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ABSTRACT 15 

 16 

BACKGROUND: Plasmodium falciparum resistance to chloroquine (CQ), the most 17 

widely used antimalarial drug, has historically posed a major threat to malaria control in 18 

Angola and throughout the world. Although Angola replaced CQ with artemisinin 19 

combination therapy (ACT) as a frontline treatment in 2006, malaria cases and deaths 20 

have recently been rising. CQ-resistance mutations may still be a contributing factor, 21 

given that (1) some also modulate resistance to ACT partner drugs and (2) ACT is not yet 22 

consistently implemented across Angola. It is important to continue monitoring all known 23 

resistance alleles in P. falciparum, but no studies have done so in Angola since 2012. 24 

 25 

METHODS: We sampled P. falciparum DNA from the blood of 50 hospital patients in 26 

Cabinda, Angola in 2018. Each infection was genotyped for 13 alleles in the genes crt, 27 

mdr1, dhps, dhfr, and kelch13, which collectively confer resistance to six common drugs. 28 

To analyze frequency trajectories over time, we also collated P. falciparum genotype data 29 

published from across Angola in the last two decades.  30 

 31 
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RESULTS: The two most important alleles for CQ resistance, crt 72-76CVIET and 32 

mdr1 86Y, have both declined in frequency from respective highs of 98% in 1999 and 33 

73% in 2003. However, the former remains at 71% frequency in this sample while the 34 

latter has dropped to just 7%.  Of seven possible alleles for sulfadoxine-pyrimethamine 35 

(SP) resistance in dhps and dhfr, the average total number per isolate increased from 2.9 36 

in 2004 to 4.4 in 2018. Finally, we detected no non-synonymous polymorphisms in 37 

kelch13, which is involved in artemisinin resistance in Southeast Asia. 38 

 39 

CONCLUSIONS:  Changes in drug policy in Angola since 2006 appear to have 40 

exerted strong selection on P. falciparum drug resistance alleles. Resistance to CQ is 41 

declining, but due to functional tradeoffs and novel selection at mdr1 loci, resistance to 42 

ACT partner drugs appears to be rising. More haplotype-based studies at mdr1 will be 43 

needed to understand the changing efficacy of multiple drugs. Finally, SP resistance has 44 

jumped rapidly since 2014, consistent with widespread use of intermittent SP treatment 45 

during pregnancy. These data can be used to support effective drug policy decisions in 46 

Angola.  47 

 48 

 49 

KEYWORDS 50 

Plasmodium falciparum, Angola, chloroquine, lumefantrine, drug resistance, selection  51 

 52 

 53 

BACKGROUND 54 

 55 

Antimalarial drugs have long been important tools for malaria control1. However, their 56 

efficacy is constantly threatened by the evolution of drug resistance in Plasmodium falciparum2. 57 

Multiple P. falciparum genes are involved in drug resistance, and selection on them varies by 58 

allele, genetic background, and drug environment3–5. Therefore, frequent monitoring of resistance 59 

alleles is crucial to predicting the spread of drug resistance. This is especially true in the West 60 

African country of Angola, where malaria cases and deaths are on the rise6. 61 
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The first anti-malarial drug to enjoy widespread use in Angola was chloroquine (CQ) in 62 

the 1950s7. CQ resistance was first confirmed in Angola in the 1980s, and by the early 2000s, 63 

CQ failure rates exceeded 80%8,9. As a result, CQ was discontinued in Angola in favor of 64 

artemisinin-based combination therapy (ACT) starting in 200610. To discourage the evolution of 65 

artemisinin resistance, artemisinin is used in combination with the longer-acting partner drugs 66 

lumefantrine (LMF) or amodiaquine (AQ), which is chemically related to CQ11. Artemisinin 67 

resistance has not yet appeared in Angola, although many resistant kelch13 mutations have 68 

emerged in Southeast Asia5,12. Nonetheless, occasional ACT treatment failures have been 69 

reported in Angola due to partner drug resistance10.  70 

Strong P. falciparum resistance to CQ and AQ is caused by crt K76T, a lysine to 71 

threonine substitution at codon 76 of the chloroquine resistance transporter (Table 1). A meta-72 

analysis found this allele to be 7.2-fold overrepresented in CQ treatment failures13, reflecting its 73 

selection by CQ and AQ in many clinical studies (Table 1). In Angola, K76T is found on the 74 

haplotype crt 72-76 CVIET, which is of Asian origin14. CQ resistance has also evolved 75 

independently through the haplotype crt 72-76 SVMNT in South America and Papua New 76 

