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Abstract

Circular codes represent a form of coding allowing detection/correction of frame-
shift errors. Building on recent theoretical advances on circular codes, we
provide evidence that protein coding sequences exhibit in-frame circular code
marks, that are absent in introns and are intimately linked to the keto-amino
transformation of codon bases. These properties strongly correlate with trans-
lation speed, codon influence and protein expression levels. Strikingly, circular
code marks are absent at the beginning of coding sequences, but stably occur
40 codons after the initiator codon, hinting at the translation elongation pro-
cess. Finally, we use the lens of circular codes to show that codon influence on
translation correlates with the strong-weak dichotomy of the first two bases of
the codon. The results provide promising universal tools for sequence indicators
and sequence optimization for bioinformatics and biotechnological applications,
and can shed light on the molecular mechanisms behind the decoding process.

Keywords: Translation efficiency, Circular codes, Gene expression, Codon
usage

1. Introduction

The genetic code is nearly universal across all living organisms. Its degen-
eracy, mapping 64 three-letter codons to 20 amino acids and three stop codons,3

is highly conserved. This conservation has evolved to minimize the effects of
genetic mutations and translational decoding errors, thus providing optimal ro-
bustness in the flow of the genetic information Woese (1965). Moreover, the6

universal genetic code allows to tolerate arbitrary nucleotide sequences within
protein-coding regions better than other possible codes. This property appears
to reduce the deleterious effects of frame-shift translation errors, increasing the9

probability that a stop codon is encountered after a frame shift Itzkovitz & Alon
(2007).
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The degeneracy of the code enables to synthesize the same protein from a12

huge number of mRNA sequences encompassing synonymous codons. Growing
evidence suggests that synonymous codons in coding sequences are not neutral
with respect to the translation process, influencing the protein expression rates15

from bacteria to eukarya. It is generally accomplished that this codon bias
contributes to the translation efficiency at the elongation step (Quax et al.,
2015), which in turn may affect the stability of the translated mRNA Boël18

et al. (2016). As such, codon preferences have been intensively studied, both
for improved protein production yields in biotechnological settings as well as
for codon-optimized gene design in synthetic biology and genetic engineering21

projects Brule & Grayhack (2017).
The mechanistic effects of codon bias were initially attributed to inefficient

translation of sets of rare codons Chen & Inouye (1994), implying the co-variance24

of codon usage frequency with the levels of matching tRNA pools and the de-
riving attenuation of translation elongation rates at infrequently used codons
(Ikemura, 1981). The recent introduction of genome-wide ribosome profiling27

studies has questioned this simplistic view, since the net ribosome elongation
rates are apparently relatively constant and marginally affected by rare codon
frequency Ingolia (2014); Pop et al. (2014). On the other hand, several studies30

correlated the effect of codon bias either with the stability of secondary struc-
tures at the 5’ end of the mRNA Kudla et al. (2009); Bentele et al. (2013);
Goodman et al. (2013), or with the intracistronic occurrence of Shine-Dalgarno-33

like sequences mimicking the ribosome binding site Li et al. (2012). Moreover,
different types of codon bias have been described, including synonymous codon
co-occurrence, allowing for rapid recycling of the exhaust tRNA in highly ex-36

pressed genes Cannarrozzi et al. (2010), or non-synonymous codon pair bias,
dependent on optimal interactions of tRNAs in the A and P sites of the ribo-
some Demeshkina et al. (2012); Quax et al. (2015); Hanson & Coller (2018).39

An elegant study engineered a his operon leader peptide gene reporter in
E. coli to investigate the local effects of codon context on in vivo translation
speed Chevance et al. (2014). Results demonstrated that the rate at which42

ribosomes translate individual synonymous codons varies considerably, and that
the apparent speed at which a given codon is translated is influenced by flanking
ones.45

Recently, the codon influence on protein expression rates was assayed in
greater depth, by integrating statistical analyses of large scale protein expres-
sion data sets with a systematic evaluation of local and global mRNA properties48

