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Summary

The metabolic function of microbial communities has played a defining role in the evo-
lution and persistence of life on Earth, driving redox reactions that form the basis of
global biogeochemical cycles. Community metabolism emerges from a hierarchy of pro-
cesses including gene expression, ecological interactions, and environmental factors. In
wild communities, gene content is correlated with environmental context, but predict-
ing metabolic dynamics from genomic structure remains elusive. Here we show, for the
process of denitrification, that community metabolism is predictable from the genes each
member of the community possesses. Machine learning reveals a sparse and generaliz-
able mapping from gene content to metabolite dynamics across a genomically-diverse li-
brary of bacteria. A consumer-resource model correctly predicts community metabolism
from single-strain phenotypes. Our results demonstrate that the conserved impacts of
metabolic genes can predict community function, enabling the prediction of metabolite
dynamics from metagenomes, designing denitrifying communities, and discovering how
genome evolution impacts metabolism.
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Introduction

The emergent metabolism of microbial communities plays an essential role in sustaining life
on Earth, impacting global nutrient cycles (Falkowski et al., 2008; Canfield et al., 2010; Stein
and Klotz, 2016), wastewater treatment (Lu et al., 2014) and human health (Subramanian et al.,
2014). An elusive challenge in microbial ecology is understanding how emergent community
metabolism is determined by the taxonomic and genomic structure of a community (Widder
et al., 2016; Louca, Polz, et al., 2018). Addressing this challenge requires mapping the geno-
types of each community member to metabolic phenotypes, and then deciphering how complex
interactions between distinct populations, which depend on extracellular metabolites (Lilja and
Johnson, 2016), abiotic factors (Ward et al., 2006), cooperation (Cordero et al., 2012), and
higher-order effects (Sanchez-Gorostiaga et al., 2019; Mickalide and Kuehn, 2019), contribute
to the collective. Solving this structure-function problem is critical for functionally interpreting
community gene content (Anantharaman et al., 2016), designing synthetic communities (Shou
et al., 2007), and elucidating the evolutionary principles of community metabolism (Molina and
Nimwegen, 2009; Sela et al., 2019).
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Recent studies hint that gene content may be predictive of emergent metabolic function at
the community level. Sequencing studies of environmental and host-associated communities
show that, while abundances of individual taxa can be highly variable (Louca, Polz, et al.,
2018), the genes or pathways a community possesses are stable across communities in similar
environments (Louca, Polz, et al., 2018; Huttenhower et al., 2012). This suggests that gene con-
tent is a conserved feature of natural communities (Burke et al., 2011). Additional studies have
extended this insight by demonstrating that the functional gene content of a community corre-
lates with local metabolite concentrations (Jones and Hallin, 2010; Fierer et al., 2012; Louca,
Parfrey, et al., 2016). However, a major limitation of sequencing studies of natural commu-
nities is that we cannot easily disentangle genomic and environmental impacts on community
structure and function. For example, the observed correlation between local metabolite concen-
trations and gene content in the global ocean microbiome (Louca, Parfrey, et al., 2016), may
arise because community gene content determines metabolite fluxes, or alternatively because
exogenously controlled metabolite fluxes determine community metagenomic structure.

Therefore, the key to unambiguously mapping gene content to metabolite dynamics is labo-
ratory experiments with genomically diverse communities where the environmental context can
be controlled. To attempt this, several studies have taken an enrichment culture approach where
communities from the wild are grown in simple nutrient conditions in the laboratory (Datta
et al., 2016; Goldford et al., 2018). These experiments have revealed conserved metabolic
traits in members of the assembled communities, such as the ability to degrade chitin in the
primary colonizers of chitin particles (Datta et al., 2016), or family-level conservation of traits
governing glucose utilization and subsequent cross-feeding (Goldford et al., 2018). However,
these studies have not successfully mapped the gene content of assembled communities to their
metabolic function, in large part because the enrichment process in simple nutrient conditions
dramatically reduces the diversity of the wild community (Jiao et al., 2016). A loss of diver-
sity means that much of the variation in functional gene content is lost during enrichment, and
with it variation in community function (Jiao et al., 2016; Conthe et al., 2018; Goldford et al.,
2018). So while enrichment experiments permit precise control over the environment and re-
veal conserved features of assembled communities, they reduce variation in genomic structure
and metabolic function of the assembled communities, making it challenging to determine how
variation in structure impacts function.