Guinea15.  77 

The N86Y allele of mdr1, or multidrug resistance gene 1, also confers resistance to CQ 78 

and AQ13. Although this specific polymorphism dominated early studies of mdr1 and CQ 79 

resistance, the evolution of mdr1 is complicated by linkage between position 86 and other 80 

functional polymorphisms16. Precise mdr1 haplotypes vary among P. falciparum populations and 81 

drug settings, but in Angola alone, at least six alleles at three mdr1 positions have been proposed 82 

to modulate resistance to CQ, AQ, and the ACT partner drug lumefantrine (LMF) (Table 1; 83 

Table S1).  84 

The drug sulfadoxine-pyrimethamine (SP) has also been in widespread use in many 85 

African countries since the 1960s17. P. falciparum quickly began evolving partial resistance to 86 

SP, mediated by numerous substitutions in dhps and dhfr18. The risk of SP treatment failure 87 

increases with the number of mutant alleles present, with “quintuple mutants” at codons 437/540 88 

of dhps and codons 51/59/108 of dhfr of particular concern19–21. By the early 2000s, these alleles 89 

were common in Angola and 25-39% of P. falciparum infections failed to respond to SP 90 

treatment9. SP has since been discontinued as a frontline therapy, but it is still administered to 91 

pregnant women to reduce common complications from malaria22. Although this approach is  92 
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 93 
Table 1. Alleles of P. falciparum genes crt and mdr1 that are preferred in the presence of frontline 94 
antimalarial drugs. Although CQ has been discontinued in Angola, CQ-resistance loci are also involved 95 
in resistance to the ACT partner drugs AQ and LMF. Numbers in the header indicate amino acid position. 96 
For mdr1, incomplete haplotypes are shown as reported in the literature. *These alleles are unlikely to 97 
confer resistance directly, but they are less deleterious than the alternate allele in the presence of drug. 98 
†This allele is unlikely to confer resistance directly, but it is linked to other functional alleles. Additional 99 
details and references are available in Table S1.  100 
 101 
 102 

generally still useful in Africa23,24, its efficacy is waning as additional dhps mutations continue to 103 

emerge18,25–27. In one recent example from Tanzania, a novel mutation at dhps 581 was both 104 

selected by SP treatment and associated with worse pregnancy outcomes28. Because SP is still in 105 

widespread use, it is critical to continue monitoring its effectiveness along with variation in its 106 

target genes.    107 

CQ,AQ
(chloroquine, 
amodiaquine)

LMF
(lumefantrine)

drug crt mdr1

C V I E T
S V M N T

C V M N K*

Y - -
- - Y
Y Y† Y
Y F* D†

- F* -

86 184 124672 73 74 75 76

N - -
- - D
N - D
N F D
N F -
N Y† D
N Y† -
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In this work, 50 P. falciparum infections from Cabinda, Angola were genotyped for 13 108 

markers of drug resistance in the genes crt, mdr1, dhps, dhfr, and kelch13. Similar allele 109 

frequency data were also gathered from studies published on Angolan P. falciparum in the last 110 

two decades. For every locus but kelch13, we found temporal patterns of allele frequency change 111 

that are consistent with changes in drug policy. This work can inform future decisions on drug 112 

administration in Angola, particularly given rapid increases in SP resistance.  113 

 114 

 115 

RESULTS 116 

 117 

Genotyping success and MOI  118 

Each sample was successfully genotyped at an average of 12 out of 13 loci (Table S3). 119 

