










even when the population size is set to the largest possible value in these simulations, the
performance is much better than that of ML on gene tree topologies alone.

MPL had the lowest accuracy in this category ofmethods. Thismakes sense as pseudo-
likelihood is an approximation of the full likelihood designed to speed up the calculations.
Indeed, for larger data sets, runningML, especiallywhen using gene tree topologies alone,
is infeasible, whereas MPL could be used.

We observe very similar trends on data from Scenarios 2 and 3 (supplementary figs.
S1–S3, Supplementary Material online), though the accuracy on Scenario 2 was highest.
The reason for this is that in Scenario 2, even when t2 is small, the parents of the hybrid
are much more diverged than in the other two scenarios, which involve two sister taxa.

As counting only correctly inferred networks is a strict measure of accuracy, we also
quantified the true positive and negative rates of all inferences (both values are 1 when
the network is correctly inferred). The results are shown in figure 6 for all three scenarios
combined. These results show clearly that, except for the largest value of Ne , ML, ML_bl,

Figure 6: Accuracy of inference results on simulated data. True positive rates (a) and true
negative rates (b) are shown for 10 replicate data sets and all three scenarios and all values of t2
combined.

and MPL have very good accuracy of the inferences, even when not inferring the true
network. For the largest population size, the accuracy of all three methods is over 85%
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when 100 gene trees are used. In other words, while not many networks were inferred
perfectly for the largest population size, the accuracy of the inferred networks is very high.

It is important to note that while inference under the MSNC could result in the correct
phylogenetic network topology, several of the branch lengths could be inferred incorrectly.
Consider the scenario of figure 1c. Since inference under the MSNC assumes that x1 and
x2 are two alleles of species X, and the same for the pair (y1,y2) and the pair (z1, z2), the
lengths of all four branches in the subtree ((X,Y),Z)would be underestimated to account
for the absence of coalescence events on these branches. Indeed, we inspected the length
of the branch connected to T in the ML inferred networks and found out that 178 out of
180 inferred networks have shorter branch length than the ground truth. Moreover, all
the ML correctly inferred networks have shorter branch lengths, which is consistent with
our expectation.

In other words, while both ML and MPL happen to provide good results in these
simulations in terms of the phylogenetic network topology, they did so at the expense of
the branch lengths. For example, for Scenario 1, the coalescent times of the homoeologous
alleles from the tetraploid T have to be more ancient than the divergence time between
species A and B. That is to say, no homoeologs could coalesce along the two horizontal
edges or the branch connected to T. So, even when the tetraploid T was correctly inferred
as the hybrid species, ML worked by forcing the age of the hybridization to be zero.

3.2 Performance of Parsimony Methods
Next, we ran InferNetwork_MP, which implements the maximum parsimony method
of [35] (labeled MP below), and InferNetwork_MP_Allopp, which is the new method
described above (labeled MPAllopp below). Results in terms of the frequency of correctly
inferred networks for Scenario 1 are shown in figure 7.

As the figure shows, both methods have almost identical performance, and both are
very similar to ML above. Furthermore, as with the methods above, we observe very sim-
ilar trends on data from Scenarios 2 and 3 (supplementary figs. S4 and S5, Supplementary
Material online), though the accuracy on Scenario 2 was highest. Figure 6 shows that in
terms of accuracy of the inferred networks the two methods are identical.

However, as with ML and MPL, while MP inferred the network topology with the
same accuracy as the new method, this does not mean that MP is equally appropriate as
MPAllopp. We illustrate this through an example. Consider the phylogenetic network
of figure 8a. The model network and parameters were obtained from [11], where the
population size was 105 individuals, and the mutation rate was 8× 10−8 per site per
generation. 30 gene treeswere simulated (supplementary fig. S6, SupplementaryMaterial
online), using the simulation program AlloppDT of [11]. Then InferNetwork_MP and
InferNetwork_MP_Allopp were used to infer the species network with one reticulation
node. As shown in figure 8, MP failed to infer an evolutionary history with hybridization,
returning a species tree instead. MPAllopp, on the other hand, made correct inference
with a MPAllopp score of 108. To ensure that the failure of MP on this data set was not
due to failed search, we calculated the MP score of the true network topology using the
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Figure 7: The number of correct estimates of networks with specified hybridization on simu-
lated data: Parsimony methods. Each bar represents the number of correctly inferred networks
out of 10. The true phylogenetic network is the one in Scenario 1. Top row: Each data set consists
of 50 gene trees. Bottom row: Each data set consists of 100 gene trees.

