ma-
chine learning methods involve “deep learning” algorithms that hold great promise but require
a large volume of simulated data [13]-[17].  Despite these many applications of simulations
in population genetics, there are very few bacterial population genetics simulators, and those
that exist do not cover many possible scenarios. In particular, existing bacterial simulators are
coalescent-based simulators (msPro [18], SimBac [19], FastSimBac [20]), which means they are
very fast and memory-efficient, but can model only a narrow range of evolutionary dynamics.
For instance, these simulators do not allow selection, and in the case of SimBac, demographic
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changes cannot be simulated either. Simulation of complex selective forces together with de-
mographic processes remains a difficult problem for coalescence-based simulators [19]; other
coalescent-based simulators that are not specific to bacteria (e.g., ms [21], msprime [22]) suffer from
the same constraints, and additionally most cannot simulate bacterial recombination (similar to
gene conversion). On the other hand forward simulators, like SFS_CODE [23] enable complex
models including varying demography, multiple types of selection; however, this software suf-
fers from poor performance [24]. Yet computational efficiency is crucial for supervised methods
trained on large simulated datasets, such as ABC, machine learning, and deep learning. Using
forward simulation instead of coalescent-based methods can therefore be problematic, given that
forward simulation has traditionally been several orders of magnitude slower than the coalescent.
CoreSimul, a forward-in-time bacterial simulator with bacterial recombination and selection, was
recently published [25]; however, it is designed for a different problem space than we are inter-
ested in here (simulation of different models of molecular evolution on a fixed genealogical tree
of sampled individuals).

Here we present a method for simulating bacterial populations in a flexible and fast way, using
a forward simulator called SLiM [26]. The SLiM forward simulation framework is becoming quite
widely used due to its speed, power, and flexibility [27]-[29]. SLiM includes a scriptable interface
with its own language, Eidos, which allows simulation of a wide range of evolutionary dynamics.
The detailed instruction manual, combined with its helpful graphical user interface and its ver-
satility, enable users to build simulation models tailored to their research. Simulation of bacterial
populations, and haploids in general, is not supported intrinsically by SLiM, because every indi-
vidual has two chromosomes. But because of its scriptability, it is possible to extend SLiM into this
area. In this protocol, we will show the key techniques necessary to perform bacterial simulations.
Following the SLiM manual’s convention, we will introduce the model implementation step by
step together with the related concepts. Then we will show that the simulator behaves correctly
according to the expected values of certain summary statistics under the Wright-Fisher model or
by validating against other simulators, and that the model’s performance is good enough to allow
numerous simulations to be run in a reasonable amount of time and memory. Finally, we will
showcase a more complex model, based upon our method, in which we simulate bacteria growing
on a Petri dish. This model is spatially explicit, representing the bacteria actually colonizing the
dish, half of which contains an antibiotic that radically decreases their survival rate. Resistance
mutations may emerge, substantially increasing the fitness of bacteria growing in the presence
of antibiotic, while slightly decreasing fitness otherwise. This model illustrates the open-ended
flexibility of SLiM.

We believe this work will open new avenues in bacterial population genetics by allowing
researchers to go beyond the limitations of the coalescent, broadening the potential applications
of simulation to a much wider range of evolutionary dynamics.

2 Methods, simulator and data

The bacterial simulator proposed here is based on SLiM, a powerful and efficient forward genetic
simulator [30]. Thanks to its flexible scripting interface using the Eidos language, we were able to
adapt SLiM to the simulation of bacterial populations.

SLiM provides two types of simulations: Wright-Fisher (WF) models, and models that go
beyond the Wright-Fisher framework (non-Wright-Fisher or nonWF models). The Wright-Fisher
model is based on many simplifying assumptions that are often not compatible with realistic
scenarios such as structured populations, overlapping generations, etc. [26]. However, it is
mathematically simple, allowing expectations for certain quantities to be estimated. This is
particularly useful to validate the created simulator against the expectations under this model.
The nonWF framework, on the other hand, is more individual-based, emergent, and realistic. It
allows a greater breadth of possible scenarios to be simulated, but we cannot derive expectations
of the same quantities. Thus, we will provide results for the same scenario under both models to
confirm that they behave similarly (according to the WF expectations).

In the main text we will present the protocol for simulating bacterial populations with a
the nonWF framework, since it is a more powerful framework on which other users can build
more complex scenarios. The underlying simulation, however corresponds to a Wright-Fisher
population, so we can compare to the theoretical expectations. The corresponding annotated WF
script is available in a public repository (https://github.com/jeanrjc/BacterialSlimulat
ions), along with the nonWF script detailed below. To highlight the modeling steps that are
specific to bacterial populations, we kept the underlying population history simple, with a single
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constant-size population and no selection, but those assumptions are trivial to relax in SLiM.

2.1 Key concepts and definitions
2.1.1 Horizontal gene transfer, recombination, and circularity

In bacteria, pieces of DNA can be exchanged between different organisms in a process called
horizontal gene transfer [31]. When received, such a DNA fragment can be inserted in the host
chromosome with the help of integrases, at a specific site if the fragment is not homologous to an
existing chromosomal region. Alternatively, if the incoming DNA fragment is homologous, it will
integrate into the host chromosome by a mechanism similar to gene conversion in eukaryotes [32].
This latter process is the bacterial recombination mechanism that we want to implement. We
will use the term “gene conversion” to refer to gene conversion specifically in eukaryotes, and
the term ”bacterial recombination” to refer to the mechanistically similar process in bacteria.
Note that bacterial recombination differs from simple recombination in eukaryotes (often called
cross-over), in that mutations are not exchanged between two fragments of DNA; instead, the
mutations are copied from one fragment to the other. Some coalescent simulators do implement
gene conversion or bacterial recombination, such as ms [21] or FastSimBac [20], but they are
otherwise quite limited, as discussed above. Our implementation of bacterial recombination also
provides a slightly closer fit with reality, since we model the bacterial chromosome as circular. It
has been shown that circularity can lead to different patterns, such as LD decaying faster in linear
genomes than in circular genomes [5], [33]. Although circularity is likely not important for the
metrics and parameters shown in this study, including it is one less incorrect assumption when
modeling bacteria.