Here we address the challenge of mapping gene content to metabolite dynamics by quanti-
fying the flux of metabolites in an ensemble of genomically-diverse communities composed of
non-model organisms. We used bacterial denitrification, an essential metabolic process in the
global nitrogen cycle, as a model metabolic function that is performed by diverse and culturable
bacterial taxa (Lycus et al., 2017). We isolated an ensemble of denitrifiers and measured the
dynamics of metabolite consumption and production for each isolate under controlled condi-
tions. We then parameterized metabolite dynamics using a simple consumer-resource model.
The genomic diversity of the ensemble of isolates enabled a statistical learning approach to
mapping gene content to consumer-resource model parameters, which resulted in a sparse and
generalizable mapping of gene presence and absence to metabolic phenotypes. Finally, the
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consumer-resource model captured interactions between strains mediated by resource competi-
tion, yielding predictions for community-level metabolite dynamics, which we verified experi-
mentally.

Results

Denitrification as a model metabolic process

We used denitrification as a model metabolic process (Fig. 1A) because it is performed by
diverse bacterial taxa, it is well-characterized at the molecular level, it is a collective process,
and the relevant metabolites are readily quantifiable (Zumft, 1997). Because denitrifiers are
easily isolated and cultured (Lycus et al., 2017), we can capture substantial genomic diversity
in an ensemble of natural isolates.

Denitrification is a form of anaerobic respiration whereby microbes use oxidized nitrogen
compounds as electron acceptors, driving a cascade of four successive reduction reactions, NO3
— NO; — NO — N3O — Ny (Zumft, 1997). As a biogeochemical process, denitrification is
essential to nitrogen cycling at a global scale through activity in soils, freshwater systems, and
marine environments (Seitzinger et al., 2006), and impacts human health through activity in
wastewater treatment plants (Lu et al., 2014) and in the human gut (Irrazabal et al., 2014).
The process is performed by taxonomically-diverse bacteria (Graf et al., 2014) that are typi-
cally facultative anaerobes. The denitrification pathway is known to be modular, with some
strains performing all four steps in the cascade, and others performing one or a nearly arbitrary
subset of reduction reactions (Lycus et al., 2017). Denitrification in nature is therefore a collec-
tive process, where a given strain can produce electron acceptors that can be utilized by other
strains (Lilja and Johnson, 2016).

We focused experimentally on the first two steps of denitrification: the conversion of ni-
trate (NOj ) to nitrite (NO; ) and subsequently nitric oxide (NO) (Fig. 1A). Nitrate and nitrite
are soluble, enabling high throughput measurements of metabolite dynamics. In order to ob-
tain a genomically-diverse ensemble of non-model organisms, we isolated 61 bacterial strains
spanning a-, 3-, and ~y-proteobacteria from local soils using established techniques (Methods).
Each strain was obtained in axenic culture and was characterized as performing one or both of
the first two steps of denitrification in a chemically-defined, electron acceptor-limited medium
containing a single non-fermentable carbon source (succinate). Each of these strains was there-
fore classified into one of three possible phenotypes (Fig. 1A): (1) Nar/Nir strains that perform
both nitrate and nitrite reduction (NO; — NO, — NO), (2) Nar strains that perform only ni-
trate reduction (NO3 — NOj ), and (3) Nir strains that perform only nitrite reduction (NO; —
NO). In addition to these 61 isolates, our strain library also included the model Nar/Nir strain
Paracoccus denitrificans (ATCC 19367).


https://doi.org/10.1101/2020.09.29.315713
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.29.315713; this version posted January 2, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A Ta 07