The kelch13 locus had the highest success rate (100%), while crt had the lowest success rate  120 

(78%). Although the crt primers have performed well on other Angolan samples29, in this cohort, 121 

even the nested protocol amplified products of multiple sizes (Fig S1).   122 

  Fifteen of 50 samples had sequence diversity (i.e., peaks of two bases) in at least one 123 

resistance marker site. Assuming that double peaks indicated the presence of two strains, the 124 

overall multiplicity of infection (MOI) was 1.3. 125 

 126 

Very little polymorphism in kelch13  127 

No kelch13 polymorphisms were observed at codons 578-580, which have been 128 

associated with ACT resistance in Southeast Asia and Uganda12. Moreover, with the exception of 129 

one synonymous variant in one sample, no polymorphism was observed across all 261 kelch13 130 

codons sequenced in this study. 131 

 132 

Markers of CQ resistance and LMF susceptibility are declining  133 

The CVIET haplotype at crt codons 72-76, which confers strong resistance to CQ, was 134 

detected at 71% frequency in this study (Fig 1). This represents a significant decline from a peak 135 

of 98% in 1999 (p = 0.03), although individual estimates have been noisy over time.  136 
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 137 
Figure 1. The frequency of CQ (chloroquine)-resistant alleles in crt has declined in Angola since the 138 
late 1990s. The solid circle indicates new data from this study. Historical data were obtained from 29,31–35. 139 
The diamond indicates the combined presence of two resistant haplotypes (CVIET and SVMNK) at crt 140 
72-76 in 29; all other points represent CVIET only. τ is the Kendall rank correlation between time of 141 
sampling and frequency of resistance. The dashed line shows the year that CQ was officially discontinued 142 
in Angola. 143 
 144 

 145 

 146 

 147 
Figure 2. mdr1 allele frequencies have changed steadily in Angola since the early 2000s. Solid points 148 
indicate new data from this study. Historical data were obtained from 29,32–37. Lines of best fit, variance 149 
explained (R2), and p-values from linear regression are shown for each allele.  150 
 151 
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The mdr1 allele 86Y, which also confers resistance to CQ, was detected at just 6.5% 153 

frequency in this study (Fig 2A). This marker has declined rapidly and steadily from ~80%  154 

frequency in 2003 (p = 0.007). Accordingly, the alternate allele 86N—which is both CQ-155 

sensitive and LMF-resistant (Table 1)—has increased in frequency to 93.5% (Fig 2B, p = 0.006). 156 

The linked polymorphism mdr1 184F, which is also preferred in the presence of LMF (Table 1), 157 

has been rising in frequency at a similar rate (Fig 2B, p = 0.087), although it remains less 158 

common than 86N. A single sample contained the additional CQ-resistance allele mdr1 1246Y 159 

(Table 1), which occurred on an 86Y/184Y background (Table S3). 160 

 161 

Markers of SP resistance markers have become more common 162 

One third (33%) of P. falciparum isolates sampled here were “quintuple mutants” for five 163 

dhfr and dhps alleles that confer strong SP resistance (Fig 3). Compared to samples from migrant 164 

workers collected around 201438, this represents a 2.8X increase of quintuple mutants in Angola 165 

in less than five years. Three “sextuple mutants” were also observed for the first time in Angola, 166 

including resistance alleles at dhps codons 436 (22% frequency) and 581 (8.2% frequency). The 167 

average number of combined dhfr/dhps resistance alleles per isolate has increased sharply over 168 

time, from 2.9/7 in 2004 to 4.4/7 in this study (t = -9.71, p < 2.2 x10-16).  169 

