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Abstract

To study a core component of human intelligence—our ability to combine the meaning
of words—neuroscientists look for neural correlates of meaning composition, such as
brain activity proportional to the difficulty of understanding a sentence. However,
little is known about the product of meaning composition in the brain—the combined
meaning of words beyond their individual meaning. We term this product “supra-word
meaning” and devise a computational representation for it by using recent neural network
algorithms and a new technique to disentangle composed- from individual-word meaning.
Using functional magnetic resonance imaging, we find that supra-word meaning is
processed in the bilateral anterior and posterior temporal lobes. Surprisingly, we cannot
detect supra-word meaning in magnetoencephalography. These results suggest that
composed meaning is maintained through a different neural mechanism that does not
consist of synchronized cell firing. This difference in sensitivity has implications for past
neuroimaging results and future neuroimaging studies.

Introduction

Understanding language in the real-world requires us to compose the meaning of individual
words in a way that makes the final composed product more meaningful than the string
of isolated words. For example, we understand the statement that “Mary finished the
apple" to mean that Mary finished eating the apple, even though “eating" is not explicitly
specified (Pylkkänen, 2020). This supra-word meaning, or the product of meaning composition
beyond the meaning of individual words, is at the core of language comprehension, and
its neurobiological bases and processing mechanisms must be specified in the pursuit of a
complete theory of language processing in the brain.

However, neuroscientists have instead investigated correlates of meaning composition that
may fail to capture or isolate the supra-word meaning. In one line of research, neuroscientists
follow classical neuroimaging approaches that consist of contrasting a condition of interest
(e.g., semantic surprise, full sentences or erroneous sentences) with a control condition (e.g.,
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no surprise, disconnected words or correct sentences). For example, they observe differences in
brain recordings when processing an unexpected versus an expected word in a specific context
(Kutas and Federmeier, 2011; Kuperberg et al., 2003; Kuperberg, 2007) or a monotonic
increase in neural activity over the course of reading a sentence (Fedorenko et al., 2016). Even
though such studies have been pivotal in beginning to study the processes behind meaning
composition, we argue that their findings are related to the process of integrating supra-word
meaning, while missing other key components, such as the storage and maintenance of the
current supra-word meaning. In a different line of work, neuroscientists build computational
models of meaning through Natural Language Processing (NLP) embeddings of words and
sentences (Mitchell et al., 2008; Sudre et al., 2012; Wehbe et al., 2014b,a; Huth et al., 2016;
Jain and Huth, 2018; Toneva and Wehbe, 2019; Fyshe et al., 2019). Thanks to these studies,
we are starting to uncover some properties of meaning representation, such as the fact that
neural activity associated with single word meaning is distributed (Mitchell et al., 2008;
Huth et al., 2016). However, the neural substrates of composed meaning and the mechanism
by which it is represented are still elusive and we are far from converging on a mechanistic,
algorithmic understanding of meaning composition beyond individual words.

In this work, we study the brain representation of supra-word meaning by using data
from naturalistic reading and two neuroimaging modalities. More formally, we define “supra-
word meaning" as the composed meaning of a sequence of words that is not part of the
corresponding bag-of-words, i.e., it is the new meaning formed by combining a sequence of
words that is not included in the isolated meaning of those words. In addition to implied
meaning, other examples of supra-word meaning include: 1) a specific contextualized meaning
of a word or phrase (e.g. “green banana" evokes the meaning of an unripe, rather than simply
green-colored, banana) that can also distinguish between different senses of the same word
(e.g. “play a game" versus “theater play"), and 2) the different meaning of two events that
can be described with the same words but reversed semantic roles (e.g. “John gives Mary an
apple" and “Mary gives John an apple").

We create a computer representation for this supra-word meaning, derived from recently
developed natural language processing algorithms (Peters et al., 2018). We find that this
representation of supra-word meaning predicts fMRI activity in the anterior and posterior
temporal cortices, suggesting that these areas represent composed meaning. These areas
can be sub-divided into clusters that appear to process different parts of composed meaning.
We also find that it is very hard to detect the representation of composed meaning from
MEG activity. MEG has been shown to reveal signatures of the computations involved in
incorporating a word into a sentence (Halgren et al., 2002; Lyu et al., 2019), which are
themselves a function of the composed meaning of the words seen so far. However, our
results suggest that the sustained representation of the composed meaning may rely on
neural mechanisms that do not lead to reliable MEG activity. This novel finding calls for a
retrofitted understanding of the body of literature on meaning composition and has important
implications for the future of brain-computer interfaces.