A

o

E Paracoccus denitrificans ATCC 19367

- - Paracoccus sp. PARO1
NOj

" ) > Rhizobium sp. RHZ01
Nar/Nir l

Rhizobium sp. RHZ02
Ensifer sp. ENSO1
, =
—_— NO,
2
e Nar

Ensifer sp. ENS02
™ _/ l
—_—

Ensifer sp. ENS03
N7 Nir NO

Ensifer sp. ENS04
Ensifer sp. ENS05
community

metabolism

Ensifer sp. ENS06

Ensifer sp. ENSO7

Ensifer sp. ENS08

Ensifer sp. ENS09

Ensifer sp. ENS10

Ensifer sp. ENS11

Allorhizobium sp. ARZ01

Agrobacterium sp. AGBO1

Burkholderia sp. BKHO1

Achromobacter sp. ACMO1

Achromobacter sp. ACM02

Achromobacter sp. ACMO03

Achromobacter sp. ACM04

Delftia sp. DLFO1
Comamonas sp. CMMO01

Comamonas sp. CMM02
Acidovorax sp. ACVO1

Acidovorax sp. ACV02

1 ‘ . Variovorax sp. VRVO1
[ Xanthomonas sp. XNMO1

Stenotrophomonas sp. STM01

0 Pseudoxanthomonas sp. PXM01
32 64 Pseudoxanthomonas sp. PXM02
Pseudoxanthomonas sp. PXM03
" Pseudoxanthomonas sp. PXM04

VRVO1 (Nar) PXMO03 (Nir) Pseudomonas sp. PDM01p
Pseudomonas sp. PDM02

Pseudomonas sp. PDM03
Pseudomonas sp. PDM04

a-proteobacteria

genotype phenotype

B ACMO04 (Nar/Nir)

218 éédata
‘. == model fit

I"-I
11

3-proteobacteria

| (mM)

], INO;
o

3

N
F4

N

NO
»
-*

Pseudomonas sp. PDM05

9 ' 1 ! Pseudomonas sp. PDM06
{ { Pseudomonas sp. PDM07

Pseudomonas sp. PDM08
Pseudomonas sp. PDM09

il

Pseudomonas sp. PDM10
Pseudomonas sp. PDM11
Pseudomonas sp. PDM12

Pseudomonas sp. PDM13 I

Pseudomonas sp. PDM14

0
0 32 64 0 32 64
time (h)

Pseudomonas sp. PDM15
A I Pseudomonas sp. PDM16

= Pseudomonas sp. PDM17
dt = | 7ATA KA T A + s KI I 1) €z Pseudomonas sp. PDM18
Pseudomonas sp. PDM19

d A A Pseudomonas sp. PDM20
=—rs T Pseudomonas sp. PDM21

df/ K A + A Pseudomonas sp. PDM22
Pseudomonas sp. PDM23

Pantoea sp. PNTO1
ﬂ — (TA A —7rr I ) T Pantoea sp. PNT02
Pantoea sp. PNT03
dt Ka+A Kr+1 —i0.1 Enterobacter sp. ENTO1 :

Raoultella sp. RLTO1

~-proteobacteria |

Figure 1: Quantifying nitrate and nitrite dynamics in an ensemble of denitrifiers to map genomic
structure to metabolic function. (A) A roadmap for relating genomic structure to community metabolic
function across a diverse library of bacteria. First, mapping the genotypes (circles) of individual strains
to their metabolic phenotypes (straight arrows) and then combining the metabolic activity of each strain
in a community to predict collective metabolite dynamics (NO3', NO, , right). (B) Example batch culture
metabolite dynamics for Nar/Nir (purple), Nar (blue), and Nir (red) isolates. Nitrate (NO3', blue points)
and nitrite (NO,, red points) dynamics are measured at logarithmically-spaced intervals (circles) via
sampling and colorimetric assay (see Methods). Abundances are only measured at the final time point.
Curves show fits to a consumer-resource model shown in panel C. (C). A consumer-resource model of
nitrate and nitrite reduction by each strain describes abundances (), nitrate concentration (A), and nitrite
concentration (I) in time. The model is parameterized by reduction rates r4 and r; and yields v4 and
vr1, for growth on nitrate and nitrite respectively. The affinity parameters (K,) were not well-constrained
by the data and were fixed for all strains in the library (see Supplemental Information). (D) Phylogenetic
tree and normalized consumer-resource parameters for 62 denitrifying strains (61 isolates and the model
denitrifier Paracoccus denitrificans). Phylogenetic tree constructed using the 16S rRNA gene, and scale
bar indicates the estimated number of substitutions per site. Darker colors indicate larger values of the
normalized parameters. Each isolate was assigned a unique identifier. Phenotypic parameters measured
across diverse isolates constitutes a dataset for relating genomic diversity to metabolite dynamics. See
also Figs. S1-S7.


https://doi.org/10.1101/2020.09.29.315713
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.29.315713; this version posted January 2, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Parameterizing metabolite dynamics