2.1.2 Burn-in

It is often desirable to start a simulation with a population which is at mutation-drift equilibrium.
After 5xNe generations, the heterozygosity has reached more than 99% of the heterozygosity
expected under mutation-drift equilibrium (see Annexes for demonstration). In forward simula-
tions, the time spent to reach this equilibrium (5xNe) is called "burn-in”. Because the effective
size of bacterial populations is usually large, conducting this burn-in with a forward simulator
would often require much more time than simulating the actual time period of interest, and this
problem can make forward simulation of bacteria difficult or even infeasible.

To solve this issue, faster backward-in-time simulators can be used to simulate a population at
equilibrium that serves to initialize the forward simulation. The nonWF model allows an elegant
and efficient approach to this: we can combine SLiM’s tree-sequence recording feature with the
recapitation feature of msprime [26] to manage burn-in. With this strategy, we can begin with
forward simulation in SLiM, leaving the burn-in for later. At the end of the forward simulation,
there is often no single common ancestor for the population; in other words, the ancestry tree of
the underlying population has not yet coalesced. Recapitation will then simulate, backward in
time, the addition of ancestral branches to produce coalescence, providing the needed burn-in
ancestry after the fact. However, because msprime does not implement yet gene conversion, we
cannot use bacterial recombination in burn-in for our nonWF model. The WF model requires a
different approach, because tree-sequence recording cannot be used; in the WF model SLiM cannot
record HGT events in the tree sequence. In this case, we therefore have to simulate the entire
population backward in time with ms, and load the generated diversity into SLiM to initialize
its forward simulation. Because we simulate the entire population, it is not possible to use gene
conversion at a significant rate, otherwise ms crashes; thus there is no bacterial recombination
during burn-in for our WF model, either. As of now, for long simulations, it is thus not possible
to have bacterial recombination during a coalescent-based burn-in; we analyse the impact of this
limitation on simulations in the results section. For small populations however the burn-in can be
simulated directly in SLiM. Finally, in certain situations a burn-in is not desirable (as in our Petri
dish model).

2.1.3 Simulation rescaling

Forward simulators remain computationally intensive, and bacterial populations can be very
large. The effective population size of most bacterial species is on the order of 10® — 10° [34].
Depending on the task one wants to address, many thousands or even millions of simulations
may be required. One way to reduce the computational time is to parallelize the simulations
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on a cluster, but it can remain costly. Another way is to rescale the model parameters such that
6 = 2x Nex u and related quantities remain constant. For instance, we can decrease the size of the
population by a factor of 10 while increasing the mutation and recombination rates by the same
factor. The choice of the rescaling factor is at the discretion of the user, but one should keep in
mind that excessive rescaling might lead to spurious results [35]. For instance, rescaling increases
the rate of double mutation at a site, although it should remain rare [36]. Also, if the simulation
involves a bottleneck, the user should make sure that the number of individuals remaining in the
population after the bottleneck is not so small as to cause artifacts. A model of a bottleneck that
reduces a population of 1000 individuals to 100 would lead to very different results if we were
to rescale the model down to only 10 individuals before the bottleneck and one individual after!
The rescaling factor must also be applied to the duration of the simulation (and the duration of
different events that might occur), so that the effects of drift remain similar. For instance, with
a rescaling factor of 10, the length of the simulation should be shortened by a factor of 10, as
should the duration of events such as bottlenecks or expansions. Thus, rescaled simulations not
only run faster per generation (because there are fewer individuals to process), but also run for
a smaller number of generations. In the results section, we will show the effect of the rescaling
factor on two summary statistics, along with the increase in the speed of the model. Because there
are many complexities involved in rescaling, we recommend choosing this factor with great care,
and cross-validating the results of downstream analyses, by doing a small number of runs that
are unscaled (or less rescaled, at least).

2.2 Simulation protocol
2.2.1 Forward simulation

We now describe the protocol step by step. A schema in supplementary Figure 8 may help to
understand the following section by giving an overview of the approach taken.

SLiM scripts can be called from the command line or run within the SLiMgui graphical model-
ing environment. Here we will define constant variables directly in the script, so that one can run
the code in SLiMgui. To run the model at the command line, those constants should instead be
passed toSLiM as -d constant=value command-line arguments; this is convenient to run a whole
set of simulations with different parameters. In this example, we simulate 1000 generations of a
population of 100 000 individuals, which have a chromosome of 2Mb, and a recombination rate
of 107 bacterial recombination events per generation per base pair, with a mean recombination
tract length of 10kb. The script begins with a block of code called an initialize() callback:

initializeQ
{
// Definition of constant variables
defineConstant("Ne", 1le5);
defineConstant ("N_generations", 1000);
defineConstant("Rho", le-7);
defineConstant("tractlen", le4);
defineConstant ("genomeSize", 2e6);
9 defineConstant ("HGTrate", Rho * genomeSize); // HGT probability

0NV WN =

11 // Initialization

12 initializeSLiMModelType("nonWF");

