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Abstract  

Exciting developments in both in vitro and in silico technologies have led to new ways to identify 

patient specific cardiac mechanisms. The development of induced pluripotent stem cell-derived 

cardiomyocytes (iPSC-CMs) has been a critical in vitro advance in the study of patient-specific 

physiology, pathophysiology and response to drugs. However, the iPSC-CM methodology is limited 

by the low throughput and high variability of resulting electrophysiological measurements.  

Moreover, the iPSC-CMs generate immature action potentials, and it is not clear if observations in 

the iPSC-CM model system can be confidently interpreted to reflect impact in human adults.  

There has been no demonstrated method to allow reliable translation of results from the iPSC-CM 

to a mature adult cardiac response. Here, we demonstrate a new computational approach 

intended to address the current shortcomings of the iPSC-CM platform by developing and 

deploying a multitask network that was trained and tested using simulated data and then applied 

to experimental data.  We showed that a deep learning network can be applied to classify cells 

into the drugged and drug free categories and can be used to predict the impact of 

electrophysiological perturbation across the continuum of aging from the immature iPSC-CM 

action potential to the adult ventricular myocyte action potential. We validated the output of the 

model with experimental data. The method can be applied broadly across a spectrum of aging, 

but also to translate data between species. 
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Introduction 

The development of novel technologies has resulted in new ways to study cardiac function and 

rhythm disorders [1]. One such technology is the induced pluripotent stem cell-derived 

cardiomyocyte (iPSC-CMs) in vitro model system [2]. The iPSC-CM system constitutes a powerful 

in vitro tool for preclinical assessment of cardiac electrophysiological impact and drug safety 

liabilities in a human physiological context [3-8].  Moreover, because iPSC-CMs can be cultured 

from patient specific-cells, it is one of the new model systems for patient-based medicine.  

 

While in vitro iPSC-CM utilization allows for observation of a variety of responses to drugs and 

other perturbations [9-12], there is still a major inherent limitation: The complex differentiation 

process to create iPSC-CMs results in a model of cardiac electrical behavior, which is relatively 

immature, resembling fetal cardiomyocytes. Hallmarks of the immature phenotype include 

spontaneous beating, immature calcium handling, presence of developmental currents, and 

significant differences in the relative contributions of repolarizing potassium currents compared 

to adult ventricular myocyte [13-15].  The profound differences between the immature iPSC-CM 

and the adult cardiac myocyte have led to persistent questions about the utility of the iPSC-CM 

action potential to predict relevant impact on adult human electrophysiology [16, 17]. In this 

study, we set out to take a first step to bridge the gap. 

 

Here we describe a new way to connect data from patient derived iPSC-CMs to feed the 

development of computational models and to fuel the application of machine learning techniques 

to allow a way to predict, classify and translate changes observed in cardiac activity from the in 

vitro iPSC-CMs to predict their effects on adult cardiomyocytes (adult-CMs). The iPSC-CM and 

adult-CM action potential (AP) populations were paced with physiological noise with 0-50% IKr 

block to generate a robust simulated data set to train and test the deep learning algorithm. We 

then showed how it can be applied even to scarce experimental data, which was also used to 

validate the model. 
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Deep learning techniques are increasingly used to advance personalized medicine [18]. Long-

short-term-memory (LSTM) based networks are capable of learning order dependence in 

sequence prediction problems [19] and have been widely used for cardiac monitoring purposes. 

They have been used to extract important biomarkers from raw ECG signals [20-22] and help 

clinicians to accurately detect common heart failure features in ECG screenings [20, 23-27]. LSTM 

classifiers have also been employed to automatically classify arrhythmias using ECG features [28-

32]. In addition, modeling and simulation, and multi-task networks have been widely implemented 

to identify hERG blockers from sets of small molecules in drug discovery and screening [33-38].  

 

Here, we developed and applied a multitask network leveraging LSTM architecture to classify and 

translate observations from cardiac activity of in vitro iPSC-CMs to predict corresponding adult 

ventricular myocyte cardiac activity.  Here, we show that developments in iPSC-CM experimental 

technology and developments in cardiac electrophysiological modeling and simulation of iPSC-

CMs can be leveraged in a new machine learning model to interrogate disease and drug response 

in cardiac myocytes from immaturity to maturation.  

 

Results 

In this study, we set out to develop and apply a deep learning multitask network that would 

perform two distinct tasks: A) The first task is cellular level action potential classification to 

distinguish between drug free action potential waveforms and action potential waveforms 

following application of IKr block (drug-induced hERG channel block). B) The second goal is cellular 

level action potential translation to translate immature action potential waveforms to predict 

adult waveforms. We first simulated a population of 542 in silico iPSC-CMs and O’Hara-Rudy in 

silico human adult ventricular action potentials (adult-CMs).  An average cell AP from the 

population is shown in Figure 1A for iPSC-CMs and Figure 1B for adult-CMs. The ionic currents 

underlying the in silico iPSC-CM APs and adult-CMs APs are markedly different as shown in panels 

C and D, respectively. In Figure 1E, the population of iPSC-CM APs is shown and the adult-CM AP 

population is in Figure 1F, generated by applying physiological noise as we have described 

previously [39-41].  In Figure 1 panels G and H, the impact of perturbation of the in silico iPSC-CM 
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APs and adult-CMs APs by 1-50% IKr block is shown. Panel I shows the parameter comparison for 

iPSC-CMs and adult-CMs APs without and with perturbation by 1-50% IKr block.  