Gardin et al. (2014); Boël et al. (2016); Cambray et al. (2018). In particular, in
Boël et al. (2016), a logistic regression model is used to build a codon-influence
metric, validated by biochemical experiments, demonstrating that codon con-51

tent is able to modulate the kinetic competition between translation elongation
rates and mRNA stability. mRNA-folding effects generally prevail at the 5’
end of the coding sequence Kudla et al. (2009) and appear to be cumulatively54

weaker than codon bias effects Boël et al. (2016). Finally, it was shown that a
major determinant of mRNA half-life and stability is the codon-optimized rate
of translational elongation Presnyak et al. (2015).57
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Despite these advances, the theoretical principles behind the empirical ef-
fects of codon bias on translation efficiency remain poorly addressed. A possible
correlative link between codon bias and reading frame maintenance was inferred60

from the statistical analysis of a large set of protein coding sequences in the three
possible reading frames, resulting in the discovery that the set of most frequent
in-frame codons formed a circular code Arquès & Michel (1996); Michel (2008,63

2015). This observation revived the study of protein expression from the point
of view of coding theory initiated by Crick with the introduction of comma-free
codes Crick et al. (1957); Golomb et al. (1958). Recent developments on the66

theory of circular codes led to postulate the existence of a coding strategy under-
lying the process of reading frame maintenance Gonzalez et al. (2011); Fimmel
et al. (2015a,b, 2016). Circular codes have been proposed as putative remnants69

of primeval comma-free codes Shepherd (1981); Dila et al. (2019a). The circular
code found in Arquès & Michel (1996) belongs to a set of 216 codes possessing
desirable properties (i.e. self-complementary, maximal, C3 circular codes, see72

Supplementary Information). In Fimmel et al. (2015a), it shown that such set
can be partitioned into 27 equivalence classes conforming to a group theoretic
framework characterized by 8 nucleotide transformations that are isomorphic75

to the symmetries of the square. Table 1 shows an example of an equivalence
class formed by 8 circular codes linked by such transformations. It has been
postulated that this mathematical structure could be correlated with the correct78

transmission of information and frame maintenance during translation Gonzalez
et al. (2011); Michel (2012). Such premises encouraged us to investigate more
thoroughly whether circular codes could provide a theoretical framework able81

to explain or predict the effects of codon bias on translation. Up to now, the
key parameter, used to investigate the role of circular code properties on trans-
lation, has been represented by the coverage of a circular code over a specific84

sequence or organism. It is the cumulative codon usage of the set of codons
belonging to that code:

Example 1. Consider the sequence CAT CTG AAT GGA CTG and the87

two codes X1 = {CTG,AAT}, X2 = {GGA,TGT}. The coverage of X1 results
3/5 = 0.60, and that of X2 results 1/5 = 0.20.

Hence, the coverage of a code is the sum of the codon usages of its codons and90

can be seen as a measure of its “compliance” with the coding sequence, see also
Gonzalez et al. (2011). For a rigourous mathematical definition of coverage and
a brief description of circular codes theory see Supplementary Information.93

In order to explore the relationship of circular codes with extant coding
sequences, we set out to systematically compare the coverage of the 216 circular
codes partitioned in 27 equivalence classes, with the codon usage of a large set96

of organisms.
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I (AT) (CG) SW YR (ACTG) (AGTC) KM
X173 X176 X203 X206 X183 X182 X193 X192

1 AAC TTC AAG TTG GGT GGA CCT CCA
2 GTT GAA CTT CAA ACC TCC AGG TGG
3 AAT TTA AAT TTA GGC GGC CCG CCG
4 ATT TAA ATT TAA GCC GCC CGG CGG
5 ATC TAC ATG TAG GCT GCA CGT CGA
6 GAT GTA CAT CTA AGC TGC ACG TCG
7 CAC CTC GAG GTG TGT AGA TCT ACA
8 GTG GAG CTC CAC ACA TCT AGA TGT
9 CAG CTG GAC GTC TGA AGT TCA ACT

10 CTG CAG GTC GAC TCA ACT TGA AGT
11 CTC CAC GTG GAG TCT ACA TGT AGA
12 GAG GTG CAC CTC AGA TGT ACA TCT
13 GAA GTT CAA CTT AGG TGG ACC TCC
14 TTC AAC TTG AAG CCT CCA GGT GGA
15 GAC GTC CAG CTG AGT TGA ACT TCA
16 GTC GAC CTG CAG ACT TCA AGT TGA
17 GCC GCC CGG CGG ATT TAA ATT TAA
18 GGC GGC CCG CCG AAT TTA AAT TTA
19 GTA GAT CTA CAT ACG TCG AGC TGC
20 TAC ATC TAG ATG CGT CGA GCT GCA

Table 1: Equivalence class formed by eight circular codes. Each column represents one of
the 216 circular codes. The codes are related through the group of transformations D8. For
instance AAC ∈ X173 and KM(AAC) = CCA ∈ X192, see the Supplementary Information for
details.