13 initializeTreeSeq(); // record trees for recapitation and/or adding neutral mutations later
14 initializeMutationRate(®); // no neutral mutations in the forward simulation

15 initializeMutationType("m1", 1.0, "f", 0.0); // neutral (unused)

16 initializeGenomicElementType("gl", ml, 1.0);

17 initializeGenomicElement(gl, 0, genomeSize - 1);

18 initializeRecombinationRate(0); // In SLiM recombination is between sister chromatids

Initialization of a bacterial simulation with SLiM

Here we initialize the simulation using the nonWF model with tree-sequence recording, as
explained in the SLiM manual. We set the mutation rate to zero because we will add neutral
mutations later with msprime, after recapitation; we do not want to forward-simulate neutral
mutations, for efficiency. Importantly for bacteria, the (generic) recombination process imple-
mented in SLiM should not happen, otherwise, because individuals in SLiM are diploids, our
haploid bacterial chromosomes will recombine with the empty second chromosomes. Thus, the
recombination rate should always be set to zero when simulating bacterial populations. Instead,
we define a constant, HGTrate, that represents the probability of a given bacterium undergoing
(homologous) HGT.

The population is created at the beginning of the first generation, as shown in the next snippet;
other populations could be created here too:
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20| 1 earlyQ
{

21

22 sim.addSubpop("pl", Ne);

23 sim.rescheduleScriptBlock(sl, start=N_generations, end=N_generations);
24|}

Creation of a population

In line 22, we add a subpopulation named p1 of size Ne. The next line is not specific to bac-
teria, but allows us to define the end of the simulation dynamically, governed by a parameter
(N_generations). This is useful when comparing different re-scaling factors, or when the end-
point of the simulation depends on other parameters or events.

25| reproduction()

26

27 // each parental individual reproduces twice, with independent probabilities of HGT
28 parents = pl.individuals;

29

30 for (rep in 0:1)

31 {

32

33 if (HGTrate > 0)

34 {

35 // for all daughter cells, which ones are going to undergo a HGT?
36 is_HGT = rbinom(size(parents), 1, HGIrate);

37 }

38 else

39 {

40 is_HGT = integer(size(parents)); // vector of 0s

41 }

42 for (i in segAlong(parents))

43 {

44 if (is_HGT[i])

45 {

46 // Pick another individual to receive a piece of DNA from

47 HGTsource = pl.sampleIndividuals(l, exclude=parents[i]).genomel;
48 // Choose which fragment

49 pos_beg = rdunif(l, ®, genomeSize - 1);

50 tractLength = rgeom(1l, 1.0 / tractlen);

51 pos_end = pos_beg + tractLength - 1;

52

53 // Prevent an edge case when both

54 // pos_beg and tractlLength are equal to O

55

56 if (pos_end == -1) {

57 pos_end = 1;

58 }

59 else

60 {

61 pos_end = integerMod(pos_beg + tractLength - 1, genomeSize);
62 }

63

64 // HGT from pos_beg forward to pos_end on a circular chromosome
65 if (pos_beg > pos_end)

66 breaks = c(0, pos_end, pos_beg);

67 else

68 breaks = c(pos_beg, pos_end);

69 subpop.addRecombinant (parents[i] .genomel, HGTsource, breaks, NULL, NULL, NULL);
70 }

71 else

72

73 // no horizontal gene transfer; clonal replication

74 subpop.addRecombinant (parents[i].genomel, NULL, NULL, NULL, NULL, NULL);
75 }

76 }

77 }

78 // deactivate the reproduction() callback for this generation

79 self.active = 0;

80|}

Bacterial reproduction

In each generation, SLiM calls reproduction() callbacks for each individual and the callback
handles how that focal individual reproduces and generates offspring. Since we want to reproduce
the whole population in one big bang (for efficiency, mostly), we override that default behavior by
setting self.active = 0; at the end of the callback. As a result, this callback is called only once
per generation and manages the reproduction of all individuals. We make each parent reproduce
twice (rep in 0:1) to circumvent SLiM’s constraint that individuals cannot undergo a horizontal
gene transfer event in the middle of their lifespan. By creating two clonal offspring, each can
be part of a horizontal gene transfer event; had we implemented a single clonal reproduction,
only one of the two daughter cells (the one that is not the parent) could have undergone HGT.
Later in the script the parents are removed from the population (by setting their fitness to 0),
such that in each generation, a bacterium reproduces, generating two daughter cells. We then
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decide which clones (see line 36 above) will undergo an HGT event by drawing from a binomial
distribution, with the probability of HGT defined by the constant HGTrate, line 9. If an individual
was chosen as a recipient for HGT, then the donor is picked randomly from the population
(excluding the recipient); note that newly generated individuals are merged into the populations
by SLiM at the end of reproduction, so a new daughter cell will never be an HGT source for
another daughter cell. The DNA fragment that is going to be transferred is now defined by a
starting position, drawn uniformly along the chromosome, and a length, whose value is drawn
from a geometric distribution with mean equal to the tract length parameter (tractlen). Then,
the addRecombinant () call creates a new daughter cell that is a clone of the parent, but with the
recombination tract copied from the donor to the recipient. If the individual was not an HGT
recipient, it is simply defined as a clone of its parent. Finally, as explained above, we deactivate
this callback for the rest of the generation since it has just reproduced every parent.