 

 

Figure 1. Cellular action potential (AP) and ionic currents for induced pluripotent stem cell-
derived cardiomyocytes (iPSC-CMs) and adult-CMs (O’Hara-Rudy human ventricular action 
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potentials). A - B Comparison of Cellular APs in the baseline model of iPSC-CMs and control case 
of adult-CMs at cycle length of 982 ms. C. Simulated ionic currents (ICaL, IKr, IKs, Ito, IK1) during 

baseline iPSC-CMs AP compared to the simulated currents profiles during control case of adult-
CMs AP in D. E. iPSC-CMs APs of spontaneously beating cells (n = 304) were simulated after 
incorporating physiological noise. F. Adult-CMs APs were simulated with physiological noise 

currents at matching cycle lengths of iPSC-CMs in panel E.  G. iPSC-CMs APs were simulated with 
perturbation by 1-50% IKr block after incorporating physiological noise. H. Adult-CMs APs were 

simulated with perturbation by 1-50% IKr block and physiological noise currents at matching cycle 
lengths of iPSC-CMs in panel G. I. Comparison between iPSC-CMs and adult-CMs for upstroke 

velocity, maximum diastolic potential (MDP) and action potential durations (APD). 

 

We next developed a multitask deep learning network (Figure 2A), for the independent translation 

and classification tasks to be performed.  The goal of the translation task (Figure 2B) is to use an 

immature cardiac action potential waveform dataset and convert (translate) these data to predict 

the resulting effect on mature cardiac action potential waveforms. Figure 2C shows the 

classification task that is intended to be used to classify action potential waveforms into drug free 

(iPSC-CMs APs with less than a determined threshold of (threshold%) IKr block) and drugged (iPSC-

CMs APs with greater than or equal to a determined threshold of (threshold%) IKr block) categories. 

We combined these two tasks to demonstrate a positive relationship between planned tasks and 

empower the multitask network to predict mature cardiac action potential waveforms with better 

accuracy simultaneously. Both tasks are performed by a network comprising two long-short term 

memory (LSTM) layers (Figure 2D) followed by independent fully connected layers for each task 

(Figure 2E). Notably, the LSTM layers are shared for both tasks (please see methods for details on 

the LSTM layers). The features extracted by the LSTM layers are then used as input for the 

independent fully connected neural network layers with two hidden layers. The outputs from the 

network are both the mature cardiac action potential waveform, and the category of action 

potential waveform (drug free or drugged categories).   

 

We used normalized and labeled in silico iPSC-CM APs and adult-CMs APs without (0% IKr block) 

(Figure 1 E-F) and with perturbation by 1-50% IKr block (Figure1 G-H) as input and output for 

training the multitask network (Figure 2A).  First, we started training the network considering drug-

free (0% block) and drugged (1-50% IKr) cases for classification task. Then, we tested if training the 
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multitask network with cellular action potential waveforms that had been subject to various IKr 

blocking conditions (range 1-50% block) could improve the accuracy of the network for 

reconstructing adult-CM APs from iPSC-CM APs . The long short-term memory (LSTM) layer 

representation is shown as a schematic in Figure 2D.  The computation module and gating 

mechanism for each training iteration is also depicted in Figure 2D.   

 

 

Figure 2. The multitask network architecture. A. The general overview of the multitask network 
presented in this study. B. The translation task to reconstruct adult-CMs APs from corresponding 

iPSC-CMs APs. C. The classification task is shown with IKr block threshold. D. The repeating 
module in the implemented LSTM layers in the presented multitask network. E. The architecture 

of the implemented fully connected layers in the presented multitask network. 
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We next explored whether the translation and classification tasks in this study are compatible with 

each other, which would allow them to be combined into a single multitask network. The benefits 

of combining the tasks are to save computation time and also potentially to improve each task 

performance. Therefore, we applied the multitask network to different scenarios in this study as 

shown in the workflow schematic in Figure 3.  The data generated through the various scenarios 

are described in the subsequent figures in the study.  We first trained the single task networks 

independently and compared the performance for the individual translation (purple, left) and 

classification (pink, second from left) tasks to the combined multitask network (yellow in middle). 

We applied statistical measures for the translation and classification tasks to evaluate task 

alignments.  Next, we applied a forward and backward digital filter technique (light blue, second 

from right) to iPSC-CMs and adult-CMs APs traces and retrained the multitask network to explore 

the effect of noise filtering on the multitask network performance. In the last scenario, we 

investigated the importance of carrying out time dependency analysis by removing LSTM layers 

for both tasks (gray, right) and retrained the network with various threshold for the IKr block 

classification task (red block) to determine the optimal threshold for the best  performance of the 

multitask network. 

 

 

Figure 3. Work flow schematic describing different scenarios in this study: Exploring the task 
alignment by comparing the performance for the individual translation (purple, left) and 

classification (pink, second from left) tasks to the combined multitask network (yellow in middle); 
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Inspecting the influence of applying noise-filtering techniques (light blue, second from right) to 
the iPSC-CMs and adult-CMs APs on the multitask network performance for the translation and 
classification tasks; Investigating the importance of considering the existing time dependency 
within simulated iPSC-CMs and adult-CMs APs for training the multitask network (gray, right); 
Tracking the performance of the multitask network for the translation and classification tasks 

with various threshold for the IKr block (red block) to identify the optimal threshold for 
classification task. 