Model

We built on recent progress in NLP that has resulted in algorithms that can capture the
meaning of words in a particular context. One such algorithm is ELMo (Peters et al., 2018), a
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Figure 1: Approach. (A) Stimulus representations are obtained from an NLP model that has
captured language statistics from millions of documents. This model represents words using
context-free embeddings (shown in yellow and blue) and context embeddings (shown in red).
Context embeddings are obtained by continuously integrating each new word’s context-free
embedding with the most recent context embedding. (B) Supra-word meaning is modeled by
obtaining the residual information in the context embeddings after removing information related
to the word embeddings. The supra-word meaning is used as an input to an encoding model f ,
revealing which fMRI voxels and MEG sensor-timepoints are modulated by supra-word meaning.

powerful language model with a bi-directional Long Short-Term Memory (LSTM) architecture.
ELMo estimates a contextualized embedding for a word by combining a non-contextualized
fixed input vector for that word with the internal state of a forward LSTM (containing
information from previous words) and a backward LSTM (containing information from future
words). To capture information about word t, we used the input vector for word t. To
capture information about the context preceding word t, we used the internal state of the
forward LSTM computed at word t − 1 (Fig. 1A). We did not include information from the
backward LSTM, since it contains future words which have not yet been seen at time t.

To study supra-word meaning, the meaning that results from the composition of words
should be isolated from the individual word meaning. ELMo’s context embeddings contain
information about individual words (e.g., ’finished’, ’the’, and ’apple’ in the context ’finished
the apple’) in addition to the implied supra-word meaning (e.g., eating) (Appendix 1, Suppl.
Fig. 1). We post-processed the context embeddings produced by ELMo to remove the
contribution due to the context-independent meanings of individual words. We constructed
a “residual context embedding" by removing the shared information between the context
embedding and the meanings of the individual words (Fig. 1B).

To investigate the neural substrates and temporal dynamics of supra-word meaning, we
trained encoding models, as a function of supra-word meaning, to predict the brain recordings
of nine fMRI participants and eight MEG participants as they read a chapter of a popular
book in rapid serial visual presentation. The encoding models predict each fMRI voxel and
MEG sensor-timepoint, from the text read by the participant up to that time point. The
prediction performance of these models was tested by computing the correlation between
the model predictions and the true held-out brain recordings. Hypothesis tests were used
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to identify fMRI voxels and MEG sensor-timepoints that were significantly predicted by
supra-word meaning. For more details about the training procedure and hypothesis tests,
see Materials and Methods.

Results

Detecting regions that are predicted by supra-word meaning

To identify brain areas that represent supra-word meaning, we focus on the fMRI portion of
the experiment. We find that many areas previously implicated in language-specific processing
(Fedorenko et al., 2010; Fedorenko and Thompson-Schill, 2014) and word semantics (Binder
et al., 2009) are significantly predicted by the full context embeddings across subjects (voxel-
level permutation test, Benjamini-Hochberg FDR control at 0.01 (Benjamini and Hochberg,
1995)). These areas include the bilateral posterior and anterior temporal cortices, angular
gyri, inferior frontal gyri, posterior cingulate, and dorsomedial prefrontal cortex (Fig. 2A).
A subset of these areas is also significantly predicted by residual context embeddings. To
quantify these observations, we select regions of interest (ROIs) based on the works above
(Fedorenko et al., 2010; Binder et al., 2009), using ROI masks that are entirely independent
of our analyses and data (see Materials and Methods). Full context embeddings predict
a significant proportion of the voxels within each ROI across all 9 participants (Fig. 2B;
ROI-level Wilcoxon signed-rank test, p < 0.05, Holm-Bonferroni correction (Holm, 1979)).
In contrast, residual context embeddings predict a significant proportion of only the anterior
and posterior temporal lobes. While the full context embedding is predictive of much of the
fMRI recordings across the brain, the supra-word meaning is selectively predictive of two
language regions - the anterior (ATL) and posterior temporal lobes (PTL).

Do the parts of the ATL and PTL that are predicted by supra-word meaning process the
same information? Inspired by temporal generalization matrices (King and Dehaene, 2014),
we introduce spatial generalization matrices that estimate the pairwise similarity of voxel
representations (see Materials and Methods). The spatial generalization matrices reveal
that the PTL can be divided into two main clusters such that the models of voxels in one
cluster can also predict other voxels in that cluster but not in the other cluster (Fig. 2C and
Suppl. Fig. 3; voxel-level permutation test, Benjamini-Hochberg FDR controlled at level
0.01). Furthermore, the models of voxels within one of the PTL clusters, but not the other,
significantly predict voxels in the ATL. The division of the PTL into two clusters, one of which
is predictive of the ATL, can be observed within- (Fig. 2C, left), and across-participants (Fig.
2C, right). In contrast, the ATL voxels show only one cluster of voxels that are predictive
both of other ATL voxels and also of PTL voxels (Suppl. Fig. 2). This pattern indicates that
the organization of information in the ATL and parts of the PTL is shared and consistent
across participants. To localize this shared representation, we visualize how well each ATL
and PTL voxel predicts the other participants’ ATLs (Fig. 2D and Suppl. Fig. 4). ATL
voxels are predictive of significant proportions of the ATL across participants, reinforcing
the single cluster of ATL voxels observed in the spatial generalization matrices. Much of the
left PTL predicts a significant proportion of the ATL across participants, whereas much of
the right PTL does not (ROI-level Wilcoxon signed-rank test, p < 0.05, Holm-Bonferroni
correction). The left PTL appears further subdivided, with a cluster of voxels in the posterior
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Figure 2: fMRI results. Voxel-level significance is FDR corrected at α = 0.01. (A) Voxels
significantly predicted by full-context embeddings (blue), residual-context embeddings (red), or
both (white), visualized in MNI space. Most of the temporal cortex and IFG is predicted by full
context embeddings, with residual context embeddings mostly predicting a subset of those areas.
(B) ROI-level results. (Top) Language system ROIs (Fedorenko et al., 2010) and two semantic
ROIs (Binder et al., 2009). (Bottom) Proportion of ROI voxels significantly predicted by (Left) full
context and (Right) residual context embeddings. Displayed are the median proportions across all
participants and the medians’ 95% confidence intervals. Full context predicts all ROIs (ROI-level
Holm-Bonferroni correction, p < 0.05), while residual context predicts only bilateral ATL and
PTL. (C) Spatial Generalization Matrices. Models trained to predict PTL voxels are used to
predict PTL and ATL voxels (within-participant (Left), and across-participants (Right)). PTL
cross-voxel correlations form two clusters: models that predict activity for voxels in one cluster
can also predict activities of other voxels in the same cluster, but not activities for voxels in the
other cluster. Across participants, only one of these clusters has voxels that predict ATL voxels.
(D) Performance of models trained on ATL and PTL voxels at predicting other participants’ ATL.
All participants show a cluster of predictive voxels in the pSTS.
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Superior Temporal Sulcus (pSTS) being more predictive. This suggests that the ATL and
the left pSTS process a similar facet of supra-word meaning.