81| early(Q
{

83 inds = pl.individuals;
84 ages = inds.age;

86 // kill off parental individuals; biologically they don’t even exist,
87 // since they split by mitosis to generate their offspring
88 inds[ages > 0].fitnessScaling = 0.0;

90 // density-dependent population regulation on juveniles, toward Ne
91 juvenileCount = sum(ages == 0);
92 inds[ages == 0].fitnessScaling = Ne / juvenileCount;

Regulating the population size

As we saw earlier, we had to clone each individual (parent) twice, to produce two new
individuals (daughter cells/juveniles). To simulate mitotic cell division, we now remove the
parents by setting their fitness to 0. In order to simulate a demographic scenario of constant
population size, and because we are under the nonWF model where the size of the population
is an emergent property, and not a parameter as in WF models, we rescale the fitness of all
juveniles so that the average number of individuals at each generation remains Ne. Before the
next generation, SLiM will kill individuals based on their absolute fitness, which acts as a survival
probability. Thus, at the start of the next generation we will have, on average, Ne individuals (with
some stochastic fluctuation around that average).

94| s1 100001late()

95| {

96 sim.treeSeqOutput ("mySimulation.trees");
97 sim.simulationFinished();

98|}

Ending the simulation

This script block, named s1, was rescheduled by rescheduleScriptBlock() in line 23, but a
scheduled time for the block to execute — here 10 000 — has to be specified even though it will be
overridden with N_generations. The value just needs to be high enough to avoid unintended
execution of the block before it gets rescheduled; the time at which the unscaled simulation would
end is typically a good choice, since it will never be too early. When the simulation is over, we
output the tree sequence to a .trees file that we can work with in Python. In the next part we
will show how to generate a burn-in period and genetic diversity with msprime.

2.2.2 Recapitating and adding neutral mutations

When simulating with the nonWF framework, we efficiently obtain an initial population at
mutation-drift equilibrium by performing a recapitation of the tree sequence, as explained earlier.
So far, we have only forward-simulated the population while recording the tree sequence. Most
likely, the simulation has not coalesced yet, because we did not run the simulation for at least 5Ne
generations. We now recapitate the tree sequence, which runs backward in time, from the begin-
ning of the forward simulation, to finish the coalescence process for our recorded tree sequence.
Then, to obtain a matrix of neutral SNPs for the population at mutation-drift equilibrium - to
compute summary statistics, for instance — the tree sequence can be manipulated in msprime with
the help of pyslim, a python interface between SLiM and msprime.

1| ts = pyslim.load("mySimulation.trees")

2| ts_recap = ts.recapitate(recombination_rate=1e-20, # Crossing over recombination set to 0.
3 Ne=Ne)

4
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5|# simplify to a subset of the population that is still alive

6| sample_inds = np.random.choice(ts_recap.individuals_alive_at(0),

7 size=20, # the sample size

8 replace=False)

9| # get the first node of the sampled individuals to make them haploid
10 | sample_nodes = [ts_recap.individual(i).nodes[0] for i in sample_inds]
11| ts_sampled_haploid = ts_recap.simplify(samples=sample_nodes)

13| # Add neutral mutations
14| ts_mutated = pyslim.SlimTreeSequence(

15 msprime.mutate(ts_sampled_haploid,

16 rate=1.53e-9/2 # mutation_rate/2 : to have 2.Ne.mu and not 4.Ne.mu
17 keep=True) # keep existing mutations

18 )

21| # Get the matrix of SNP, individuals in rows and SNP in columns.
22| snp_mat = ts_mutated.genotype_matrix().T

24| # get positions of the SNPs
25| pos = np.round(ts_mutated.tables.asdict()["sites"]["position"]).astype(int)

Recapitation and generation of SNPs with pyslim and msprime, in Python

First we load the tree sequence with pyslim, which returns a tree-sequence object. We then
recapitate the branches that have not coalesced yet, with a very low recombination rate since
msprime does not implement gene conversion yet. Since, for this protocol, we want to generate
a matrix of SNPs for a sample of individuals, not for the whole population, we subsequently
sample a random subset of extant individuals. We keep only the first node of each individual,
corresponding to the first chromosome in SLiM where our haploid genetic material resides. Finally,
we overlay neutral mutations on the resulting tree sequence. We have to divide the mutation rate
by two to obtain the desired 0 = 2 x Ne X , instead of 0 = 4 X Ne x u that is expected for diploids.
At the end, we get a matrix of SNPs and a vector of corresponding positions, often used as input
for inference methods [13], [16], [37]. This could easily be saved as an MS or VCF file if needed.

2.3 Simulations performed

To test the simulator, we ran simulations with parameters fitting the bacteria Streptoccocus agalactiae
Clonal Complex 17, which is a major neonatal pathogen [38], [39]. We used a chromosome size
of 2Mb, and we estimated the following parameters based upon data we found in the literature.
The simulation spans 20,000 generations, which represents about 55 years of evolution for such
bacteria in the wild, when using a generation time of 1 generation per day (as estimated for E.
coli [40]). The mutation rate is set to 1.53 X 10~ mutations per base-pair per generation [38]. The
recombination rate was set equal to the mutation rate, and the mean recombination tract length
was estimated as 122 kb [41]. Note that the true recombination rate for S. agalactiae is probably
lower [42], but in order to assess the correctness of the implementation of bacterial recombination,
we chose to set it equal to the mutation rate and study the effects of varying it. The effective
population size of this clonal complex was estimated to be around 140,000 individuals [38]. At
the end of simulation, we sampled 20 individuals and built a matrix of SNPs, from which we
computed summary statistics.

Simulations were run on a Dell R640 server rack with Intel Xeon Silver 4112 2.6GHz processors.