We first set out to quantify the metabolic phenotypes of each isolate in our diverse strain li-
brary. We focused our efforts on quantifying the dynamics of the relevant metabolites, nitrate
and nitrite. To accomplish this, strains were inoculated at low starting densities into 96-well
plates containing chemically-defined medium with either nitrate or nitrite provided as the sole
electron acceptor, and then incubated under anaerobic conditions. Small samples (10 uL) were
then taken at logarithmically-spaced time intervals over a period of 64 h and assayed for nitrate
and nitrite concentrations (Methods, Fig. S1 and S2). At the end of the time course, optical
density was assayed. The measurement resulted in a time series of nitrate and nitrite produc-
tion/consumption dynamics in batch culture (points, Fig. 1B).

To parameterize the metabolite dynamics of each strain within a common framework, we
utilized a consumer-resource model, which explicitly relates the growth of each strain to the
dynamics of metabolite production and consumption (Fig. 1C). For each strain in monoculture,
we parameterized the consumer-resource model using measured denitrification dynamics across
a range of initial cell densities and nitrate/nitrite concentrations (Supplemental Information,
Fig. S3 and S4). The model allowed us to quantitatively describe the phenotype of each strain
in the library using at most four parameters: r 4 and r;, which capture rates of nitrate and nitrite
reduction, and ~y4 and ~y;, which describe yields for nitrate and nitrite, respectively. Substrate
affinities (K,) were fixed to a small value since these parameters were not well constrained by
the data (Supplemental Information, Fig. S5). The models for Nar and Nir strains correspond to
setting r; = 0 or r4 = 0, respectively. Yields (v.) were inferred using endpoint optical density
measurements, and rates (r,) were inferred by fitting the observed nitrate and nitrite dynamics
to the consumer-resource model (Fig. 1C). Remarkably, with the exception of a small number
of strains that were excluded from the library (Supplemental Information, Fig. S6), a single set
of parameters quantitatively described metabolite dynamics for each strain across a range of
initial cell densities and nitrate/nitrite concentrations (Supplemental Information, Fig. S4).

Fitting our consumer-resource model to data for each strain yielded a quantitative descrip-
tion of the dynamic metabolic phenotype of each strain in the library (Fig. 1B and D). We
observed large variability between taxa, with coefficients of variation for both rates (r4, 1)
and yields (74, 77) around 60%. We also observed some patterns of phylogenetic conservation,
for example a-proteobacteria produced generally higher yields than - or y-proteobacteria, and
a clade of Pseudomonas sp. isolates showed consistently higher rates of nitrite reduction than
most other strains (Fig. 1D). Despite these patterns, the prevalence of each of the three phe-
notypes is not strongly dependent on phylogeny, with each phenotype present across the tree
(Fig. 1D). The latter observation is consistent with pervasive horizontal gene transfer of deni-
trifying enzymes (Heylen et al., 2006; Jones, Stres, et al., 2008). Finally, we did not observe a
trade-off between rates and yields (Fig. S7).
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Predicting metabolite dynamics from genomes

Mapping genomic structure to metabolic function in communities requires understanding the
phenotypic impacts of genomic variation at the level of individual genomes. The problem
translates into understanding how genomic variation across the strains in our library gives rise
to variation in the quantitative metabolic traits (Fig. 1D). One common approach to the prob-
lem of relating genomes to metabolite dynamics is constraint-based modeling. Constraint based
models infer or measure the set of all metabolic reactions performed by a given organism and
predict growth and metabolite fluxes assuming the metabolic network is in steady state and sub-
jected to biologically motivated constraints (Orth et al., 2010). Constraint-based methods have
found some success in predicting collective metabolism from genomes (Klitgord and Segre,
2011; Mori et al., 2016; Harcombe et al., 2014), but these methods require significant man-
ual refinement (Norsigian et al., 2020), complicating the prospect of making predictions from
the genomes of non-model organisms. As a result, successfully constructing constraint-based
models of denitrification for all strains in our library is a daunting task.