The processing of supra-word meaning is invisible in MEG

To study the temporal dynamics of the emergence and representation of supra-word meaning,
we turn to the MEG portion of the experiment (Fig. 3). We computed the proportion of
sensors that are significantly predicted at different spatial granularity – the whole brain
(Fig. 3A), by lobe subdivisions (Fig. 3B), and finally at each sensor neighborhood location
(Fig. 3C; sensor-timepoint level permutation test, Benjamini-Hochberg FDR control at
α = 0.01). The full context embedding is significantly predictive of the recordings across all
lobes (Fig. 3B, performance visualized in lighter colors; timepoint-level Wilcoxon signed-rank
test, p < 0.05, Benjamini-Hochberg FDR correction). Surprisingly, we find that the residual
context does not significantly predict any timepoint in the MEG recordings at any spatial
granularity. This surprising finding leads to two conclusions. First, supra-word meaning is
invisible in MEG. Second, what is instead salient in MEG recordings is information that is
shared between the context and the individual words.

To understand the source of this salience, we investigated the relationship between the
MEG recordings and the word embeddings for the currently-read and previously-read words.
One approach to reveal this relationship is to train an encoding model as a function of
the word embedding (Jain and Huth, 2018; Toneva and Wehbe, 2019). However, the word
embedding corresponding to a word at position t is correlated with the surrounding word
embeddings (Appendix 1, Suppl. Fig. 1). Therefore, part of the prediction performance of the
word t embedding may be due to processing related to previous words. To isolate processing
that is exclusively related to an individual word, we constructed “residual word embeddings",
following the approach of constructing the residual context embeddings (see Materials and
Methods). We observe that the residual word embeddings for the current and previous
words lead to significantly worse predictions of the MEG recordings, when compared to their
corresponding full embeddings (Fig. 3B, middle and right panels; timepoint-level Wilcoxon
signed-rank test, p < 0.05, Benjamini-Hochberg FDR correction). This indicates that a
significant proportion of the activity predicted by the current and previous word embeddings
is due to the shared information with surrounding word embeddings. Nonetheless, we find
that the residual current word embedding is still significantly predictive of brain activity
everywhere the full embeddings was predictive. This indicates that properties unique to the
current word are well predictive of MEG recordings at all spatial granularity. The residual
previous word embedding predicts fewer time windows significantly, particularly 350-500ms
post word t onset. This indicates that the activity in the first 350ms when a word is on the
screen is predicted by properties that are unique to the previous word. Taken together, these
results suggest that the properties of recent words are the elements that are predictive of
MEG recordings, and that MEG recordings do not reflect the supra-word meaning beyond
these recent words.