2.4 Simulating Bacteria on a Petri dish with antibiotic

To demonstrate the flexibility and scriptability of our SLiM bacterial model, we present the results
of a more complex and very different simulation scenario based upon our methods. It models
bacteria growing on a Petri dish, seeded by 50 clones distributed randomly on the plate. Half of
the plate contains an antibiotic that decreases a bacterium’s fitness to 0.47. However, a resistance
allele can emerge through random mutation (at rate of 107 per generation), and carrying this
allele increases fitness back to 0.906 in the presence of antibiotic. In all cases there is a small
cost for having the resistance allele, which leads to a reduced fitness of 0.98 for carriers of the
resistance allele when antibiotic is not present. Because this is a spatially explicit model, the
bacteria interact with their neighbors. In particular, horizontal gene transfer occurs only between
neighboring bacteria, and bacteria compete with their neighbors (which decreases the probability
that a bacterium will divide under crowded conditions). At equilibrium, the probability that a
given bacterium will divide is about 0.5, so half of the bacteria produce two offspring and die,
while the other half produce no offspring and die, so the population size is then (stochastically)
constant.
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3 Results

We performed two sets of experiments to assess the performance and accuracy of our simulator. In
the first experiment, we assessed the impact of rescaling the effective population size, Ne, in order
to speed up the computation time. In the second experiment, we analysed the impact of varying
the recombination rate and the mean recombination tract length, to better grasp their effects on the
simulations. For both experiments, we monitored the running time and peak memory usage of
SLiM, and assessed the quality of the simulations by comparing the site frequency spectrum (SFS)
and the linkage disequilibrium (LD) with simulations obtained using ms [21] and FastSimBac [20],
which are backward simulators implementing bacterial recombination (or gene conversion, in ms).
For reference, we report runtime and memory footprint data for the backward simulators as well.

3.1 Impact of rescaling

We compared 9 different rescaling factors (RFs): 1 (no rescaling), 2, 3, 4, 5, 10, 25, 50, and 100. For
RFs above 2, we generated 100 replicates for each RF and each SLiM model (WF, nonWEF); for RF
1, 30 replicates were used, and for RF 2, 50 replicates. We generated 300 replicates when running
FastSimBac (FSB) and ms.
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5 ﬁ_ i B nonWF
£ 10° - T* i—— *- _
E .
= FastSimBac ;._.. g
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Figure 1: Distribution of CPU time and peak memory usage for different rescaling factors. The
dashed line is the average time for FastSimBac (~54s) and ms (~14s). Note the log scale on the y
axis; 10° seconds is about 28 hours. Parameters used : chromosome size : 2Mb; p = p = 1.53x107%;
Ne = 140k; 20000 generations. There are 30 replicates for RF 1, 50 replicates for RF2, 100 replicates
for other RFs. Rescaling drastically reduces the computational time and memory usage, matching
the performance of the coalescent simulators for sufficiently large RE.

Without rescaling, the generation of a single replicate takes about a day (Figure 1). This is too
long if one wants to run millions of simulations; however, it is possible to do a few such runs for
other purposes, such as confirming that rescaling did not introduce a bias when implementing a
new script. This might also be useful to test a method on a dataset produced without rescaling,
since even minor artifacts introduced by rescaling could conceivably bias or confuse inference
methods. When using a rescaling factor of 5, a simulation takes about 1 hour to run, which
is practicable if one wants to run thousands of simulations on a cluster. With a factor of 25 or
more, the running time is comparable to that of FastSimBac and ms, if not faster; FastSimBac is
a bit slower than ms, probably because we used an additional FastSimBac script to create an ms-
formatted output file. At100 seconds or less per replicate, it is possible to generate about a million
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replicates in a few days or a week, on a typical computing cluster (using perhaps 100 cores). The
time of the burn-in period is included here, and is not a limiting factor since it is faster than the
forward-simulation period by about two orders of magnitude for rescaling factors smaller than 5
(supplementary Figure 9). The memory peak usage is fairly low (up to a few gigabytes without
rescaling), allowing any modern laptop to run these simulations.

Comparing WF and nonWF performance, we see that the nonWF model tends to be faster,
especially at higher rescaling factors. This is due to the overhead of the burn-in step, which is
slower in the WF models. Without rescaling, or at lower rescaling factors, the difference between
WEF and nonWF runtimes tends to disappear. Interestingly, the variance in time and in memory
is lower for the nonWF version, which can help predict the resources needed for large runs. It is
important to note that these performance metrics depend on the parameter values used (such as
the recombination rate).

We then computed the normalized SFS produced by the different rescaling factors. The SFS
represents the distribution of the frequency of derived alleles. Each bin (i) is given by i&;/ 0, where
&; is the count of SNPs having i derived alleles, and 6 is an estimator of 6 computed as the mean
over the different bins (1/n " i&;). Because i&; is an estimator of 6, the expected normalized SFS for
a constant-size neutral population under the Wright-Fisher model is a flat line centered on 1 [43],
[44].
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Figure 2: The normalized Site Frequency Spectrum (SES) for different rescaling factors. The shaded
area represents one standard deviation. The horizontal line at 1 is the expected normalized SFS and
the black line represents the expected standard deviation, both under the WF model. Parameters
used: chromosome size: 2Mb; p = p = 1.53 x 10™; Ne = 140k; 20000 generations. The left two
panels represent the SFS of the WF simulations comparing different rescaling factors (top left)
and comparing to the coalescent simulators (bottom left). The same information is shown on the
right-hand side of the figure, but for the nonWF simulations. Rescaling does not affect the shape
of the SFS and it matches that of the expected horizontal line at 1, is not different across rescaling
factors, and is similar to the SFS obtained with the coalescent simulators.

