Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

AutoCoEv – a high-throughput in silico pipeline for predicting inter-protein co-evolution

View ORCID ProfilePetar B. Petrov, View ORCID ProfileLuqman O. Awoniyi, Vid Šuštar, M. Özge Balcı, View ORCID ProfilePieta K. Mattila
doi: https://doi.org/10.1101/2020.09.29.315374
Petar B. Petrov
1Institute of Biomedicine and MediCity Research Laboratories, University of Turku, Turku, Finland
2Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Petar B. Petrov
  • For correspondence: petar.petrov@utu.fi pieta.mattila@utu.fi
Luqman O. Awoniyi
1Institute of Biomedicine and MediCity Research Laboratories, University of Turku, Turku, Finland
2Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Luqman O. Awoniyi
Vid Šuštar
2Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M. Özge Balcı
1Institute of Biomedicine and MediCity Research Laboratories, University of Turku, Turku, Finland
2Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Pieta K. Mattila
1Institute of Biomedicine and MediCity Research Laboratories, University of Turku, Turku, Finland
2Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Pieta K. Mattila
  • For correspondence: petar.petrov@utu.fi pieta.mattila@utu.fi
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Data/Code
  • Preview PDF
Loading
  • https://github.com/mattilalab/autocoev

Back to top
PreviousNext
Posted March 04, 2022.
Download PDF

Supplementary Material

Data/Code
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
AutoCoEv – a high-throughput in silico pipeline for predicting inter-protein co-evolution
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
AutoCoEv – a high-throughput in silico pipeline for predicting inter-protein co-evolution
Petar B. Petrov, Luqman O. Awoniyi, Vid Šuštar, M. Özge Balcı, Pieta K. Mattila
bioRxiv 2020.09.29.315374; doi: https://doi.org/10.1101/2020.09.29.315374
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
AutoCoEv – a high-throughput in silico pipeline for predicting inter-protein co-evolution
Petar B. Petrov, Luqman O. Awoniyi, Vid Šuštar, M. Özge Balcı, Pieta K. Mattila
bioRxiv 2020.09.29.315374; doi: https://doi.org/10.1101/2020.09.29.315374

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Bioinformatics
Subject Areas
All Articles
  • Animal Behavior and Cognition (4235)
  • Biochemistry (9140)
  • Bioengineering (6784)
  • Bioinformatics (24009)
  • Biophysics (12132)
  • Cancer Biology (9537)
  • Cell Biology (13782)
  • Clinical Trials (138)
  • Developmental Biology (7638)
  • Ecology (11707)
  • Epidemiology (2066)
  • Evolutionary Biology (15514)
  • Genetics (10648)
  • Genomics (14330)
  • Immunology (9484)
  • Microbiology (22850)
  • Molecular Biology (9096)
  • Neuroscience (49010)
  • Paleontology (355)
  • Pathology (1483)
  • Pharmacology and Toxicology (2570)
  • Physiology (3848)
  • Plant Biology (8332)
  • Scientific Communication and Education (1471)
  • Synthetic Biology (2296)
  • Systems Biology (6194)
  • Zoology (1301)