We took an alternative approach to the problem of mapping genomes to metabolite dynam-
ics. We asked whether whether the variation in metabolic phenotypes across strains in our
library can be quantitatively predicted simply from knowledge of the genes possessed by each
strain. Our conjecture was motivated by the observation that gene content at the community-
level correlates strongly with environmental variation in natural communities (Louca, Parfrey,
et al., 2016), and that the statistics of gene presence and absence capture significant functional
information (Schober et al., 2019). Therefore, we took a simple statistical learning approach
to predicting the rates and yields measured across our library of isolates (Fig. 1D) from ge-
nomic structure. Specifically, we predicted the consumer-resource model parameters from gene
presence and absence alone. We performed whole genome sequencing on all 62 strains in the
library. Then we assembled and annotated each genome (Methods), and determined the com-
plement of 17 denitrification-related genes possessed by each strain, exploiting the fact that the
molecular and genetic basis of denitrification is well-understood (Zumft, 1997). We identified
not only the reductases that perform the reduction of the oxidized nitrogen compounds, but also
the sensors/regulators (Rodionov et al., 2005) and transporters (Moir and Wood, 2001) known
to be involved in denitrification (Methods). The presence and absence of each gene (or set of
genes encoding proteins that form a complex) in each genome is presented in Fig. 2A. Patterns
of gene presence and absence agree well with known features of the denitrification pathway,
including the mutual exclusion of the two reductases performing nitrite reduction (Nir$S and
NirK) (Jones, Stres, et al., 2008; Jones and Hallin, 2010). Further, in almost all cases strains
possessing nitrate and/or nitrite reductase performed the associated reactions in culture (with
the only exception being the Nar strain Acidovorax sp. ACVO1, which possesses both nitrate
and nitrite reductase). This is in agreement with previous work demonstrating that bacterial
genomes lose nonfunctional genes due to streamlining (Lynch, 2006).

Next we showed that the presence and absence of denitrification genes in each strain was
sufficient to quantitatively predict metabolite dynamics in monoculture. Specifically, we con-
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Figure 2: A statistical mapping from gene presence and absence to metabolite dynamics of individ-
ual strains. (A) The presence and absence of genes in the denitrification pathway for the 62 denitrifying
strains in our library. Strain identifiers correspond to those given in Fig. 1D. The color of each circle cor-
responds to the known gene function as indicated in the legend below. (B) Observed consumer-resource
phenotypic parameters for each strain (e.g., nitrate reduction rate r 4, Fig. 1D) were linearly regressed
against gene presence and absence via L-regularized regression, resulting in regression coefficients f3;
for each gene j, an intercept (p, and a noise term ¢; for each observation i. Coefficient 3; captures
the impact of possessing gene j on the corresponding phenotypic parameter. Independent regressions
were performed for each phenotypic parameter. C, D, E, F show predicted values of r 4, va, 77, and
~r respectively plotted against measured values. The dashed line indicates perfect agreement between
observations and predictions. The in-sample coefficients of determination for these data (R%t) and the
out-of-sample coefficients of determination estimated via iterated cross-validation (R%V) are shown. V
indicates the number strains in each regression. Strains which do not perform a particular reaction were
omitted from the corresponding regression (e.g., Nir strains were excluded from the regression for 7 4).
G, H, I, J show estimates of 3; and 3y for r4, «v4, 7, and -7 respectively. Asterisks indicate signifi-
cance level for each 5 (*: p < 0.05, **: p < 1072, ***: p < 1073, ****: p < 10™%; see Supplemental
Information). See also Figs. S8-S14. 8
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structed a linear regression where the measured phenotypic parameters of our consumer-resource
model were predicted on the basis of gene presence and absence (Fig. 2B). The regression co-
efficients for each gene in the pathway quantify the impact of the presence of the gene on a
given phenotypic parameter. We used L;-regularized regression (least absolute shrinkage and
selection operator, LASSO) to avoid overfitting (Supplemental Information, Fig. S8 to S10),
performing independent regressions for each of the phenotypic parameters in our consumer-
resource model. LASSO yielded sparse regression models, revealing that presence and absence
of a small set of genes is highly predictive of the phenotypic parameters for all strains in our
library (Fig. 2C to J). The in-sample coefficients of determination (R?it) of our regressions
were between 0.50 and 0.76 depending on the phenotypic parameter. Crucially, our regression
approach generalized out-of-sample, as determined by iterated cross-validation (Supplemental
Information, Fig. S9), albeit with slightly lower predictive power (k2 between 0.26 to 0.54).
Since, in general, traits may exhibit phylogenetic correlation (Martiny et al., 2015), and our
library contains a few clades comprising very closely related strains (e.g., ENS01-08, PDM20-
23, Fig. 1D), we considered whether our regression utilized phylogenetic correlations in gene
presence and absence and denitrification phenotypic parameters to achieve predictive power.
We investigated this by collapsing clades containing strains with identical 16S rRNA sequences
down to a single randomly-selected representative, and performing regressions again on this
reduced set of strains. For these regressions we found that the predictive power and coefficients
were similar to those for the full dataset (Supplemental Information, Fig. S11), supporting the
claim that our regression is not simply detecting phylogenetic correlations between traits and
genotypes. Altogether these results demonstrate that, across a diverse set of natural isolates,
knowledge of the genes a denitrifying strain possesses is sufficient to accurately predict the
rates and biomass yields of that strain on nitrate and nitrite.