 170 

 171 

DISCUSSION 172 

 173 

The official withdrawal of CQ in Angola since 2006 has likely contributed to the decline 174 

of CQ-resistance alleles in crt (Fig 1) and mdr1 (Fig 2A). This result is similar to other African 175 

countries that have discontinued CQ, including Malawi, the Gambia, Kenya, Ethiopia, Tanzania, 176 

and Grand Comore39. In Malawi, clinical CQ sensitivity largely returned after the prevalence of 177 

crt K76T declined from 85% in 1992 to 13% in 200040. In Angola, however, the prevalence of 178 

the CVIET haplotype in Angola remains high at 71% (Fig 1). Although the exact fraction of 179 

resistant parasites may vary by locality (Fig 1), these results imply that CQ resistance via crt is 180 

still standard in Angola. In contrast, the rate of decline of mdr1 86Y—the second-most important 181 

CQ-resistance allele—is sharp enough to suggest its disappearance from Angola within a few 182 

years (Fig 2A). This stark difference between the evolution of crt and mdr1 may be best  183 
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 184 
Figure 3. SP-resistant alleles in dhfr and dhps have become more common in Angola since 185 
the early 2000s. Each point represents the total number of resistance allels in both genes from a 186 
single isolate. Solid points indicate new data from this study; historical data are from 32,38,41. 187 
Points are jittered horizontally and vertically for clarity. Resistance alleles were counted at dhfr 188 
codons 51, 59, and 108 and dhps codons 436, 437, 540, and 581. The dashed box surrounds a 189 
subset of 2014 isolates that carried 0-3 mutant alleles, but for which more precise data were not 190 
available. Variance explained (R2) and p-value are shown are from a linear regression excluding 191 
all 2014 data.  192 

 193 

 194 

explained by the differential effects of LMF, an ACT partner drug, on their CQ-sensitive alleles 195 

(Table 1). Specifically, wild-type crt K76 is only passively selected in the absence of CQ, while 196 

wild type mdr1 N86 directly confers LMF resistance (Table 1). LMF resistance is highest when 197 

mdr1 N86 co-occurs with mdr1 184F, which is rapidly spreading in Angola (Fig 2B), and mdr1 198 

1246D, which is nearly fixed (Table S3). Consequently, the rise of LMF resistance could soon 199 

challenge the success of ACT as currently implemented in Angola. 200 

The most rapid change observed in this study was the increase in total SP-resistance alleles 201 

per isolate (Fig 3). Similar increases over time have been reported in a number of other African 202 

201820142004 2009

5
4

3
2

1
0

C
um

ul
at

iv
e 

SP
-re

si
st

an
ce

al
le

le
s 

in
 d
hf
ra

nd
 d
hp
s

R2 = 0.29
p < 2.2 x 10-16

6



countries42–44, likely in response to the implementation of WHO recommendations for SP during 203 

pregnancy. It is now clear that more than five mutations in dhfr/dhps contribute to SP resistance: 204 

in our sample, seven such mutations were present, and three infections (7.0%) carried six of them. 205 

Because intermittent SP treatment currently recommended by the WHO does not eliminate 206 

parasitemia45, it is strongly expected to select for additional SP resistance. The benefits of SP in 207 

pregnancy have outweighed these costs in the past, but the present rate of resistance evolution 208 

implies that these benefits may be eroding27,28. Further research will be required to weigh the 209 

impact of novel resistance haplotypes against other factors impacting SP treatment efficacy. To 210 

help accomplish this goal, we emphasize the importance of reporting complete haplotype 211 

information for all combined dhfr/dhps alleles in each sampled infection.   212 

Finally, we detected no signs of artemisinin-resistant alleles in kelch13. This result is 213 

consistent with the high efficacy of ACT in Angola10, and overall, there is little evidence that 214 

artemisinin resistance alleles are spreading in Africa46. Monitoring of kelch13 in Africa is 215 

nonetheless important, as artemisinin is the only drug for which resistance alleles are not already 216 

widespread.  217 

 218 

 219 

CONCLUSIONS 220 

 221 

Changes in drug policy since 2006 have had clear impacts on the frequencies of several 222 

drug resistance alleles in Angola. Markers of SP resistance are rapidly becoming more common, 223 

which endangers the efficacy of intermittent treatment during pregnancy. Resistance to CQ is 224 

declining, but resistance to LMF appears to be rising. More frequent monitoring and drug policy 225 

adjustments will likely be necessary to regain control of P. falciparum malaria in Angola.  226 