(a) (b)

Figure 8: An example scenario where MP fails to recover allopolyploidization when it is
present. (a) The true evolutionary history. Here, a hybridization occurred between these two
diploid species A and B, forming an allotetraploid from which the XYZ clade descended. (b) The
phylogenetic network inferred by MP.
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command DeepCoalCount_network, and we found that the true topology has a score of
280, which is worse than that of the inferred tree, which is 245.

3.3 Distinguishing Auto- and Allo-polyploidy Under the Parsimony
Criterion

We illustrate here how the parsimony criterion can be used to determine whether auto-
or allo-polyploidization took place. As we discussed above, in the former case, the
evolutionary history of the species should be a tree, not a network, whereas in the latter
case it should be a network. Therefore, when running MP or MPAllopp on data including
autopolyploids, the method would find that a tree fits the data equally well to a network
(barring weak signal) and return a tree. In the presence of allopolyploids, the method
would find that a network fits the data better than a tree.

To demonstrate the utility of MP for identifying autopolyploidy, we applied MP to
an example data set obtained from https://gwct.github.io/grampa/example1.html. This
data set includes 1000 gene treeswhose underlying species phylogeny is shown in figure 9.
We ranMP, setting the number of allowable reticulations to 1, andMPaccurately recovered
the underlying singly-labeled species tree even though hybridization was allowed, as
shown in figure 9.

Figure 9: An example data set involving autopolyploidy. Here, a WGD event took place at the
MRCA of ((x,y),z). Left: the species MUL-tree used to simulate the gene trees in the presence of
autopolyploidy. Right: the species tree topology inferred by MP, which is identical to the true
singly-labeled topology.

3.4 Running Times of the Methods
The average running times across all conditions and data sets in CPU minutes of ML,
ML_bl, MPL, MP and MPAllopp are 1503.60, 23.87, 256.91, 19.93, and 19.95, respectively.
Figure 10 gives a more detailed view of the running times as a function of the two
parameters that affect running time most, namely the number of gene trees in the input
and the effective population size.
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Figure 10: Running times of the fivemethods inCPUminutes. Results are shown for 10 replicate
data sets. Note: The scales of the y axes in the three panels differ significantly.

As the population size increases, the heterogeneity between the gene trees and the
phylogenetic network, as well as among the gene trees themselves, increases due to ILS.
This in turn results in increased running times of computing the gene tree probabilities.
This explains the differences in running times of ML across the three population sizes.
Furthermore, this also explains the sharper increase in ML’s running time as the number
of gene trees increases in the case of the larger population sizes than in the smaller ones.

When the branch lengths of the gene trees are used (ML_bl), the likelihood calculations
are cut significantly because the number of possible coalescent histories decreases sharply
[37].

As maximum pseudo-likelihood relies on frequencies of triplets of taxa [38], the run-
ning times are hardly impacted by the population sizes and are impacted linearly in terms
of the number of gene trees.

The running times of both parsimony methods are negligible as these methods do not
estimate branch lengths of the networks.

3.5 Analysis of a Biological Data Set
We ran InferNetwork_MP_Allopp on the biological data set in [22], which consists of
diploid, tetraploid and hexaploid representatives of the genus Leucanthemopsis (Com-
positae, Anthemideae). The data set consists of four nuclear single-copy genes and two
plastidic intergenic spacer regions. We downloaded the sequences from the GenBank
database using the accession numbers provided in [22], and aligned the sequences using
MAFFT version 7.453 [13]. For each locus, we ran BEAST version 1.10 [26] to infer a sam-
ple of trees, based on which we computed the maximum clade credibility tree, resulting
in five inferred gene trees, as one tree was inferred on the two intergenic spacer regions
(supplementary figs. S7–S11, Supplementary Material online).
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In our analysis, we set the maximum number of allowed reticulations to 0, 1, 2 and 3,
and with 0, 1 (the hexaploid L. alpina subsp. cuneata) or 2 (the hexaploid L. alpina subsp.
cuneata and the hexaploid L. longipectinata) specified hybrid species.

We obtained the optimal results of MPAllopp after 20 runs of search, as are shown in
Table 1. As the table shows, when the hybrid species were specified, an optimal network

Table 1: Results of InferNetwork_MP_Allopp on the
Leucanthemopsis data.