Lastly, we directly compared how well each imaging modality can be predicted by each
meaning embedding (Fig. 4). Residual embeddings predict fMRI and MEG with significantly
different accuracy (Fig. 4A), with fMRI being significantly better predicted than MEG by
the residual context, and MEG being significantly better predicted by the residual of the
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Figure 3: MEG results at different spatial granularity. All subplots present the median across
participants and errorbars signify the medians’ 95% confidence intervals. (A) Proportion of
sensors for each timepoint significantly predicted by the residual embeddings. The current and
previous word residuals predict activity during the entire period the word is presented (FDR
corrected, p < 0.05), while the context residual is not predictive. (B) Proportion of significantly
predicted sensors for each timepoint, divided by lobe. Residual embeddings performance is
compared with that of full embeddings (darker and lighter colors respectively, FDR corrected,
p < 0.05). Removing the shared information among the full current word, the previous word
and the context embeddings results in a significant decrease in performance for all embeddings
and lobes. The decrease in performance for the context embedding (left column) is the most
drastic, with no timewindows being significant for the residual context embedding across lobes.
(C) Proportions of sensor neighborhoods significantly predicted by each residual embedding. Only
the significant proportions are displayed (FDR corrected, p < 0.05). Context-residuals do not
predict any sensor-timepoint neighborhood while both the previous and the current word residuals
predict a large subset of sensor-timepoints, with performance peaks in occipital and temporal
lobes.
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previous and current words (Wilcoxon rank-sum test, p < 0.05, Holm-Bonferroni correction).
In contrast, the full context embeddings do not show a significant difference in predicting
fMRI and MEG recordings(Fig. 4B). We further observe that the residual embeddings lead to
an opposite pattern of prediction in the two modalities(Fig. 4C). While the residual context
predicts fMRI the best out of the three residual embeddings, it performs the worst out of the
three at predicting MEG (Wilcoxon signed-rank test, p < 0.05, Holm-Bonferroni correction).
In contrast, the full context and previous word embeddings do not show a significant difference
in MEG prediction(Fig. 4D), suggesting that it is the removal of individual word information
from the context embedding that leads to a significantly worse MEG prediction. These
findings further suggest that fMRI and MEG reflect different aspects of language processing
– while MEG recordings reflect processing related to the recent context, fMRI recordings
capture the contextual meaning that is beyond the meaning of individual words.

Discussion

We investigated the spatial and temporal signatures of emergent multi-word meaning, or
supra-word meaning, by constructing a computational representation of this meaning and
evaluating its ability to predict specific locations and timepoints of recorded brain activity
via fMRI and MEG respectively.

We found that our devised supra-word meaning representation predicts fMRI recordings
in the bilateral anterior and posterior temporal lobes (ATL and PTL). This finding supports
some current hypotheses of language composition in the literature. Specifically, our results
provide new evidence that the ATL processes composed meaning beyond simple concrete
concepts, which supports the hypothesis that the ATL is a semantic integration hub (Visser
et al., 2010; Pallier et al., 2011; Pylkkänen, 2020). Our results may also align with the
hypothesis that the posterior superior temporal sulcus (pSTS, part of the PTL) is involved
in building a type of supra-word meaning, by integrating information about the verb and its
arguments with other syntactic information (Friederici, 2011; Frankland and Greene, 2015;
Skeide and Friederici, 2016). Further, our findings pose questions for the theory that posits
left PTL as primarily a site of lexical (i.e. word-level) semantics, and left IFG as a hub
of integrated contextual information (Hagoort, 2020). Our results suggest that the role of
PTL extends beyond word-level semantics. Further, we do not find evidence for supra-word
meaning in left IFG, though this does not prove that left IFG does not represent supra-word
meaning – the lack of significance may be due to low statistical power.

Strikingly, we found that, even though our devised supra-meaning representation predicted
a significant proportion of fMRI voxels, it did not significantly predict any sensor-timepoints
in MEG. Instead, the MEG recordings were significantly predicted by information unique to
both the currently-read and previously-read words. These findings suggest a difference in the
underlying brain processes that fMRI and MEG capture. Indeed, while it is widely known that
fMRI and MEG recordings result from different physiological signals, whether they capture
the same underlying brain processes is still debated (Hall et al., 2014). Our results suggest
that fMRI recordings are sensitive to supra-word meaning, while MEG recordings reflect
instantaneous processes related to both the current word being read and the previously-read
word. A likely candidate for the instantaneous process reflected in MEG is the process of
integrating the current word with the previous context. The sensitivity to the previously-read
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Figure 4: Direct comparisons of prediction performance of different meaning embeddings.
Displayed are the median proportions across participants and the medians’ 95% confidence
intervals. Differences between modalities are tested for significance using a Wilcoxon rank-sums
test. Differences within modality are tested using a Wilcoxon signed-rank test. All p-values are
adjusted for multiple comparisons with the Holm-Bonferroni procedure at α = 0.05. (A) Residual
previous word, context, and current word embeddings predict fMRI and MEG with significant
differences. (B) Full context embeddings do not predict fMRI and MEG with significant differences,
while the full current word and previous word embeddings predict MEG significantly better than
fMRI. (C) MEG and fMRI display a contrasting pattern of prediction by the residual embeddings.
The current word residual best predicts MEG activity, significantly better than the previous word
residual, which in turns predicts MEG significantly more than the context residual. In contrast,
the context residuals significantly predict fMRI activity better than the previous and current word
residuals. (D) Full previous word and context embeddings do not predict MEG significantly
differently. (E) All full embeddings predict both fMRI and MEG significantly better than the
corresponding residual embeddings.
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word has many possible explanations. One possible explanation is that a word might take
longer to process and integrate into the composed meaning than the duration it is on the
screen. Another possible explanation is that a word may constrain the processing of the
word that follows it, highlighting its relevant properties and aiding with composition. The
hypothesis that MEG recordings reflect the process of composition aligns well with a vast
number of previous findings characterizing transient responses evoked by a stimulus that is
difficult to integrate with the preceding context (Kutas and Federmeier, 2011; Kuperberg
et al., 2003; Kuperberg, 2007) and results showing that MEG recordings are better fit by a
model constrained by the meaning of the immediately preceding words (Lyu et al., 2019).
Indeed, our results are not in disagreement with this literature – they do not show that MEG
activity does not reveal word integration processes that depend on previous context. Instead,
our results suggest that the representation of that previous context is not visible in MEG.