 227 

 228 

METHODS 229 

 230 

Sample collection and ethics statement 231 

Patients reporting to the Hospital Regional de Cabinda in 2018/2019 with fever, chills, or 232 

other malaria symptoms were offered the option to be consented to this study. Sample collection 233 



followed protocols approved by Stanford University (IRB #39149) and the Medical Ethics 234 

Committee of the University 11th of November in Cabinda. Consented participants’ blood was 235 

drawn from a vein and screened under a microscope for P. falciparum parasites. If positive, 236 

whole blood was filtered through cellulose columns to remove leukocytes47. The filtered red 237 

blood cells were spotted on Whatman FTA cards (Sigma Aldrich), dried, and stored for at least 6 238 

months.  239 

 240 

DNA extraction and genotyping 241 

To elute DNA, saturated circles were cut out of the Whatman FTA cards and incubated in 242 

800 uL TE buffer (10 mM Tris-Cl, 1 mM EDTA, pH 8.0) with 20 uL Proteinase K (Invitrogen) 243 

for 2 hours at 65°C. DNA was extracted from the liquid supernatant using a phenol-chloroform 244 

protocol with phase-lock gel tubes48.  245 

 PCR amplification of the P. falciparum genes crt, mdr1, dhfr, dphs, and kelch13 was 246 

performed with previously published primers29,49,50. Cycling protocols were based on 247 

manufacturer recommendations for OneTaq Hot Start 2X Master Mix (NEB) and/or Phusion 248 

High-Fidelity PCR Master Mix with HF Buffer (NEB) (Table S2). Reactions were visualized in 249 

1% agarose gels, and if successful, cleaned with ExoSAP-IT (ThermoFisher) and Sanger 250 

sequenced (Elim Bio). Sanger chromatogram data were compared to PlasmoDB reference P. 251 

falciparum sequences using Benchling. Amino acid substitutions were identified in the following 252 

positions: mdr1 86, 184, and 1246; crt 72-76; dhfr 50, 51, 59, and 108; dhps 436, 437, 540, and 253 

681; and kelch13 578-580. 254 

 255 

MOI and allele frequency calculations 256 

For each sample, a double infection was inferred if the sequencing chromatogram showed 257 

equally sized, double peaks for any of the 13 analyzed loci. Multiplicity of infection (MOI) was 258 

calculated as the total number of infections divided by the total number of samples, as previously 259 

described51. Similarly, the frequency of each allele was determined based on the total number of 260 

infections, with double infections at any locus contributing two genotypes at every locus. 261 

Samples without missing data at dhfr or dhps were also assessed for the presence of up to seven 262 

SP-resistance alleles (dhfr-51I, dhfr-59R, dhfr-108G, dhps-436, dhps-437G, dhps-540E, dhps-263 

581)52,53. 264 



 265 

Collection of historical data 266 

Publications reporting allele frequencies for drug-resistance loci anywhere in Angola 267 

since 1995 were gathered from the Worldwide Antimalarial Resistance Network (WWARN) 268 

Molecular Surveyor tool (http://www.wwarn.org/molecularsurveyor/), facilitated by a recent 269 

review7. The original data published in these studies were used to calculated alleles frequencies 270 

as described above. For studies that spanned multiple years, the average year was used for time-271 

course analysis (below). Studies that did not provide linked data for dhfr and dhps (e.g., reported 272 

the two genes separately) could not be included. 273 

 274 

Statistical analysis 275 

To evaluate changes in mdr1 and dhfr/dhps alleles over time, linear models were fit to the 276 

frequency or count data using the lm function in R. To avoid a bias from incomplete data, all 277 

2014 samples were excluded from the dhfr/dhps timecourse analysis. For crt, the relationship 278 

between CVIET frequency and time was not linear; therefore, Kendall’s rank correlation was 279 

applied using the cor.test function in R.  280 

 281 
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