InferNetwork_MP_Allopp

#Specified
hybrid species

Maximum
#reticulations MPAllopp score

0 0 241
1 1 233
1 2 233
1 3 233
2 2 227
2 3 227

was obtained even when allowing extra hybridizations to be added. Based on these
results, the optimal network with a single hybridization is the one with the hexaploid L.
alpina subsp. cuneata specified as hybrid. The optimal network with two hybridizations
is the one with the hexaploid L. alpina subsp. cuneata and the hexaploid L. longipectinata
specified as hybrids.

The optimal network with two hybrids is shown in figure 11. This network shows that

Figure 11: Inference results using the MPAllopp criterion on the example data set of Leucan-
themopsis representatives in [22]. The optimal network with a MPAllopp score of 227 when the
maximumnumber of reticulationswas set to 2 and L. alpina subsp. cuneata (6x) and L. longipectinata
(6x) were specified to be the hybrid species.
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that an allotetraploidwas created throughallopolyploidzation, and this allotetraploid later
hybridized with a diploid species (Castrilanthemum debeauuxii), giving rise to a hexaploid
that is the ancestor of the two hexaploid species L. alpina subsp. cuneata (6x) and L.
longipectinata (6x).

The tetraploid L. alpina was found to be an autopolyploid. Even though the L. alpina
subsp. cuneata (6x) is one of the intraspecific taxa of the widespread L. alpina Heywood, it
is postulated to have a closer relationship with other Iberian species. This might be due
to the spatial locality, as the L. alpina subsp. cuneata (6x) lives in Northern Spain.

Finally, the network we inferred and reported in figure 11 above is different from
the network inferred and reported by [22]. Using the DeepCoalCount_AlloppNet we
calculated theMPAllopp score of the network of [22] using the gene trees we inferred. The
score is 269, which is much worse than the tree we inferred (which has a score of 241). It
is important to note here that [22] used different gene tree estimates. When we used the
gene tree estimates reported in the original study, we found that the MPAllopp score of
the network of [22] was 154, whereas the network we reported in figure 11 had a score of
134. To summarize, regardless of the gene trees used (which differ in the way they were
inferred), the network we report here is a better network in terms of the MPAllopp score.

4 Concluding Remarks
In this paper, we introduced a new maximum parsimony method for inferring phyloge-
netic networks from gene tree topologies while accounting for polyploidy and incomplete
lineage sorting simultaneously. The method employs a heuristic search for walking the
network space while evaluating the parsimony score on the MUL-tree representation of
the network.

A question that begs to be answered is: If MUL-trees can be treated as equivalent to
phylogenetic networks, then what is the gain from using the latter model? The lack of
a one-to-one mapping between MUL-trees and phylogenetic networks notwithstanding
[9, 43], “seeing" the polypoloid hybridization events in a MUL-tree is possible only for
simplistic scenarios: a small number of taxa, a small number of hybridization events,
a small number of gene extinctions, and, most importantly, the absence of confounding
factors such as ILS (figure 1). Indeed, the parsimony algorithms and methods of [8, 29]
do not account for ILS. Identifying the hybridization events computationally is the task
of turning the MUL-tree into a phylogenetic network after a MUL-tree is inferred from
the gene trees. Therefore, our method searches the phylogenetic network space directly
by applying sub-network transfer operations on networks, so that the inference result is a
network, rather than a MUL-tree.

As discussed in [2], statistical modeling of phylogenetic networks with polyploid
hybridization is very complex. We believe that devising stochastic models and inference
methods for restricted classes of polyploids, as in [11, 24], is most likely the way to make
progress in this area.

In the last several years, there has been work on combining the multispecies coalescent
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model with a birth-death model of gene duplication and loss [34, 25, 5, 14]. Most recently,
[6] introduced a model that unifies the multispecies network coalescent and a birth-
death model thus allowing for simultaneous modeling of incomplete lineage sorting,
gene duplication and loss, and diploid hybridization. These works could be relevant for
further advances in modeling polyploid hybridization in phylogenomic inference.

Statistical inference of phylogenetic networks is computationally much more demand-
ing than inference of trees, severely limiting the sizes of data sets that can be analyzed
with phylogenetic network methods. One approach to handling larger data sets is to
analyze smaller subsets of the data (subsets in terms of taxa). This approach could be
automated, as in [40] for example, but this requires developing methods for accurately es-
timating small networks with their evolutionary parameters and for merging these small
networks into a network on the full data set. We view this as an essential direction for
future research for phylogenetic network inference on large data sets involving polyploids
to become feasible.
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