The observed difference in predicting fMRI and MEG recordings raises the hypothesis
that the process of maintenance of the composed meaning does not rely on neural mechanisms
that are thought to generate the MEG signal (such as synchronized current flow in pyramidal
cell dendrites (Hall et al., 2014)) but on some other mechanisms that are not visible in the
MEG signal or might be indistinguishable from noise (e.g. unsynchronized neural firing),
but that have enough metabolic demands to generate a BOLD response. Alternate possible
explanations for the lack of predictability of MEG by supra-word meaning are that the
representation of supra-word meaning may be too distributed to be captured by MEG due
to its poor spatial resolution. However, we observe that the supra-word meaning predicts
about 5 − 10% of all cortical fMRI voxels across participants, mostly centered in the ATL
and PTL. Thus, it is unlikely that no MEG sensor-timepoint is sensitive to this signal if it is
detectable in the magnetic field changes. Further, MEG is known to be sensitive to neural
activity that originates in the sulci, and since we find that the voxels that are sensitive to
supra-word meaning are in the sulci, this explanation is even less likely. These results call
for a new understanding of previous work that aims to study composition of sentence-level
meaning using MEG as well as possibly other types of imaging modalities that rely on
synchronized firing, such as EEG and ECoG. Our results suggest that observed increases in
activity measured by these modalities during sentence reading (Fedorenko et al., 2016; Hultén
et al., 2019) and improved fit by a model constrained by very recent context (Lyu et al.,
2019) are due to instantaneous integration processes rather than sentence-level meaning.
Future work is needed to understand whether and how these imaging modalities can be used
to study sentence-level meaning.

Our analysis depends on the degree to which the computational neural network we have
chosen is able to represent composed meaning. Based on ELMo’s competitive performance
on downstream tasks (Peters et al., 2018) and ability to capture complex linguistic structure
(Tenney et al., 2019), we believe that ELMo is able to extract some aspects of composed
meaning. The degree to which this composed meaning reflects the one in the brain is
an important question that we have only begun to study and needs further investigation.
Secondly, our residual approach accounts only for the linear dependence between individual
word embeddings and context embeddings. By construction, the internal state of the LSTM
in ELMo contains non-linear dependencies on the input word vector and the previous LSTM
state. It is possible however that some dimensions of the internal state of the ELMo LSTM
corresponds to non-linear operations on the dimensions of the input vector alone, without
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a contribution from the previous internal state of the LSTM (see Materials and Methods
for the LSTM equations). This non-linear transformation of the input word might not be
removed by our residual procedure, and whether it aligns with processing of individual words
in the brain is a question for future research.

The surprising finding that supra-word meaning is difficult to capture using MEG has
implications for future neuroimaging research and applications where natural language
is decoded from the brain. While high temporal imaging resolution is key to reaching
a mechanistic level of understanding of language processing, our findings suggest that a
modality other than MEG may be necessary to detect long-range contextual information.
Further, the fact that an aspect of meaning can be predictive in one imaging modality and
invisible in the other calls for caution while interpreting findings about the brain from one
modality alone, as some parts of the puzzle are systematically hidden. Our results also suggest
that the imaging modality may impact the ability to decode the contextualized meaning of
words, which is central to brain-computer interfaces (BCI) that aim to decode attempted
speech. Recent success in decoding speech from ECoG recordings (Makin et al., 2020) is
promising, but needs to be evaluated carefully with more diverse and naturalistic stimuli.
Using BCI to decode speech in real life is complicated by the inherent uncertainty in decoding
each word and the fact that the space of all possible utterances is not constrained. It is yet
to be determined if word-level information conveyed by electrophysiology will be enough to
decode a person’s intent, or if the lack of supra-word meaning should be compensated in
other ways.

Materials and Methods

fMRI data and preprocessing

We use fMRI data of 9 participants reading chapter 9 of Harry Potter and the Sorcerer’s
Stone (Rowling, 2012), collected and made available online by Wehbe et al. (2014b). Words
were presented one at a time at a rate of 0.5s each. fMRI data was acquired at a rate of 2s
per image, i.e. the repetition time (TR) is 2s. The images were comprised of 3 × 3 × 3mm
voxels. The data for each participant was slice-time and motion corrected using SPM8 (Kay
et al., 2008), then detrended and smoothed with a 3mm full-width-half-max kernel. The
brain surface of each participant was reconstructed using Freesurfer (Fischl, 2012), and a
grey matter mask was obtained. The Pycortex software (Gao et al., 2015) was used to handle
and plot the data. For each participant, 25000 − 31000 cortical voxels were kept.