Figure 2 shows the normalized SFS for 6 rescaling factors (see supplementary figure 2 for
all RFs) with the expected standard deviation under the Wright-Fisher model without recombi-
nation [43]. FastSimBac and ms simulations are shown as a second control, in addition to the
theoretical expectations (horizontal line at 1).

We see that all experiments lead to the expected SFS, well within the expected standard
deviation for linked loci. The smaller standard deviations, compared to the theoretical expectation,
are not surprising since recombination is known to decrease the variance of the SFS [45]. Thus,
rescaling factors up to 100 with this set of parameters do not affect the SFS, which behaves correctly
for WF and nonWF models.

Next, we assessed the impact of bacterial recombination on linkage disequilibrium (LD). The
LD is measured by %, which quantifies how much correlation (or linkage) there is between pairs
of alleles separated by a given distance. We measured this correlation by subsampling pairs of
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SNPs, in 19 bins of increasing distances. The LD is represented as a function of the mean distance
within each bin. We compared our results to the LD obtained with simulations from FastSimBac
and ms. In figure 3 we observe that the LD for both WF and nonWF models is similar to that
obtained with ms and FastSimBac, and does not seem to be affected by the rescaling factor. Unlike
for the SFS, the expected LD and expected variation are much harder to obtain and are beyond
the scope of this paper. However, we know that the LD at very short distance should be close
to the LD obtained in the absence of recombination. In figure 3, we used a shaded gray area
to represent the range of LD without recombination at short distance. More precisely, it shows
the mean +/- standard error of the mean for the four simulators without recombination. The
full LD plot without recombination can be seen in supplementary figures 12 and 13. Note that
in figure 3 a small difference between the backward and forward simulators can be seen, with
the backward simulators tending to produce higher LD at short distances than the forward ones.
This might be due to different implementations of recombination at short distances, or to a lack
of recombination during the burn-in for forward simulation. Overall, however, we show that
all types of simulations produced the expected LD at short distances and converged toward the
expected 1> with free recombination of 1/n (dashed line) [46], [47].
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Figure 3: Linkage disequilibrium for WF and nonWF simulations and for ms and FSB, for different
rescaling factors (RFs). The horizontal dashed line is the expected 7 with free recombination when
sampling 20 individuals (1/20). The colored shaded areas represent standard error of the mean,
and the gray area represents the range of expected values at very short distances. Parameters
used: chromosome size = 2Mb; u = p = 1.53 x 10~7; Ne = 140k; 20000 generations. Rescaling does
not affect the shape of LD (top), which matches that of coalescent simulators fairly well (bottom).

Overall, rescaling the simulations up to a factor of one hundred produces the expected SFS
and LD, while allowing a drastic reduction in time and memory. This opens the possibility of
running many simulations in a small amount of time, allowing the power and flexibility of forward
simulation to be leveraged much more usefully in bacterial population genomics.

3.2 Impact of recombination

In this section we assess the impact of recombination with the same set of parameters used
previously, with a rescaling factor of 25 across all forthcoming runs. We compare simulations under
three recombination rates (p/10, p and 10p, where p = 1.53 x 107™7) and three mean tract lengths
(A/100, A/10, A, where A = 122 kb). First looking at performance, increasing the recombination rate
by a factor of 100 increases the runtime of the WF model 18-fold, but by only about 3-fold for the
nonWF model (Figure 4 top). Higher recombination rates do require more memory, particularly
when using the nonWF model, but with the rescaling factor used in this experiment it is still less
than 1 GB (Figure 4 bottom).
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Figure 4: Distribution of the CPU time and peak memory usage for different recombination
rates (p) and mean recombination tract lengths (1). Parameters used : chromosome size : 2Mb;
= 1.53x107%; Ne = 140k; 30000 generations; RF=25. There are 100 replicates for each combination
of p and A. Computation time and memory usage increase with the recombination rate, but not
with the recombination tract length.

The recombination rate thus has an important impact on the runtime of the WF simulations,
but has much less impact on the nonWF simulations. The size of the recombination tract does not
seem to significantly affect either runtime or memory usage. As expected, coalescent simulators
are very fast at low recombination rates, but tend to struggle at higher recombination rates [20].
It takes them up to 10 thousand times longer to run when increasing the recombination rate by
a factor of 100. Because of this, the simulations with ms and FastSimBac with 10p and A were
too slow, so we could only run 6 and 7 replicates, respectively, instead of a hundred. Other
backward simulators may better handle higher recombination rates; however, our focus here is on
the results of the simulations, not the efficiency of the simulators (a pointless comparison given
the very different nature of coalescent simulators). The timing data for the backward simulators
is just intended to give context for readers familiar with these software programs.

As in the previous experiment, we analysed the behaviour of our simulations with respect to
the normalized SFS and the LD. In figure 5, we see that the SFS is distributed as expected (flat line
centered at 1), independently of the simulator or type of simulation. Interestingly, we observed
two expected theoretical results: the standard deviation of the simulated SFS at low recombination
matches expectation [43], and the variance decreases as the recombination rate increases [45]. We
see that for a given recombination rate, decreasing the recombination tract length has a similar
effect as decreasing the recombination rate for a given tract length (moving between figure panels
leftward is similar to moving between figure panels upward).