 

From the population of 542 computer model generated iPSC-CMs and adult-CM action potentials; 

which contained both drug free and drugged cases, we randomly selected 80% of the virtual cell 

waveforms containing both drug free and drugged cases to train the multitask network.  The 

procedure was as follows:  The multitask network utilized the iPSC-CM AP training data with 

physiological noise as an input to the network.  The network was then optimized to best produce 

a translation of these data to match model generated adult-CM action potentials that were 

produced under the same pacing conditions and degree of IKr block  (i.e. the immature and adult 

AP traces were generated through model simulations under the same pacing frequency conditions 

and extent of IKr reduction for both). These are shown as the “train” data set in Figure 4 A (iPSC-

CMs) and B (adult-CMs training data in red). The optimized network was able to accurately 

translate the training data by generating a similar matched set of adult-CM action potentials as 

shown in blue in B (adult-CMs translated from iPSC-CMs by the network).  The histogram in Figure 

4C shows the good agreement between the model generated adult action potentials and iPSC-CM 

APs translated to adult-CM APs in terms of the frequency of virtual cells with similar APD.  

 

The remaining 20% of virtual cell waveforms for both immature and mature APs were designated 

as the test set (data “unseen” to the network during training) and used to evaluate the 

performance of the multitask network as shown in Figure 4D (iPSC-CMs) and 4E for adult-CMs in 

red with superimposed translated data in blue.  As indicated by the near superimposition of the 

histogram distribution in Figure 4 panel F, the translation from iPSC-CMs to adult-CMs AP across 

the range of pacing frequencies was successful. Since drug free and drugged data sets are mixed 

in the training and test set, we also plotted the simulated iPSC-CMs AP (Black) and adult-CMs AP 

(red) for drug free (Figure 4 G-H) and drugged AP waveforms (Figure 4J-K) separately to clarify the 

performance of the multitask network for translating iPSC-CMs to adult-CMs AP for categories 
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considered in the classification task. Superimposed translated adult-CMs AP waveforms are also 

illustrated in panel H and K in blue for drug free and drugged categories, respectively. Panel I and 

L illustrates the superimposition of the histogram distribution of APD90 values for drug free and 

drugged categories.  

 

To evaluate the network performance for classification task we used area under receiver operating 

characteristic plot [42], recall, precision and F1_score [43] as statistical measures (Table 1). We 

compared the values for discussed measures for both training and test set and observed that the 

network can categorize APs into drug-free and drugged waveforms with approximately 90% 

accuracy (Table 1). 

 

 

Figure 4. The performance of multitask network for translating iPSC-CMs APs into adult-CMs APs. 
A. The iPSC-CMs APs used for training the multitask network contained a variety of action potential 
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morphologies without and with IKr block (Train set). B. Comparison between simulated (red) and 
translated adult-CM APs (blue) in the training set. C. Comparison between the histogram 
distribution of APD90 values for simulated and translated adult-CM APs in the training set. D. 
Dedicated iPSC-CM APs for testing the performance of multitask network for the unseen AP data 
to the network (Test set) E. Comparison between simulated (red) and translated adult-CM APs 
(blue) in the test set. F. Comparison between histogram distribution of APD90 values for simulated 
and translated adult-CM APs in the test set. G. Population of iPSC-CM APs without IKr block. H. 
Comparison between simulated (red) and translated adult-CM APs (blue) without IKr block. I. 
Comparison between histogram distribution of APD90 values for simulated and translated adult-
CM APs without IKr block. J. Population of iPSC-CMs APs with IKr block. K. Comparison between 
simulated (red) and translated adult-CM APs (blue) with IKr block. L. Comparison between 
histogram distribution of APD90 values for simulated and translated adult-CM APs with IKr block. 

 

Table 1. Statistical measures for evaluating the performance of the multitask network for 
classifying AP traces into ones with and without 1-50% IKr block for both training and test sets. 

Measures AUROC Recall Precision F1-score 

Training set performance 0.85 0.75 0.96 0.84 

Test set performance 0.90 0.85 0.95 0.9 
 

 

To evaluate the task alignment, we trained two single task networks for classification and 

translation tasks separately and compared the single task network performance with multitask 

network performance (Table 2). We compared the statistical measures for both translation and 

classification tasks. Interestingly, the multitask network actually performed better in drugged 

cases (Figure 4L) compared to drug-free cases (Figure 4I).  As it can be seen in the presented 

measures, the multitask network has less mean-squared-error (MSE) and APD90 calculation error 

for translating the traces with 1-50% IKr block (Table 2).   The implication is that addition of the 

classification task will improve the reliability of the network to translate iPSC-CMs APs into adult-

CMs AP. 

 

In contrast to the benefit of the multitask network to improving translation accuracy, no significant 

improvement was observed in statistical measures for classification task (Table 2). Notably, the 

statistical measures are close in value for the single task and multitask network which indicates 
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good task alignment in the multitask network. Therefore, combining the two tasks may indeed 

save computation time and also improve the translation task performance (Table2).  

 
Table 2. Statistical measures for evaluating the performance of the multitask network for both 
translation and classification tasks to explore task alignment. 