MEG data and preprocessing

The same paradigm was recorded for 8 participants using MEG by the authors of Wehbe
et al. (2014a) and shared upon our request. This data was recorded at 306 sensors organized
in 102 locations around the head. MEG records the change in magnetic field due to neuronal
activity and the data we used was sampled at 1kHz, then preprocessed using the Signal Space
Separation method (SSS) (Taulu et al., 2004) and its temporal extension (tSSS) (Taulu and
Simola, 2006). The signal in every sensor was downsampled into 25ms non-overlapping time
bins. For each of the 5176 word in the chapter, we therefore obtained a recording for 306
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sensors at 20 time points after word onset (since each word was presented for 500ms).

ELMo details

At each layer, for each word ELMo combines the internal representations of two independent
LSTMs – a forward LSTM (containing information from previous words) and a backward
LSTM (containing information from future words). We extracted context embeddings only
from the forward LSTM in order to more closely match the participants, who have not seen
the future words. For a word token t, the forward LSTM generates the hidden representation
h
l
t in layer l using the following update equations:

c̃ = tanh(wc[hlt−1;hl−1t ] + bc),
ct = ft × ct−1 + it × c̃t,

h
l
t = ot × tanh(ct),

where bc and wc represent the learned bias and weight, and ft, ot, and it represent the forget,
output, and input gates. The states of the gates are computed according to the following
equations:

ft = σ(wf[hlt−1;hl−1t ] + bf),
it = σ(wi[hlt−1;hl−1t ] + bi),
ot = σ(wo[hlt−1;hl−1t ] + bo),

where σ(x) represents the sigmoid function and bx and wx represent the learned bias and
weight of the corresponding gate. The learned parameters are trained to predict the identity
of a word given a series of preceding words, in a large text corpus. We use a pretrained
version of ELMo with 2 hidden LSTM layers provided by Gardner et al. (2018).

Obtaining full stimulus representations

We obtain a full ELMo word embedding (as opposed to a residual word embedding) for word
wn by passing word wn through the pretrained ELMo model and obtaining the token-level
embeddings (i.e. from layer 0) for wn. If word wn contains multiple tokens, we average the
corresponding token-level embeddings and use this average as the final full word embedding.
We obtain a full ELMo context embedding for word wn by passing the most recent 25 words
(wn−24, .., wn) through the pretrained ELMo model and obtaining the embeddings from the
first hidden layer (i.e. from layer 1) of the forward LSTM for wn. If word wn contains
multiple tokens, we average the corresponding layer 1 embeddings and use this mean as the
final full context embedding for word wn. We use 25 words to extract the context embedding
because it has been previously shown that ELMo and other LSTMs appear to reduce the
amount of information they maintain beyond 20 − 25 words in the past (Khandelwal et al.,
2018; Toneva and Wehbe, 2019).
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Obtaining residual stimulus representations

We obtain three types of residual embeddings for each word at position t in the stimulus
set: 1) residual context(t-1) embedding, 2) residual word(t-1) embedding, and 3) residual
word(t) embedding. We compute all three types using the same general approach of training
a regularized linear regression, but with inputs xt and outputs yt that change depending on
the type of residual embedding. The steps to the general approach are the following, given
an input xt and output yt:
Step 1: Learn a linear function g that predicts each dimension of yt as a linear combination
of xt. We follow the same steps outlined in the training of function f in the encoding model.
Namely, we model g as a linear function, regularized by the ridge penalty. The model is
trained via four-fold cross-validation and the regularization parameter is chosen via nested
cross-validation.
Step 2: Obtain the residual y′t ≜ yt − ĝ(xt), using the estimate of the g function learned
above. This is the final residual stimulus representation.

For the residual context(t-1) embedding, the input xt is the concatenation of the full word
embeddings for the 25 consecutive words wt−24, ..., wt and the output yt is the full context(t-1)
embedding. For the residual word(t-1) embeddings, the input xt is the concatenation of
the full context(t-1) embedding and the full word embeddings for the 24 consecutive words
wt−24, ..., wt that exclude the full word embedding for word(t-1) and the output yt is the
full word(t-1) embedding. For the residual word(t) embeddings, the input xt is the the
concatenation of the full context(t-1) embedding and the full word embeddings for the 24
consecutive words wt−24, ..., wt−1 and the output yt is the full word(t) embedding.

Encoding model evaluation

We evaluate the predictions of each encoding model by computing the Pearson correlation
between the held-out brain recordings and the corresponding predictions in the four-fold
cross-validation setting. We compute one correlation value for each of the 4 cross-validation
folds and report the average value as the final encoding model performance.