2. Results and discussion

2.1. Circular codes’ coverage exhibits universal properties99

We have analyzed the whole Codon Usage Database (https://www.kazusa.
or.jp/codon/) to show the coverage (in percentage) for the 216 circular codes
partitioned in 27 equivalence classes Fimmel et al. (2015a). As a paradigmatic102

example we present the results for 8 codes forming the equivalence class of
Table 1 (the results for the remaining classes are reported in the Supplementary
Information). The results are presented in Table 2. As expected, each code105

has a distinct degree of coverage reflecting taxon-specific codon usage. For
instance, code X173 covers very well bacteria, i.e. the 46.4% of the codons
of all bacterial genomes belong to code X173. In contrast, the coverage for108

plants is lower (39.7%). Such disparity is reflected in the absolute ranks shown
in the middle panel: for bacteria, code X173 ranks 2nd among the 216 codes
whereas for plants it ranks 16th. This heterogeneity is evident also for the other111

7 codes of the class for all the kingdoms. However, if we consider the ranks of
these coverages inside the equivalence class (lower panel), then a neat taxon-
independent ordering among the 8 codes emerges i.e. in this case, code X173114

is always the best of its class, code X176 is always the second etc., irrespective
of the species-specific codon usage. Surprisingly, this property holds for each
of the 27 equivalence classes (see Table S5). Even more remarkably, the worst117

code within each class (code with the least coverage) invariably coincides with
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the chemical Keto-Amino transformation of the best one. In the example of
Table 2, code X173 is always the best code and its Keto-Amino transformation120

KM(X173) = X192 is always the worst within the class. This establishes an
important link between the codon usage and the Keto-Amino (KM) chemical
transformation that will be discussed below. This property is not the trivial

coverage X173 X176 X203 X206 X183 X182 X193 X192

bacteria 46.4 43.9 36.0 33.6 26.8 22.8 22.1 18.1
animals 42.0 38.8 35.9 32.8 28.6 26.2 25.8 23.4

viral 43.2 40.3 35.9 33.0 28.4 26.1 24.7 22.4
plants 39.7 36.7 34.8 31.7 29.3 27.5 25.3 23.5

absolute rank X173 X176 X203 X206 X183 X182 X193 X192

bacteria 2 11 58 81 155 189 195 212
animals 2 19 43 84 148 180 187 208

viral 2 18 53 84 148 176 190 209
plants 16 35 55 98 140 165 190 208

relative rank X173 X176 X203 X206 X183 X182 X193 X192

bacteria 1 2 3 4 5 6 7 8
animals 1 2 3 4 5 6 7 8

viral 1 2 3 4 5 6 7 8
plants 1 2 3 4 5 6 7 8

Table 2: Coverage (upper panel), absolute ranks (mid panel) and relative ranks (lower panel)
for the equivalence class of 8 circular codes presented in Table 1. The universality of the
results is clear if we consider the ranks within classes: for instance the coverage of code X173

for bacteria is 46.4% (upper panel). It is not the highest coverage among the 216 codes, indeed
it is the second (mid panel). However, it is always the highest within its class (lower panel).
This universal behaviour holds for the whole set of 216 codes partitioned in 27 equivalence
classes.

123

consequence of the fact that the more a set of codons is recurrent then, the less
recurrent are codons that do not belong to the same set (see Supplementary
Information, Section 2.1.1 where we set up a statistical test).126

These results demonstrate that universal symmetry properties of coding se-
quences emerge when analyzed through the theoretical framework of circular
codes, irrespectively of the species-specific codon-usage. Moreover, within each129

equivalence class, the Keto-Amino transformation of the code possessing the
best coverage always leads to the worst covering code of the same class. Thus, a
universal ordering structure, conserved across domains of life, emerges beyond132

the heterogeneity of species-specific codon usage.