Our regression approach leveraged biological knowledge of the denitrification pathway to
predict metabolite dynamics, in effect presuming that denitrification gene content is the best
genomic feature for prediction. To investigate whether this assumption is correct, we asked
whether other genomic properties could better predict metabolite dynamics. First, we tested
the predictive capability of sets of randomly selected genes. We chose sets of 17 random genes
that were not strongly correlated with any denitrification genes, but retained the same marginal
frequency distribution as denitrification genes in the population. We found that regressions
using these randomly-selected genes have, on average, much less predictive power than regres-
sions using the denitrification genes (Supplemental Information, Fig. S12). We note that this
result provided further evidence that regressions on denitrification gene presence and absence
are not simply detecting phylogenetic correlations, since random genes would be expected to
perform equally well on average if phenotypes were simply determined by phylogeny. Second,
we tested whether 16S rRNA copy number or genome size improves the predictive ability of
denitrification gene presence and absence regressions. 16S rRNA copy number has been ob-
served to correlate positively with maximal growth rate in nutrient rich conditions (Roller et al.,
2016; Li et al., 2019), and smaller genomes are associated with faster growth (Lynch, 2006; Li
et al., 2019). We found that including these predictors in our regressions does not meaningfully
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improve their predictive ability or alter the inferred coefficients (Supplemental Information,
Fig. S13 and S14). In summary, our statistical analyses provided evidence that denitrification
gene presence and absence outperforms arbitrary sets of genes and coarse genomic features.

Why does gene presence and absence alone hold such strong predictive power for metabo-
lite dynamics, and why did the regression select specific genes in the denitrification pathway as
informative predictors? We propose that by quantifying metabolic phenotypes in terms of rates
and yields, we captured the salient features of the metabolic process for each strain, which al-
lowed the regression to succeed by exploiting the conserved impacts of specific genes on these
metabolic phenotypes. To investigate this claim we examined the regression coefficients in the
context of what is known about the denitrification pathway. We found that in many cases the
sign and magnitude of the regression coefficients agree qualitatively with known properties of
the associated enzymes. Previous comparisons between membrane-bound and periplasmic ni-
trate reductases (encoded by narG and napA, respectively) in multiple bacterial species showed
that the membrane-bound enzyme exhibits higher nitrate reduction activity in vitro than the
periplasmic enzyme (Table S1). This accords with the large positive coefficient for narG we
observed in the nitrate reduction rate regression (Fig. 2G). Similarly, in the nitrite reduction
rate regression we observed a large positive coefficient for the gene encoding the copper-based
nitrite reductase (nirK) (Fig. 2I), which in previous studies showed markedly higher activity
in vitro (Table S2) and in vivo (Gloekner et al., 1993) compared to the alternate nitrite reduc-
tase enzyme encoded by nirS. Further, our regression coefficients showed larger contributions
of narG versus napA to yield on nitrate (Fig. 2H), and similarly cror versus gnor to yield on
nitrite (Fig. 2J). Both these observations are consistent with the fact that the genes encoded by
narG and cnor contribute more to the proton motive force (and therefore to ATP generation)
than their alternatives, napA and gnor, respectively (Ferguson and Richardson, 2004). Finally,
the transporter encoded by the gene narKI1K?2 is a fusion of the nitrate/H" symporter NarK1
and the nitrate/nitrite antiporter NarK2, the latter of which is crucial for exchanging nitrate and
nitrite between the cytoplasm and periplasm during denitrification when the membrane-bound
nitrate reductase is utilized. In Paracoccus denitrificans, this fusion has been shown to have
substantially higher affinity for nitrate than NarK?2 alone, resulting in higher growth rates under
denitrifying conditions (Goddard et al., 2008). Remarkably this agrees with what we found in
the nitrate and nitrite reduction rate regressions, where we observed large positive contributions
of narK1K2 (Fig. 2G and I). Taken together, these observations suggest that the regressions ex-
ploited mechanistic aspects of the denitrification process to predict metabolite dynamics. How-
ever, for many coefficients in our regression, notably regulators, there is no clear interpretation,
and definitive proof that these coefficients are mechanistically informative will require genetic
manipulation of diverse bacteria.