General encoding model training

For each type of embedding et, we estimate an encoding model that takes et as input and
predicts the brain recording associated with reading the same words that were used to derive
et. We estimate a function f , such that f(et) = b, where b is the brain activity recorded with
either MEG or fMRI. We follow previous work (Sudre et al., 2012; Wehbe et al., 2014b,a;
Nishimoto et al., 2011; Huth et al., 2016) and model f as a linear function, regularized by
the ridge penalty. The model is trained via four-fold cross-validation and the regularization
parameter is chosen via nested cross-validation.

fMRI Encoding Models

Ridge regularization is used to estimate the parameters of a linear model that predicts
the brain activity yi in every fMRI voxel i as a linear combination of a particular NLP
embedding x. For each output dimension (voxel), the Ridge regularization parameter is
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chosen independently by nested cross-validation. We use Ridge regression because of its
computational efficiency and because of the results of Wehbe et al. (2015) showing that
for fMRI data, as long as proper regularization is used and the regularization parameter is
chosen by cross-validation for each voxel independently, different regularization techniques
lead to similar results. Indeed, Ridge regression is indeed a common regularization technique
used for building predictive fMRI (Mitchell et al., 2008; Nishimoto et al., 2011; Wehbe et al.,
2014b; Huth et al., 2016).

For every voxel i, a model is fit to predict the signals yi = [yi1, yi2, . . . , yin], where n
is the number of time points, as a function of the NLP embedding. The words presented
to the participants are first grouped by the TR interval in which they were presented.
Then, the NLP embedding of the words in every group are averaged to form a sequence
of features x = [x1, x2, . . . , xn] which are aligned with the brain signals. The models are
trained to predict the signal at time t, yt, using the concatenated vector zt formed of
[xt−1, xt−2, xt−3, xt−4]. The features of the words presented in the previous volumes are
included in order to account for the lag in the hemodynamic response that fMRI records.
Indeed, the response measured by fMRI is an indirect consequence of brain activity that
peaks about 6 seconds after stimulus onset, and the solution of expressing brain activity as
a function of the features of the preceding time points is a common solution for building
predictive models (Nishimoto et al., 2011; Wehbe et al., 2014b; Huth et al., 2016).

For each given participant and each NLP embedding, we perform a cross-validation
procedure to estimate how predictive that NLP embedding is of brain activity in each voxel
i. For each fold:

• The fMRI data Y and feature matrix Z = z1, z2, . . . zn are split into corresponding
train and validation matrices. These matrices are individually normalized (mean of 0
and standard deviation of 1 for each voxel across time), ending with train matrices Y R

and ZR and validation matrices Y V and ZV .

• Using the train fold, a model wi is estimated as:

argmin
wi

∣∣yR,i − ZRwi∣22 + λi∣∣wi∣∣22.

A ten-fold nested cross-validation procedure is first used to identify the best λi for
every voxel i that minimizes nested cross-validation error. wi is then estimated using
λ
i on the entire training fold.

• The predictions for each voxel on the validation fold are obtained as p = ZV wi.

The above steps are repeated for each of the four cross-validation folds and average correlation
is obtained for each voxel i, NLP embedding, and participant.

MEG encoding models

MEG data is sampled faster than the rate of word presentation, so for each word, we have
20 times points recorded at 306 sensors. Ridge regularization is similarly used to estimate
the parameters of a linear model that predicts the brain activity yi,τ in every MEG sensor i
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at time τ after word onset. For each output dimension (sensor/time tuple i, τ), the Ridge
regularization parameter is chosen independently by nested cross-validation.

For every tuple i, τ , a model is fit to predict the signals yi,τ = [yi,τ1 , y
i,τ
2 , . . . , y

i,τ
n ], where

n is the number of words in the story, as a function of NLP embeddings. We use as input
the word vector x without the delays we used in fMRI because the MEG recordings capture
instantaneous consequences of brain activity (change in the magnetic field). The models are
trained to predict the signal at word t, yi,τt , using the vector xt.

For each participant and NLP embedding, we perform a cross-validation procedure to
estimate how predictive that NLP embedding is of brain activity in each sensor-timepoint i.
For each fold:

• The MEG data Y and feature matrix X = x1, x2, . . . xn are split into corresponding
train and validation matrices and these matrices are individually normalized (to get a
mean of 0 and standard deviation of 1 for each voxel across time), ending with train
matrices Y R and XR and validation matrices Y V and ZV .

• Using the train fold, a model w(i,τ) is estimated as:

arg min
w(i,τ)

∣∣y(i,τ),R −XR
w

(i,τ)∣22 + λ(i,τ)∣∣w(i,τ)∣∣22.

A ten-fold nested cross-validation procedure is first used to identify the best λ(i,τ) for
every sensor, time-point tuple (i, τ) that minimizes the nested cross-validation error.
w

(i,τ)` is then estimated using λ(i,τ) on the entire training fold.

• The predictions for each sensor, time-point tuple (i, τ) on the validation fold are
obtained as p = XV

w
(i,τ).

The above steps are repeated for each of the four cross-validation folds and an average
correlation is obtained for each sensor location, time-point tuple (s, τ), each NLP embedding,
and each participant.

Spatial Generalization Matrices

We introduce the concept of spatial generalization matrices, which tests whether an encoding
model trained to predict a particular voxel can generalize to predicting other voxels. This
approach can be applied to voxels within the same participant or in other participants. The
purpose of this method is to test whether two voxels relate to specific representation of the
input (e.g. NLP embedding) in a similar way. If an encoding model for a particular voxel
is able to significantly predict a different voxel’s activity, we conclude that the two voxels
process similar information with respect to the input of the encoding model.