2.2. Universal frame marks in coding sequences

The biological functions associated with circular code properties are basi-135

cally unexplored. These properties may be explained as a fossilized memory
of comma-free (self-synchronizable) coding in primeval forms of life Dila et al.
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Figure 1: Universal scaling properties of the coverage within equivalence classes for the three
reading frames.

(2019a), or tentatively associated with reading frame maintenance during pro-138

tein synthesis Dila et al. (2019b). Thus, to explore whether the universal ranking
property shown above, is valid also out of frame, we extended the analysis of
the coverage of circular codes to the three reading frames of coding sequences141

for 25 well-annotated eukaryotic species (Table S6). The results are shown in
the Supplementary Information, Table S7–S12. Remarkably, despite the vari-
ability of the codon usage among the different species, the ranking within each144

equivalence class is always preserved in the three frames. For example, for frame
+1, Tables S9–S10 (+2, Tables S11–S12), the first (second) circular permuta-
tion of the best codes has always the highest coverage, whereas their keto-amino147

transformation always leads to the worst covering codes within their equivalence
class.

When ordered through the ranks, the coverage shows a strong linear scaling.150

This is shown in Figure 1(left) that reports the boxplots of the coverage (per-
cent) of the 8 circular codes of Table 1 over the in-frame coding sequences of the
25 eukaryotic genomes analysed. The same linear scaling is observed for the cov-153

erage of the first and second circularly permuted codes, over the same coding
sequences read out-of-frame +1 (central panel) and +2 (right panel), respec-
tively. Scaling laws are important in Information Theory (Wallace & Wallace,156

1998) and dynamical system theory (Feigenbaum, 1988) and have also been
associated to universal properties and long range correlations in DNA Crista-
doro et al. (2018). Intriguingly, the structure uncovered in coding sequences is159

completely absent in introns (Table S13).
In conclusion, each circular code has a distinct degree of coverage with re-

spect to the species-specific codon usage of different organisms. Notably, how-162

ever, behind this variability we observed universal properties, linking the cov-
erage inside equivalence classes with the set of chemical transformations of the
codons of the codes. Such strong organization is present in coding sequences165

but not in introns.

6

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 30, 2020. ; https://doi.org/10.1101/2020.09.28.317016doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.28.317016


TAC
GAT

CTC

TTC
GAG

AAT
ATT
GTT
GTC

GAA

GGC

ATC

GAC

AAC

GTG

GTA

CTG

GCC
CAC
CAG

Code num: 173
Speed (lower is faster)

0 500 1000 1500 2000 2500

TAA
TGA

CGA
AGT

AGA
TGT
CGG

TGG

TCC
GGA

TGC

TCT

CCA

TTA

TCG

CCG

TCA

ACT

ACA

GCA

Code num: 192
Speed (lower is faster)

0 500 1000 1500 2000 2500

Figure 2: Ordered speed of the 64 codons, the data come from the experiment of Chevance
et al. (2014) and lower values indicate faster codons. The codons coloured in blue(left) and
in red(right) belong to code X173 and X192, respectively. They are the best and worst codes
within the set of 8 codes forming the equivalence class shown in Table 1.

2.3. Circular codes and in vivo translation speed

The organization, present in the three frames of coding sequences and ab-168

sent in intron sequences, hints at a biological role in the translation process.
We explored this possibility by analysing the single codon translation speeds
resulting from E. coli his operon attenuator reporter system Chevance et al.171

(2014). In this system, higher transcription rates of the reporter correspond to
lower translation speeds. Remarkably, all the codons of the best code X173 fall
within the set of fast translated codons, whereas the great part of the codons174

of code X192 appears to be among the slowest (see Figure 2). In order to verify
whether this property holds for all the 27 equivalence classes we have computed
the average speed for each code (i.e. the average speed of the set of 20 codons177

that compose each code) as a function of the coverage of the code in E. coli
(i.e. the cumulative codon usage of the 20 codons of each code). Figure 3 shows
the average speed versus the coverage for the 216 circular codes, where we have180

marked in blue the 27 codes that rank first within their equivalence class and in
red the 27 codes that rank last. In order to enhance the comprehension we have
reversed the scale so that higher values correspond to higher speeds. The best183

and worst codes form clusters that contain the fastest and the slowest codes,
respectively. As mentioned above, the two sets are related by the chemical KM
transformation. The relationship between circular-code-coverage and speed of186

translation appears to be linear with a correlation coefficient of 0.835. This
would indicate that the coverage of a circular code can be a predictor of the
speed of translation.189
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Figure 3: Average speed of translation versus Coverage (percent) for the 216 circular codes
partitioned in 27 equivalence classes of 8 codes each. The points in blue and red correspond to
the 27 best and 27 worst codes within their associated equivalence class. Clearly, the coverage
is a predictor of the speed of translation and the best and worst codes within their equivalence
class clusterize.