Translation 

Networks MSE R2_score APD90 error for block 

Single task (Translation) 0.0014 0.995 3.40% 

Single task (Classification) - - - 

Multitask 0.0013 0.995 3.25% 

Classification 

Networks AUROC Recall Precision F1-score 

Single task (Translation) - - - - 

Single task (Classification) 0.90 0.85 0.95 0.9 

Multitask 0.90 0.85 0.95 0.9 

 

Next, in order to demonstrate how the multitask network can be extended to apply even to noisy 

experimental data, we applied a digital filter forward-backward technique [44]  to iPSC-CM and 

adult-CM AP traces without and with perturbation by 1-50% IKr block (Figure 5). Panel A shows 

simulated drug-free iPSC-CM with physiological noise in green and after applying a noise filtering 

technique in purple. To assess the phase distortion resulting from noise filtering for APD90 values, 

we then plotted a histogram distribution of APD90 values in Figure 5B, which shows near 

superimposition of the histogram distribution.  This indicates that noise filtering does not change 

AP waveforms shape and only removes existing vertical noise.  Panels C and D show the same 

process as described in panels A and B, but for the adult-CM APs (again, with physiological noise  

in green and after applying noise filtering techniques  in purple  in panel C, and  histogram 

distributions of APD90  in panel D) .  

 

In Figure 5E and F, we show the drugged AP waveforms with physiological noise in green, noise-

filtered in purple and without physiological noise in pink for iPSC-CMs and corresponding 

histograms indicating the frequency of APD90 values, respectively. The adult-CM (Figure 5G) is 

shown for drugged AP waveforms with physiological noise in green, noise-filtered in purple and 
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without physiological noise in pink along with the overlaid APD90 histograms in Figure 5H. We also 

undertook retraining of the multitask network with noise-filtered traces to explore the effect of 

noise filtering on the network performance. We compared the statistical measures for both 

translation and classification tasks for the trained network based on AP waveforms with 

physiological noise and noise-filtered traces (Table 3) and observed that applying noise filtering 

techniques could slightly improve multitask network performance for both tasks. 

 

Table 3. Statistical measures for evaluating the influence of applying noise-filtering techniques 
and considering the existing time dependency within simulated iPSC-CMs and adult-CMs APs on 
the multitask network performance. 

Translation 

Networks MSE R2_score APD90 error with Ikr block 

Multitask without noise-filtering 0.0013 0.995 3.25% 

Multitask with noise-filtering 0.0013 0.995 3.17% 

Multitask with noise-filtering 
and removing LSTM layers 

0.0016 0.980 3.6% 

Classification 

Networks AUROC Recall Precision F1-score 

Multitask without noise-filtering 0.90 0.85 0.95 0.90 

Multitask with noise-filtering 0.91 0.87 0.95 0.91 

Multitask with noise-filtering 
and removing LSTM layers 

0.88 0.85 0.87 0.88 
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Figure 5. Applying a digital filter forward and backward technique to iPSC-CM and adult-CM APs 
without and with IKr block indicates zero phase distortion for APD90 values. A. Simulated drug-

free iPSC-CMs APs with physiological noise in green and after applying the noise filtering 
technique in purple. B. Comparison between histogram distributions of APD90 values for noisy 

and noise-filtered iPSC-CMs APs. C. Simulated drug-free adult-CMs APs with physiological noise 
in green and after applying noise filtering technique in purple. D. Comparison between 

histogram distribution of APD90 values for noisy and noise-filtered adult-CMs APs. E. Simulated 
iPSC-CM APs with IKr block with physiological noise in green, after applying noise filtering 

technique on simulated traces in purple, and without physiological noise in pink. F. Comparison 
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between histogram distribution of APD90 values for noisy and noise-filtered versus iPSC-CM APs 
without physiological noise. G. Simulated adult-CM APs with IKr block with physiological noise in 

green, after applying noise filtering technique on simulated traces in purple, and without 
physiological noise in pink. H. Comparison between histogram distribution of APD90 values for 

noisy and noise-filtered versus simulated adult-CMs APs without physiological noise. 

 

We next explored the importance of the existing time dependency within the simulated iPSC-CMs 

and adult-CMs APs on the multitask network performance. We did this by extracting the LSTM 

layers and compared the network performance with and without the LSTM layers for both 

translation and classification tasks (Table 3). As can be seen, removing LSTM layers worsened the 

network performance for both tasks. In summary, we determined that training the multitask 

network both with noise filtered traces and taking existing time dependence into consideration as 

the best approach to design and perform our desired translation and classification tasks. 

 

To test whether training the multitask network with cellular action potential waveforms that had 

been subject to a variety of IKr blocking conditions (range 1-50% block) could improve the 

performance of the network, we retrained the multitask network with various IKr block 

percentages for  the classification task and compared the performance of the multitask network 

to identify the optimal threshold for the classification task (Figure 6). For our test set, we recorded 

the MSE (Figure 6A) and the error in calculation of APD90 (Figure 6B) to investigate its influence on 

the translation task and monitored values of AUROC (Figure 6C) and precision (Figure 6D) for the 

classification task.  As can be seen in Figure 6A-D, perturbation by 25% IKr block resulted in the 

best performance for both the translation and classification tasks when the selected threshold 

defined two classes: class 1 (iPSC-CMs APs with less than 25% IKr block) and class 2 (iPSC-CMs APs 

with greater than or equal to 25% IKr block). In summary, the multitask network with noised-

filtered iPSC-CMs APs and adult-CMs APs with LSTM layers that defined a 25% IKr threshold for the 

classification task emerged as the best proposed network. 
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Figure 6. Tracking the performance of the multitask network for translation and classification 
tasks with different IKr block percentage thresholds to identify an optimal one. A. Calculated the 

mean-squared-error (MSE) between simulated and translated adult-CM AP waveforms by 
changing IKr block threshold for the classification task for test set. B. Calculated error between 

APD90 values for simulated and translated adult-CM APs for test set. C. Multitask network 
AUCROC measure for classifying iPSC-CM APs with IKr block into class 1 (iPSC-CM APs with less 

than threshold % IKr block) and class 2 (iPSC-CM APs with greater than or equal to threshold % IKr 
block). D. Multitask network precision measure for classifying iPSC-CM APs with IKr block into 

class 1 and 2. 