In figure 6 the decay of LD with distance is similar when comparing all four types of sim-
ulations. We observe the same small discrepancy between coalescent and SLiM simulations as
seen earlier, but only for a subset of the parameters. At low recombination rate, we recover the
clonal frame, corresponding to the fact that bacterial recombination involves small patches of
homologous DNA, rather than long stretches [48]. This means that positions on either side of an
HGT patch will stay linked, and this explains the space between the line of the expected LD with
free recombination and the LD curve at high distance, which is expected in bacteria [32]. A higher
recombination rate or a longer recombination tract length tends to approximate the expected LD
of an organism with recombination by crossing over rather than HGT.
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Figure 5: The normalized Site Frequency Spectrum (SFS) for different recombination rates (p) and
tract lengths (A). The colored shaded areas represent standard deviation. The horizontal line at
1 is the expected normalized SFS and the black line represents the expected standard deviation,
both under the WF model. Parameters used: chromosome size = 2Mb; u = p = 1.53 X 107%;
A = 122kb; Ne = 140k; 30000 generations; RF=25. All observed SFS match the expected horizontal
line. Under low recombination their standard deviations also match the expectation, but the
variance decreases with the recombination rate in accord with theoretical expectations.
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Figure 6: Linkage disequilibrium for WF and nonWF simulations with various recombination
rates (p) and tract lengths (1). The colored shaded areas represent standard error of the mean,
and the gray area represents the range of expected values at very short distances. The horizontal
black dashed line is the expected r? with free recombination when sampling 20 individuals (1/20).
Parameters used: chromosome size = 2Mb; y = p = 1.53 X 107%; A = 122kb; Ne = 140k; 30000
generations; RF=25. Various recombination rates and mean tract lengths produce similar patterns
of LD between SLiM simulations and backward simulators.

Overall, changing the recombination rate and mean recombination tract length produced the
expected statistical results. Even for the highest recombination rate, the runtime and memory
requirements are still low enough to allow many simulations to be run (Figure 4), and if neces-
sary, one might increase the rescaling factor (with proper validation and testing). Interestingly,
with a high recombination rate the rescaled SLiM simulations were much faster than coalescent
simulations. Finally, the nonWF model seems to have a more predictable runtime and memory
footprint, which might be beneficial when computing resources are scarce.

3.3 Simulating bacterial growth on a Petri dish with antibiotic

In this paper, we mostly focus on results from a very simple population-genetic scenario. Here,
however, we briefly showcase a radically different model, based upon our simple nonWF model,
which might be of interest for evolutionary microbiologists. This model includes effects of ex-
plicit space on dispersal, competition, and genetic relatedness; this type of model may help with
understanding the impact of environmental structure on a given dynamic. For instance, a similar
simulation framework was used to estimate the impact of a structured environment on resistance
to phage and antibiotics [49]. In this toy scenario, we can follow the growth of multiple colonies
that are spread on a Petri dish as depicted in figure 7. The figure clearly shows how the antibi-
otic prevents the bacteria from spreading during a certain period and how the appearance of a
resistance allele, despite being costly for its host in a neutral environment, eventually changes
the spatial dynamics of colonization. This is obviously a basic model, yet it opens the possibility
to model more complex scenarios. Importantly, we still have access to the tree sequence of the
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population and we can thus recapitate the 50 individuals that started the simulations, overlay
neutral mutations, etc., and perform further analysis.

(a) Generation 1 (b) Generation 20 (c) Generation 50

Gj

{

(d) Generation 100 (e) Generation 200 (f) Generation 300
(g) Generation 400 (h) Generation 500 (i) Generation 600

Figure 7: Representation of the simulated Petri dish at different generations. The pink area
represents the half of the dish with antibiotic, while the white half has none. At the first generation,
there are 50 colonies (single bacteria) spread randomly on the plate. As the simulation goes
forward, we see those colonies growing, in yellow. They grow better in the right-hand half of the
plate, due to the absence of antibiotic. Bacteria colored red have acquired antibiotic resistance.
We see that the resistant bacteria later grow better in the left half of the dish. Because of the fitness
cost of the antibiotic-resistance mutation in the absence of antibiotic, there are only a few red
bacteria in the right half at the end of simulation despite their markedly higher mean fitness over
the environment as a whole, showing the importance of spatiality for the outcome of the model.

4 Discussion

We presented a step-by-step protocol for performing simulations in SLiM of a simple bacterial
population, and one example of a more complex spatial model based upon our protocol. Although
SLiM is not focused on bacteria, the simulations were shown to behave correctly, and ran in
a reasonable amount of time. The basic models we presented were simple in order to draw
attention to the particular techniques involved in simulating bacterial populations, but all of the
model variation discussed in the SLiM manual — complex demography and population structure,
selection, and so forth — can easily be added to this foundational model. This simplified approach
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also allowed us to compare the accuracy of our implementation to theoretical expectations, and
to other simulators for which substantially more complex scenarios would not have been possible
(our final model, of bacteria on a Petri dish, could certainly not be run in any coalescent simulator).

These simulations were made both within SLiM’s Wright-Fisher framework and within the
more individual-based nonWF framework, to showcase these two possibilities for the user. The
recipes for our WF and nonWF models are freely available on GitHub (https://github.com/jea
nrjc/BacterialSlimulations), where we encourage everyone to propose their recipes for more
complex scenarios. It might be worth mentioning why one would choose between SLiM’s WF and
nonWF model types, since this fundamental choice will guide much of the model development
that follows. The WF model is simpler in many ways: it involves more simplifying assumptions
and less individual-level behavior. For example, population size in the WF model is automatically
maintained at a set level, whereas the nonWF model requires you to write script that regulates the
population size via mechanisms such as density-dependence or — appropriately for pathogens,
perhaps — host mortality. Similarly, reproduction in the WF model is automatic, based upon
fitness; high-fitness individuals reproduce more than low-fitness individuals, a fact that SLiM
automatically enforces. In nonWF models, in contrast, fitness typically influences mortality, not
fecundity, and reproduction is explicitly scripted to allow for greater individual-level variation
in the modes and mechanisms of offspring generation. Writing a nonWF model is therefore a
bit more complex and technical, and requires more details to be spelled out explicitly. Normally,
nonWF models are a bit slower, but here the opposite was true; the slower implementation of
the burn-in for the WF model, due to the incompatibility between tree-sequence recording and
the WF implementation of bacterial recombination, meant that the WF model was slower. This
is, in part, why we emphasized the nonWF model here; in this context, it really provides both
greater power and flexibility, and better performance. However, the WF model remains simpler,
conceptually and in its implementation; and if one wants fitness to affect fecundity rather than
mortality it can be the more natural choice.