2.4. Circular codes and codon influence on protein expression

In order to further establish a link between circular codes theory and protein
expression we analyzed the experimental evidence reported in Boël et al. (2016)192

where the authors use a black box logistic regression model over a large-scale
protein expression dataset. Their aim was to assess the influence on protein
expression of both mRNA sequence parameters and single codons. After ac-195

counting for sequence parameters such as predicted free folding energy or head
folding indicators, they found a significant effect of individual codons that ap-
pears several positions after the initiator codon and stabilizes after about 16198

codons. Conveniently, this analysis does not suffer from the presence of stop
codons in the codes that may bias the average translation speed presented in
Figure 3.201

Consistently with the codon speed reported in the previous section, the
codon influence is strongly correlated with the circular code coverage (ρ = 0.847,
Figure 4). Notice that this cannot be explained in terms of single codon usage.204

Indeed, there is no evident correlation between single codon influence and single
codon usage (Figure S2).

2.5. Circular code motifs are absent in the mRNA 5’-head and 3’-tail sequences207

Several independent reports demonstrated that the folding energy at the 5’
end of the mRNA explains most of the variation in protein expression levels,
indicating that tightly folded messengers, obstructing the 30 nt ribosome binding210

site centered on the initiator codon, strongly influence translation initiation
rates Kudla et al. (2009); Goodman et al. (2013); Cambray et al. (2018). In
Boël et al. (2016) it is shown that, by computing the increase in the likelihood213

ratio when adding to the model terms corresponding to the average value of the
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Figure 4: Average codon influence versus Coverage (percent) computed on the 216 circular
codes partitioned in 27 equivalence classes of 8 codes each. The points in blue and red corre-
spond to the 27 best and 27 worst codes within their associated equivalence class, respectively.
As for the speed of translation (Figure 3), the coverage is a predictor of codon influence and
the best and worst codes within their equivalence class clusterize.

codon influence over rolling windows of 5, 10 and 15 codons, the influence of
codons is enhanced in the first part of the sequence, especially from codon 7 to216

codon 16 and stabilizes after 32-35 codons. If circular code properties play a
role in translation, then we could expect a different coverage as a function of the
position along the coding sequence. In Figure 5(left) we plotted the coverage of219

codes X173 (blue solid line) and X192 (red solid line) over rolling windows of 5
codons, computed over the first 100 codons of each complete coding sequence
of E.coli. Remarkably, both for code X173 and X192 there is a transient initial222

span (around 40 codon positions) after which the rolling coverage over 5 codons
reaches the value of the global coverage over the entire genome and fluctuates
around it. While for code X173 the rolling coverage for the first positions is225

always lower than the global coverage, the rolling coverage for code X192 starts
at a higher level with respect to the global coverage and decreases towards it.
This appears to be a universal feature shared by all the organisms (see the228

Supplementary Information). The same is true for rolling windows up to 30
codons with no significant differences. The effect of the total codon content
in the 3’ tail of the mRNA sequence was also reported to be influential on231

expression (Boël et al., 2016). Accordingly, we also observed a tail effect in the
coverage of coding sequences (Figure 5(right) and Supplementary Information).