We next set out to demonstrate the real-world utility of the multitask classification and translation 

network by applying the network to experimental data.  We utilized experimental iPSC-CM APs 

from the Kurokawa lab (Figure 7A) and applied the translation task resulting in the predicted adult- 

CM APs as shown in Figure 7B. The translation notably resulted in a reduction in variability in APD 

in the adult translated cells, consistent with our simulated results and with previous experimental 

observations [16, 45].   In an additional validation of the deep learning network, we first simulated 

iPSC-CM APs with 50% block of IKr.  We then used these simulation APs as an input for the multitask 

network and utilized the output from the translation task as a prediction of the effect of 50% block 

on adult-CMs.  In Figure 7C, the translated drugged APD90 values are shown as turquoise asterisks 
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plotted with directly simulated O’Hara-Rudy adult-CMs APs with 50% IKr block (red curve) and 

additional validation by experimental 50% block of IKr by 1M E-4031 (blue squares) [40].  These 

data strongly suggest that the effects of drug block in iPSC-CMs can successfully be translated to 

predict its effect on adult human APs.  

 

 

Figure 7. Translation of experimentally recorded iPSC-CMs APs into adult-CMs APs to validate the 
multitask network performance. A. Experimentally recorded iPSC-CMs APs from the Kurokawa 
lab. B. Translated adult-CMs APs from experimentally recorded iPSC-CMs APs using presented 

multitask network. C. Comparing translated adult-CMs AP APD90 values with 50% IKr block 
(turquoise asterisks) with previously published simulated (red curve for drugged and black for 
drug-free control) and experimental (blue squares) values in O’Hara-Rudy study [40] indicates 

successful model validation. 

 

Methods 

Generation of the in silico data for training and testing the deep learning model: 

iPSC-CM and adult-CM baseline Action potentials with or without IKr block 
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iPSC-CMs baseline cells were paced from steady-state. The model formulation used for the 

baseline adult-CMs was the O’Hara-Rudy endocardial model cell [40]. The control adult-CMs was 

paced at cycle length of 982 ms to match the cycle length of the last beat of iPSC-CMs AP. The 

block case of adult-CMs (50% inhibition) was paced at cycle length of 1047 ms to match the cycle 

length of the last beat of iPSC-CMs AP with 50% IKr block. 

 

iPSC-CMs and adult-CMs baseline simulations with physiological noise currents  

Data set 1: Without IKr block: iPSC-CMs AP populations (n = 304) were generated after 

incorporating physiological noise. The adult-CMs were paced with noise for 100 beats after 

reaching steady state at matching cycle length of the last beat of iPSC-CMs AP populations. 

Data set 2: With IKr block: The adult-CMs with noise were paced with 1-50% IKr block. The model 

was simulated at five varying beating rates for each percentage of block that match to the last 

beat of iPSC-CMs with 1-50% IKr block (n = 250). The numerical method used for updating the 

voltage was Forward Euler method [46]. 

 

Simulated physiological noise currents:   

Simulated noise current was added to the last 100 paced beats in the simulated AP models, and 

simulated action potentials (APs) were recorded at the 2000th paced beat in single cells. This 

noise current was modeled using the equation from [39], 

𝑉𝑡+∆𝑡 = 𝑉𝑡 −
𝐼(𝑉𝑡)∆𝑡

𝐶𝑚
+ 𝜉𝑛√∆𝑡                                                                                                                        (1) 

Where n is N(0,1) is a random number from a Gaussian distribution, and ∆t is the time step.  = 

0.3 is the diffusion coefficient, which is the amplitude of noise.  The noise current was generated 

and applied to membrane potential Vt throughout the last 100 beats of simulated time course. 

 

Experimental iPSC-CMs: 

Human iPSC-CMs (201B7, RIKEN BRC, Tsukuba, Japan) were cultured and subcultured on SNL76/7 

feeder cells as described in detail previously [47]. Cardiomyocyte differentiation was performed 

either by the EB method with slight modifications [47]. Commercially available iCell-

cardiomyocytes (FUJIFILM Cellular Dynamics, Inc., Tokyo, Japan) were cultured according to the 
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manual provided from the companies. Action potentials were recorded with the perforated 

configuration of the patch-clamp technique as described in detail previously [47]. Measurements 

were performed at 36 ± 1 °C with the external solution composed of (in mM): NaCl (135), NaH2PO4 

(0.33), KCl (5.4), CaCl2 (1.8), MgCl2 (0.53), glucose (5.5), HEPES, pH 7.4. To achieve patch 

perforation (10-20 MΩ; series resistances), amphotericin B (0.3-0.6 µg/mL) was added to the 

internal solution composed of (in mM): aspartic acid (110), KCl (30), CaCl2 (1), adenosine-5’-

triphosphate magnesium salt (5), creatine phosphate disodium salt (5), HEPES (5), EGTA (11), pH 

7.25. In quiescent cardiomyocytes, action potentials were elicited by passing depolarizing current 

pulses (2 ms in duration) of suprathreshold intensity (120 % of the minimum input to elicit action 

potentials) with a frequency at 1 Hz unless noted otherwise. 