Currently, the only drawback of this simulator concerns the lack of recombination during the
burn-in step, due to a technical limitation in ms, and due to current lack of gene conversion support
in msprime. Implementation of gene conversion in msprime is in progress, and may be available
soon. This will greatly improve the nonWF model, and will be trivial to add with a minor change
to the recapitation step of the python script. We will update our repository as soon as msprime’s
feature is released. This lack of recombination during burn-in leads to a lack of LD when forward
simulation is too brief. In our runs, we see that after about 20 000 forward generations (about
Ne/7 generations), LD and SFS match that of ms and FastSimBac (supplementary Figure 11 and
Figure 12). If one wants to run a very short simulation (e.g. less than Ne/7) with burn-in, it
might still be worth running at least Ne/7 generations more of forward burn-in in addition to
a coalescent burn-in. The higher variance of the SFS observed in the experiments of the SLiM
simulations compared to ms and FastSimBac might be explained by this lack of recombination
during burn-in, since recombination decreases the SFS’s variance [45]. In short, for simulations
that require burn-in (in order to start non-neutral dynamics at mutation-drift equilibrium, for
example, or to obtain fully coalesced ancestry trees in python), a few generations of neutral
dynamics at the beginning of forward simulation are enough to recover the correct LD, at least in
our simple model. (The necessary length of neutral forward simulation may be longer for other
models, particularly with strong spatial structure.) Once gene conversion is added to msprime,
this will not be needed anymore.

We hope that our work here will stimulate a wave of development of simulation-based models
for bacterial population genetics. We believe that this paper, combined with the hundred-plus
models presented in SLiM’s extensive documentation, will allow anyone to create new scenarios
for bacterial populations seamlessly. It is possible to simulate evolution in continuous space (such
as in a Petri dish), to model nucleotides explicitly (including the use of FASTA and VCF files),
to model selection based on external environmental factors such as the presence of antibiotics
(and selection for resistance genes), and even to model within-host evolution using a single
subpopulation for each host while modeling between-host transmission and infectivity dynamics;
with the scriptability of SLiM almost anything is possible. We look forward to seeing the diverse
research questions that the bacterial genomics community will explore with SLiM.
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Figure 8: Schema of the nonWF simulation process described in this study. (A) Step 1: forward
simulation with SLiM, step 2: burn-in with msprime by recapitation of the tree sequence and
overlay of mutations, step 3: output SNP data for further analysis. The panel (B) depicts the
reproduction process simplified. Each parent produces two juveniles, and some of them will
receive gene fragments from other parents by HGT. The fitness is then adjusted by density-
dependent selection, such that on average the population size remains constant at equilibrium.
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forward-simulated generations and recombination rates (p). Ne=140 000, A = 12200bp and
RF=25. The horizontal dashed line is the expected r*> with free recombination when sampling 20
individuals (1/20). The shaded areas represent standard error of the mean; the standard deviation
is 10 times larger (since we have 100 samples), as shown in figure 13 below.
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Figure 13: Same Figure as supplementary figure 12, but with shaded areas representing standard
deviation instead of standard error of the mean.

Annexes

Demonstration of 5.N rule to reach mutation-drift equilibrium

Following Malecot’s derivation on heterozygosity [50], we have H;, the heterozygosity at time ¢
that can be expressed as follows:

(1= H) = (1 - 205+ (1 - 3)(1 = Hi-p)]

where basically, two individuals are identical at the previous generation (homozygosity, 1 — H;) if
they coalesced (1/N) or if they were already identical and did not coalesce ((1 — 1/N)(1 — H;-1))).
In both case, no mutation should occur (1 — p)? ~ (1 = 2u)).

Rearranging the previous equation leads to:

1
Hi = Hia (1= 20)(1 = ) +2u

We can calculate the probability of heterozygosity at the equilibrium:
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H =H@1-2u)1 - l) +2u
N
_ 2Nu
C2Np+1-2u
2N
o~ p o __ 06
2Nu+1 06+1

*

H; is an arithmetic-geometric sequence of the form aH;_; + b that can thus be expressed as

Hy=da'Hy-71)+r

wherea = (1 -2p)(1 - %), b=2pandr = ;&

1-a*
Because |a| < 1, H; converges towards 7, i.e. r is H*, hence

H' -H o
Hy— H* B
This ratio tends toward 0 as H' gets closer to the equilibrium and we want to estimate tog, the
expected waiting time so that the ratio is as low as 0.01, meaning that the heterozygosity is 99%
closer to the equilibrium than when we started, i.e.
t *

B2 =T _ e =001
Hy - H*

From this we get:
In(0.01)

99% = ll’l(ll)

Because In(a) = In((1 - 2p)(1 — %)) =~ _Wl for small p and large N, to9e, simplifies to
to99, ~ —NIn(0.01) = —4.6N

Thus after 5N generations, the heterozygosity has reached almost its equilibrium at more than
99%, whatever the value of Hy (the initial heterozygosity).
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