These results indicate a lower coverage of the best circular code both in the234

head and in the tail of coding sequences, consistent with growing experimental
evidence that other factors, such as mRNA folding energy, may predominate in
those regions.237
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Figure 5: Rolling coverage (span: 5 codons) computed on the first (left) and last (right) 100
codon positions, averaged over the whole set of 3983 complete coding sequences of E.coli. The
blue and red solid lines correspond to code X173 and X192, respectively. The dotted lines
correspond to the global coverage of the codes over the whole genome.
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2.6. Protein expression levels correlate with circular code properties

To further explore the existence of a link between gene expression levels and
circular codes, we computed the influence of each codon in a given sequence as240

the usage of such codons weighted by their specific influence. We analysed the
set of 6348 sequences for which the protein expression levels had been previously
measured and categorised, from 1 (low) to 5 (high) (Boël et al., 2016). This243

enabled us to correlate the expression level with the average cumulative influence
of codons belonging to the best and worst codes (Figure 6). Clearly, a strong
positive correlation (ρ = 0.93) between expression levels and the influence of246

the best code emerges (ρ = −0.97). Moreover, a strong negative correlation
links the influence of the worst code to protein expression levels. Even more
remarkably, the remaining codons (the 21 codons that do not belong to either249

of the two former codes) fail to show any noticeable correlation, so that, on
average, an increase in the expression level score is linked to an increase of the
circular code influence for the best code and a corresponding decrease for the252

worst code. In this way, a clear link between circular code properties and protein
expression levels has been established, pointing to the existence of a role played
by circular code properties in translation. As such, we anticipate that circular255

code theory can be important for the optimization of gene sequences for the
production of recombinant proteins.

2.7. circular code properties correlate with the S/W character of the first two258

nucleotides of the codon

Within each equivalence class the KM transformation always corresponds to
passing from the best to the worst code, both in terms of coverage and transla-261

tion efficiency, in agreement with recent experimental evidence of a correlation
between a high codon usage and a high rate of decoding Gardin et al. (2014).
In the KM transformation, keto (K; T or G) is transformed into amino (M; C264

or A) and viceversa (T↔C, G↔A). Hence, the KM transformation invariably
changes the character of the base from strong (S; G or C) to weak (W; A or T),
and this transformation appears to accompany remarkable effects on transla-267

tion. Our results therefore indicate that the molecular biology in the decoding
process may be significantly affected by the S/W character of the codon bases.
Indeed, it has been reported that AT-rich codons are decoded slightly quicklier270

than GC-rich codons Gardin et al. (2014); Boël et al. (2016). AT-rich codons
result in weaker secondary structures in mRNAs and therefore in higher trans-
lation initiation rates Goodman et al. (2013). However, at the elongation level273

a mechanistic explanation for faster decoding of AT-rich codons is still missing
to date.

From a molecular point of view, an exact Watson-Crick base-pairing be-276

tween codon and anticodon in the first two codon positions is indispensable
for the correct decoding in the A-site of the ribosome Schmeing & Ramakr-
ishnan (2009); Demeshkina et al. (2012). Moreover, functional and structural279

evidences indicate that during the decoding process universally conserved bases
of the 16S rRNA closely interact with the codon-anticodon base-pair geometry
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in these positions Ogle et al. (2001). In particular, A1492 and A1493 adenosines282

form locally a triplex structure with the minor-groove of the codon-anticodon
mini-helix (A-minor motif). These interactions appear to control domain clo-
sure of the 30S subunit Ogle et al. (2002), accelerating the forward steps in285

decoding, thus influencing the dynamics of translation elongation (recently re-
viewed in Opron & Burton (2019)). The evidence of minor-groove readout of the
codon-anticodon mini-helix by the 16S rRNA A1492-A1493 dinucleotide bears288

interesting implications: because of nucleoside biochemistry, weak (W) base-
pairs (either A-U or U-A) have the same electron acceptor/donor profile in the
minor groove. A-U or U-A are indistinguishable one from another with respect291

to the formation of an A-minor motif. The same applies for strong (S) base-
pairs: C-G or G-C display a different profile of electron donor/acceptors with
respect to weak base pairs, but are indistinguishable one from another in the294

minor groove Masliah et al. (2013). Thus, out of the four different possible base
pairs of two RNA nucleosides, only two possible hydrogen-bonding signatures
can be discriminated in the minor groove, either weak (W) or strong (S).297

In this respect, a striking feature, emerging from the analysis of the best and
worst codes (e.g. X173 and X192, respectively), concerns the chemical nature
of the bases of the first two nucleotides in the codon (Table 3). All the most300

influential codons of code X173 are of the kind SWN (strong-weak-any), the
remaining ones being of the kind WWN (weak-weak-any). Conversely, by virtue
of the KM transformation linking the two codes, the codons of code X192 are of303

the kind WSN or SSN. On average, these codons appear to be less influential.
Hence, we investigated whether this property holds also for the remaining codes.
We computed the average frequencies of SWN, WWN, SSN and WSN codons306

for the group of best codes (blue) and worst codes (red), see Figure S5, where
the area of the bubbles is proportional to the average influence of each group of
codons. Clearly, codons of the kind SWN and WWN identify the best codes, i.e.309

those associated to a higher expression level and coverage. Conversely, codons
of the kind SSN and WSN characterize the codes having lower expression level
and coverage.312