For each pair of voxels (i, j), we first follow our general approach of training an encoding
model to predict voxel i as a function of a specific stimulus representation, described above,
and test how well the predictions of the encoding model correlate with the activity of
voxel j. We do this for all pairs of voxels in the PTL and ATL across all 9 participants.
We finally normalize the resulting performance at predicting voxel j by dividing it by the
performance at predicting test data from voxel i, that was heldout during the training process.
The significance of the performance of the encoding model on voxel j is evaluated using a
permutation test, described below.
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Permutation tests

Significance of the degree to which a single voxel or a sensor-timepoint is predicted is evaluated
based on a standard permutation test. To conduct the permutation test, we block-permute
the predictions of a specific encoding model within each of the four cross-validation runs
and compute the correlation between the block-permuted predictions and the corresponding
true values of the voxel/sensor-timepoint. We use blocks of 5TRs in fMRI (corresponding to
20 presented words) and 20 words in MEG in order to retain some of the auto-regressive
structure in the permuted brain recordings. We conduct 1000 permutations and calculate
the number of times the resulting mean correlation across the four cross-validation folds of
the permuted predictions is higher than the mean correlation from the original unpermuted
predictions. The resulting p-values for all voxels/sensor-timepoints/time-windows are FDR
corrected for multiple comparisons using the Benjamini-Hochberg procedure (Benjamini and
Hochberg, 1995).

Chance proportions of ROI/timewindows predicted significantly

To establish whether a significant proportion of an ROI/timewindow is predicted by a specific
encoding model, we contrast the proportion of the ROI/timewindow that is significantly
explained by the encoding model with a proportion of the ROI/timewindow that is signifi-
cantly explained by chance. We do this for all proportions of the same ROI/timewindow
across participants, using a Wilcoxon signed-rank test. We compute the proportion of
an ROI/timewindow that is significantly predicted by chance using the permutation tests
described above. For each permutation k, we compute the p-value of each voxel in this
permutation according to its performance with respect to the other permutations. Next
for each ROI/timewindow, we compute the proportion of this ROI/timewindow with p-
values< 0.01 after FDR correction, for each permutation. The final chance proportion of
an ROI/time-window for a specific encoding model and participant is the average chance
proportion across permutations.

Confidence intervals

We use an open-source package (Sheppard et al., 2020) to compute the 95% bias-corrected
confidence intervals of the median proportions across participants. We use bias-corrected
confidence intervals (Efron and Tibshirani, 1994) to account for any possible bias in the
sample median due to a small sample size or skewed distribution (Miller, 1988).

Experiments revealing shared information among NLP embeddings

For each of the 3 NLP embedding types (i.e. context(t-1) embedding, word(t-1) embedding,
word(t) embedding), we train an encoding model taking as input each NLP embedding and
predicting as output the word embedding for word(i), where i ∈ [t − 6, t + 2]. We evaluate
the predictions of the encoding models using Pearson correlation, and obtain an average
correlation over the four cross-validation folds.
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Supplementary Figure 1: Context and word embeddings share information. The performance of
the context and word embeddings at predicting the words at surrounding positions is plotted for
different positions. The context embedding has information about up to 6 past words, and word
embeddings have information about embeddings of surrounding words. To isolate the information
exclusively related to the meaning of an individual word, it is necessary to account for this shared
information.
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Supplementary Figure 2: Qualitative visualization of the voxels that are significantly predicted by
the full contextualized representation (in blue), the residual contextualized representation (in red),
or both (in white). A voxel is determined to be significantly predicted through a permutation
test and FDR correction for multiple comparisons at the 0.01 level. Large parts of the language
system, spanning the temporal cortex and the inferior frontal cortex, are significantly predicted by
the full context embeddings. The voxels significantly predicted by the context residual are largely
a subset of those predicted by the full context embeddings.
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Supplementary Figure 3: Spatial Generalization Matrices for all 9 participants. Models trained
to predict PTL voxels are used to predict PTL and ATL voxels (within-participant (A), and
across-participants (B)). Models trained to predict ATL voxels are used to predict ATL and
PTL voxels (within-participant (C), and across-participants (D)). Note that the block diagonal
matrices of the across-participants correlations (in B/D) are equivalent to the plots in A/C. Only
voxels that are significantly predicted by the context residual are included in this analysis. Note
that the participant S6 does not have any significantly predicted voxels in the ATL. Correlations
are normalized by dividing the performance of a model trained on voxel i at predicting the target
voxel j by the performance of a model trained on the target voxel j. PTL cross-voxel correlations
form two clusters: voxels in a cluster can predict each other but not the other cluster’s voxels.
Across participants, only one of these clusters has voxels that predict ATL voxels.
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Supplementary Figure 4: Performance of encoding models trained on ATL and PTL voxels at
predicting other participants’ ATL for the remaining 5 participants. All participants who have
more than a few significantly predicted voxels (6 out of 9 participants) show a cluster of predictive
voxels in the pSTS.
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