 

The multitask network architecture: 

The proposed multitask network comprises two LSTM layers followed by independent fully 

connected layers (Figure 2A) for the classification and translation tasks.  The LSTM layers 

memorizes the important time dependent information and then transfers the extracted 

information (features) into the subsequent fully connected layers to translate immature cardiac 

action potential waveforms into mature cardiac action potential waveforms (Figure 2B)  and 

classify iPSC-CM APs into class 1 (iPSC-CM APs with less than the threshold % IKr block) and class 2 

(iPSC-CM APs with greater than or equal to the threshold % IKr block) (Figure 2C).  

 

Long-short term memory (LSTM) layers (Figure 2D):  

We used LSTMs as the first two layers of the multi-task network to promote network learning for 

which data in a sequence is important to keep or to throw away. At each time step, the LSTM cell 

takes in three different pieces of information, the current input data (𝐴𝑃𝑖𝑃𝑆𝐶𝑡
), the short-term 

memory (hidden state) from the previous cell (ℎ𝑡−1) and the long-term memory (cell state) 

(𝐶𝑡−1). The LSTM cells contain internal mechanisms called gates.  The gates are neural networks 

(with weights (w) and bias terms (b)) that regulate the flow of information at each time step before 

passing on the long-term and short-term information to the next cell [48]. These gates are called 

the input gate, the forget gate, and the output gate (Figure 2D). 
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The forget gate, as the name implies, determines which information from the long-term memory 

should be kept or discarded. This is done by multiplying the incoming long-term memory by a 

forget vector generated by the current input and incoming short-term memory. To obtain the 

forget vector, the short-term memory and current input are passed through a sigmoid function 

(σ) [49]. The output vector of sigmoid function is binary comprising 0s and 1s and is then multiplied 

by the long-term memory to choose which parts of the long-term memory to retain (Eq. 2). 

𝐹𝑡 = 𝜎𝑓(𝑤𝑓𝐴𝑃𝑖𝑃𝑆𝐶𝑡
+ 𝑤𝑓ℎ𝑡−1 + 𝑏𝑓)                                                      (2) 

The input gate decides what new information will be stored in the long-term memory. It considers 

the current input and the short-term memory from the previous time step and transforms the 

values to be between 0 (unimportant) and 1 (important) using a sigmoid activation function (Eq. 

3). The second layer in input gate takes the short-term memory and current input and passes it 

through a hyperbolic tangent (tanh) activation function to regulate the network (Eq. 4). 

𝐼𝑡 = 𝜎𝑖(𝑊𝑖𝐴𝑃𝑖𝑃𝑆𝐶𝑡
+ 𝑊𝑖ℎ𝑡−1 + 𝑏𝑖)                                            (3) 

𝑆𝑡 = 𝑡𝑎𝑛ℎ𝑖(𝑤𝑠𝐴𝑃𝑖𝑃𝑆𝐶𝑡
+ 𝑤𝑠ℎ𝑡−1 + 𝑏𝑠)                                                      (4) 

The outputs from the forget and input gates then undergo a pointwise addition to give a new 

version of the long-term memory (Eq . 5), which is then passed on to the next cell.  

𝐶𝑡 =  𝐹𝑡 ∗ 𝐶𝑡−1 + 𝐼𝑡 ∗ 𝑆𝑡                      (5) 

Finally, the output gate utilizes current input and previous short-term memory and passes them 

into a sigmoid function (Eq. 6). Then the new computed long-term memory passes through a tanh 

activation function and the outputs from these two processes are multiplied to produce the new 

short-term memory (Eq. 7). 

𝑂𝑡 = 𝜎𝑜(𝑤𝑜𝑥𝑡 + 𝑤𝑜ℎ𝑡−1 + 𝑏𝑜)                                 (6) 

ℎ𝑡 = 𝑂𝑡 ∗ 𝑡𝑎𝑛ℎ𝑜(𝐶𝑡)                                                     (7) 

The short-term and long-term memory produced by these gates is carried over to the next cell for 

the process to be repeated. The output of each time step is obtained from the short-term memory, 
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also known as the hidden state, and is subsequently passed into fully connected layers to perform 

the translation and classification tasks. 

 

Fully connected layers (Figure 2E):  

The fully connected neural network layers contains input, hidden and output layers (Figure 2E) 

which may have various numbers of neurons. Every neuron in a layer is connected to neurons in 

another layer [50]. Fully connected layers receive the output of LSTM layers as input.  The fully 

connected layers calculate a weighted sum of LSTM outputs and add a bias term to the outputs.  

These data are then passed to an activation function (f) to define the output for each node (Eq. 

8,9)  [51]. 