Hence, if the A-minor motif forms a structure able to monitor the correct
base-pairing of the first two bases of the codon, through readout of the minor
groove, then the dichotomic combination of S/W base pairs in these positions315

may impose different spatial arrangements of the 16S rRNA through A1492-
A1493 dinucleotide interaction influencing the speed/rates of mRNA decoding
by the ribosome. Strikingly, the analysis of circular code properties appears318

to point at a link between the S/W dichotomy in the first two bases of the
codon and protein expression levels. In particular, the results indicate a codon
ordering where SWN codons confer the highest expression levels. In this respect,321

the theory of circular codes allowed to uncover the possible role played by the
S/W dichotomy in the decoding process. It is also worth noticing that without
the lens of circular codes this property would have otherwise escaped from the324

analysis of synonymous sequence libraries, since the latter tend to vary mostly
in the third (wobbling) position of the codon, and only marginally in the first
two positions (only for degeneracy-6 codons).327
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X173 X192

x influence usage groove YR(←−x ) influence usage groove

GAT 23.85 3.22 SW CGA -8.46 0.35 SS
GAA 22.51 3.97 SW GGA 10.66 0.79 SS
GAC 16.19 1.91 SW TGA * * WS
GAG 15.51 1.80 SW AGA 4.76 0.20 WS
GTA 11.32 1.09 SW GCA 1.45 2.01 SS
GGC 5.05 2.98 SS TAA * * WW
GTT 4.92 1.82 SW CCA -4.98 0.84 SS
GTG 3.80 2.63 SW ACA 3.63 0.69 WS
CTC 3.53 1.11 SW TCT -6.24 0.84 WS
CAC 2.31 0.98 SW TGT -12.47 0.51 WS
CAG 1.75 2.90 SW AGT 2.12 0.87 WS
AAC 1.53 2.16 WW TGG -7.49 1.52 WS
CTG 0.99 5.31 SW ACT -0.63 0.88 WS
GCC 0.97 2.57 SS TTA -5.24 1.38 WW
GTC 0.31 1.53 SW TCA 8.18 0.70 WS
ATT -0.19 3.04 WW CCG 6.55 2.34 SS
TTC -3.95 1.65 WW TCC -3.25 0.86 WS
AAT -5.25 1.76 WW CGG -13.00 0.54 SS
TAC -5.45 1.22 WW TGC -10.70 0.64 WS
ATC -6.71 2.52 WW TCG -9.67 0.89 WS

Table 3: Codons of circular codes X173 and X192 together with their codon influence as in Boël
et al. (2016) their codon usage in E.coli and the mRNA groove described as the Strong/Weak
nature of the first two nucleotides of the codon. The columns are ordered in descending order
according to the codon influence index for code X173 (second column).

3. Conclusions

We have shown that circular codes theory provides a new and powerful
key to understanding the influence of codon bias on gene expression. Circular330

code coverage exhibits taxon-independent universal properties with a strong
hierarchical organization. Independently from codon usage, universal frame
marks are present in coding sequences and are absent in introns. Indeed, there333

are recurring properties, linking the coverage inside equivalence classes with
the set of chemical transformations of the codons of the codes. These properties
strongly correlate with translation speed, codon influence and protein expression336

level. In accordance with the predominant effect of the secondary structure of
mRNAs in the 5’ ends on translation, circular code properties are absent at the
beginning of coding sequences, and correlate with the S/W dichotomy in the339

first two nucleotides of codons.
For these reasons the theory of circular codes can be also seen as a promising

tool for codon optimization of protein coding sequences to be used in biotech-342

nological applications and for building sequence indicators for bioinformatics
applications. If circular code properties play a role in translation then it will be
possible to design dedicated experiments to verify their impact on expression345

rates and/or reading frame maintainance paving the way to a better under-
standing of the molecular mechanisms behind decoding.
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