𝑎𝑗
𝑛 = 𝑓(𝑍𝑗

𝑛)                                                                                                                                                                 (8) 

𝑍𝑗
𝑛 =  𝑊𝑖,𝑗

𝑛 ∗ 𝑎𝑗
𝑛−1 + 𝑏𝑛                                                                                                                                                  (9) 

where 𝑎0 is the input data and 𝑎𝑛+1 is output data 𝑦 ̂𝜖 {𝑦
𝑡𝑖

, 𝑦
𝑐𝑖

} where 𝑦𝑡𝑖
 and 𝑦𝑐𝑖

 are the outputs for 

translation and classification tasks, respectively. We first assign random values to all network 

parameters (𝜃𝑡; nodes weight (𝑊𝑖,𝑗), bias term (𝑏) and network hyperparameters and select the 

best network infrastructure; number of hidden layers, number of neurons and activation functions 

for each hidden layer. Next, we estimate the network errors using mean-squared-error (Eq. 10) 

and cross-entropy loss functions (Eq. 11) to map the translation and classification tasks [52, 53], 

respectively.  

𝑀𝑆𝐸 =  
1

𝑛
∑ ‖𝑦𝑡𝑖

− 𝑦̂𝑡𝑖
‖

2𝑛

𝑖=1
                                                                                                                                                  (10) 

𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦 =  − (𝑦𝑐𝑖
log(𝑦̂𝑐𝑖

) + (1 − 𝑦𝑐𝑖
)log (1 − 𝑦̂𝑐𝑖

))                                                                             (11) 

where n is the total number of input samples and 𝑦𝑡𝑖
 and 𝑦̂𝑡𝑖

 are the simulated and translated 

adult-CM APs (the network output for translation task). The 𝑦𝑐𝑖
 is binary indicator of class labels 

for iPSC-CM APs (0 for iPSC-CM APs with less than the threshold % IKr block or 1 for iPSC-CM APs 

with greater than or equal to the threshold % IKr block) and 𝑦̂𝑐𝑖
 is predicted probability of APs being 

classified into the discussed classes. We used sum of both loss functions (Eq. 12) to calculate the 

overall network error (J) for both translation and classification tasks during the network training 

process.  We updated network parameters (𝜃𝑡+1) using adaptive momentum estimation (ADAM) 
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optimization algorithm [54] based on the average gradient of overall loss function with respect to 

the network parameters for 128 randomly selected simulated AP traces (mini-batch=128) at each 

training iteration (Eqs. 13-15).  

𝐽(𝜃𝑡,𝑖) =  𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛(𝜃𝑡,𝑖) + MSE𝑇𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛(𝜃𝑡,𝑖)                                                                       (12) 

𝜃𝑡+1,𝑖 = 𝜃𝑡,𝑖 −
𝛼 .𝑚̂𝑡

√𝜈̂𝑡+𝜖
   ,       𝜃𝑡,𝑖 𝜖 {𝑊𝑖,𝑗

𝑛 , 𝑏𝑗
𝑛}                                                                                                       (13) 

𝑚̂𝑡 =
𝑚𝑡

1−𝛽1
𝑡 ,       where     𝑚𝑡 =  (1 − 𝛽1)𝛻𝐽(𝜃𝑡,𝑖) + 𝛽1𝑚𝑡−1                                                                           (14) 

𝜈̂𝑡 =
𝜈𝑡

1−𝛽2
𝑡 ,         where    𝜈𝑡 = (1 − 𝛽2) (𝛻𝐽(𝜃𝑡,𝑖))

2
+ 𝛽2𝑣𝑡−1                                                                        (15) 

 

We used rectified linear unit (ReLu) activation function for hidden layers and dropout 

regularization [55] with probability of eliminating any hidden units in fully connected layers equal 

to 0.25 for updating model parameters to find global minimum of loss function based on a 

predefined learning rate (𝛼) , first and second momentum terms (𝛽
1
, 𝛽

2
 ), and a small term 

preventing division by zero (𝜖).  

 

We first started training the network considering drug-free (0% block) and drugged (1-50% IKr) 

cases for classification task. Then, we tested a hypothesis whether training the multitask network 

with classifying cellular action potential waveforms that had been subject to various IKr blocking 

conditions (range 1-50% block) could improve the performance of the network. We used MSE (Eq. 

10), R2_score (Eqs. 16-17 below) and the histogram distribution of APD90 as statistical measures to 

evaluate the performance of network for translation task and area under receiver operating 

characteristic curve (AUROC), recall, precision and F1-score to measure capability of network for 

classification task as described below.  

 

We applied a forward and backward digital filter technique[44] into normalized and labeled 

simulated iPSC-CM APs and adult-CM APs without and with perturbation by 1-50% IKr block and 

utilized them as inputs and outputs in the network. The network architecture is implemented using 

Pytorch platform[56]. 80% of the simulated APs were considered for training the network and the 

remaining were used to test the performance of the network for an unseen dataset during 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 29, 2020. ; https://doi.org/10.1101/2020.09.28.317461doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.28.317461


training. The network codes have been made publicly available at Github. 

(https://github.com/ClancyLabUCD/Multitask_network) 

 

Statistical measures 

As we discussed, we used MSE and cross-entropy as criteria for performance evaluation of 

translation and classification tasks. In addition to MSE, we computed R2_score [57] (Eqs. 16,17) to 

measure how close the translated adult-CM AP (𝑦̂𝑡𝑖
) are to the simulated adult-CM AP (𝑦𝑡𝑖

). We 

compared the histogram distribution of simulated and translated adult-CM APD90 values to 

investigate the ability of network to predict them accurately.   

𝑦̅𝑡 =  
1

𝑛
∑ 𝑦𝑡𝑖

𝑛

𝑖=1
                                                                                                                                                                  (16)   

𝑅2 =
∑ (𝑦̂𝑡𝑖

 − 𝑦̅𝑡)𝑖

∑ (𝑦𝑡𝑖
 −𝑦̅𝑡 )𝑖

                                                                                                                                                                    (17) 

We used area under the receiver operating curve (AUROC) to measure the capability of model in 

distinguishing between classes [42]. Receiver operating curve (ROC) is a plot of the false positive 

rate (FPR, the probability that the network classifies iPSC-CM AP with less than 25% IKr block into 

greater than or equal to 25% IKr block) (Eq. 18) versus the true positive rate (TPR) or recall (Eq. 19). 

AUROC close to 1 represents an excellent model, which has good measure of separability, while a 

poor model has AUROC near 0, which means that it has poor separability. 

  

prediction [58]. In addition, the confusion matrix elements were used to measure statistical 

metrics (recall, precision and F1-score) to describe the performance of a classification model [13], 

where recall (Eq. 19) is the proportion of actual positives that are correctly identified as such. 

Precision measures the proportion of correct positive identifications (Eq. 20) and F1-score is the 

harmonic mean of precision and recall (Eq. 21). 

FPR =
𝐹𝑃

𝐹𝑃+𝑇𝑁
                                                                                                                                                              (18) 

Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                                                                                                              (19) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                                                                                                   (20) 

F1 = 2 ×
Precision × Recall

Precision+ Recall
                                                                                                                                      (21) 
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Discussion 

In this study, we have developed a data-driven algorithm intended to address well known 

shortcomings in the induced pluripotent stem cell-derived cardiomyocyte (iPSC-CMs) platform.  A 

known concern with iPSC-CMs is that the data collection results in measurements from immature 

action potentials, and it is unclear if these data reliably indicate impact in the adult cardiac 

environment.  Here, we set out to demonstrate a new deep learning algorithm to allow reliable 

translation of results from the iPSC-CM to a mature adult cardiac response.  The translation task 

yielded superb results with 0.0012 MSE, 0.99 R2_score and less than 3% calculation error in 

predicting adult APD90 values from iPSC-CMs inputs.  

 

The multi-task network we present here notably conferred additional benefit over considering the 

translation and classification tasks separately. For example, we noted that adding the classification 

task to distinguish data from action potentials with and without the application of an IKr blocking 

drug could improve the performance of the network.  Adding the IKr blocking threshold to the 

translation task resulted in up to 7% decrease in MSE value. To pick the best threshold, we tested 

a range of thresholds for classification and retrained the network with each of them.  The threshold 

defined as 25% IKr block led to the highest accuracy for both the translation and classification tasks. 

The high values for the classification task statistical measures including AUROC and precision equal 

to 0.993 and 0.98, respectively, also indicate the credibility of the multitask network to sort iPSC-

CMs APs into groups with greater than or equal to 25% IKr block from iPSC-CMs APs with less than 

25% IKr block. 

 

Importantly, the multitask network presented here performed well even in the setting of the noted 

variability in measurements from iPSC-CMs.  We utilized a modeling and simulation approach from 

our recent study [41] to generate a population of IPSC-CM action potentials that incorporate 

variability comparable to that in experimental measurements. Utilizing simulated data presented 

a unique opportunity: We were able to generate large amounts of data that were used both to 

train and optimize the network and then to test the network with specifically designated distinct 
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simulated data sets. Utilizing simulated data to train a deep learning network may constitute a 

more widely applicable approach that could be used to train variety of networks to perform 

multiple functions where access to comparable experimental data is not feasible.  

 

Following the optimization and demonstration of the network as an accurate tool for both 

translating and classifying data, we then used the same network to translate experimentally 

obtained data. We showed that the proposed network can effectively take experimental data as 

an input from immature iPSC-CMs and translate those data to produce adult action potential 

waveforms. It is notable that the variation observed in the adult-CM AP duration is smaller 

compared to iPSC-CM AP (Figure 7A-B). This has been observed both experimentally [16, 45] and 

in our simulated cell environment [41, 59] . Although the simulated iPSC-CM has a large initial 

calcium current (Figure 1B) compared to the simulated adult-CM (Figure 1C), the amplitude of 

currents flowing through adult-CM action potential plateau is notably larger. The immature iPSC-

CM cells have low conductance during the AP plateau rendering it comparably higher resistance. 

For this reason, small perturbations to the iPSC-CMs have a larger impact on the resulting AP 

duration than observed in adult cells [60]. We also used simulated iPSC-CMs subject to 50% block 

of IKr.  We translated those data to adult-CM APs and then compared the previously reported 

impact on adult-CM APs to 50% IKr block from experiments and noted excellent agreement thereby 

providing validation using experimental data from adult human cells. 

 

In this study, we show that a deep learning network can be applied to classify cells into the drugged 

and drug free categories and can be used to predict the impact of electrophysiological 

perturbation across the continuum of aging from the immature iPSC-CM action potential to the 

adult ventricular myocyte action potential. We translated experimental immature APs into mature 

APs using the proposed network and validated the output of some key model simulations with 

experimental data.  The multitask network in this study was used for translation of iPSC-CMs to 

adult APs, but could be readily extended and applied to translate data across species and classify 

data from a variety of systems. Also, another extension of the technology presented here is to 

predict the impact of naturally occurring mutations and other genetic anomalies [61]. 
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