Our statistical approach took two important steps towards mapping genomic structure to
metabolic dynamics at the single-strain level. First, by making quantitative measurements in
the laboratory, we removed the confounding environmental factors present in sequencing and
metabolomic studies of natural communities to reveal that gene content has a conserved im-
pact on dynamical metabolic phenotypes. Second, our results suggest that a statistical approach
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could be used to discover the key genomic features of pathways that determine other metabolic
phenotypes, complementing direct genetic interrogation of model organisms (Nichols et al.,
2011). Further, our predictions of metabolic phenotypes from genomes apply across a range of
initial conditions and generalized well out-of-sample, suggesting that this approach can predict
metabolite dynamics in a variety of settings for strains where only genome sequence data are
available. These insights were made possible by parameterizing metabolic phenotypes across a
genomically-diverse strain library of non-model organisms, thereby exploiting genomic varia-
tion to learn the mapping from genotype to metabolic phenotypes.

Predicting metabolite dynamics in communities

Predicting community metabolite dynamics from genomic structure next requires mapping
single-strain phenotypes to collective behavior. The consumer-resource modeling formalism
(Fig. 1C) we used to parameterize metabolite dynamics for each strain allows us to make quan-
titative predictions for metabolite dynamics in communities of multiple taxa. Since phenotypic
parameters were sparsely-encoded by the genomes of each strain (Fig. 2), predicting community
metabolite dynamics from the consumer-resource model would provide a direct mapping from
gene content to community metabolism. Therefore, we extended to our modeling formalism to
N-strain communities by adding the rate contributions of each strain to the dynamics of nitrate
and nitrite (Fig. 3B, Supplemental Information). This model assumes that strains interact only
via cross-feeding and resource-competition for electron acceptors. This “additive” model also
assumes that the rates and yields on nitrate and nitrite for strains in pair-culture are the same as
in monoculture. As a result, the model provides predictions for N-strain community metabolite
dynamics without any free parameters.

We first tested the ability of this approach to predict metabolite dynamics in all pair com-
binations of 12 strains from our library (4 Nar/Nir, 4 Nar, 4 Nir). We assembled communities
in 96-well plates containing chemically-defined medium and sampled over a 64 h period to
measure concentrations of nitrate and nitrite (Methods). Remarkably, we found that the addi-
tive model accurately predicted the metabolic dynamics for most 2-strain communities (Fig. 3,
Fig. S15 and S16). Specifically, the third column of Fig. 3A shows the zero-free-parameter
predictions (lines) of denitrification dynamics in 2-strain communities, which agreed well with
measurements (points). The 2-strain community predictions include non-trivial dynamics such
as two Nar strains exhibiting faster nitrate reduction as a collective or a transient increase nitrite
in a Nar/Nir + Nar community.

We quantified the quality of the additive model predictions by computing a normalized
root-mean-square error (NRMSE, see caption of Fig. 3). NRMSE in the range 0-2 indicates
predictions in 2-strain communities that are similar in quality to the fits of the constituent mono-
cultures. We found that most 2-strain communities have low NRMSE, indicating that our model
successfully predicted metabolite dynamics in most cases, given only knowledge of the mono-
culture rates and yields for each strain. The success or failure of the model depended on the
phenotypes of the strains present. The model successfully predicted 2-strain metabolite dynam-
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Figure 3: Metabolite dynamics in two-strain communities are predictable from monocultures.
(A) Examples of pair-culture dynamics for all combinations of the three denitrification phenotypes
(Nar/Nir, purple; Nar, blue; Nir; red). The first two columns show metabolite dynamics for each of
two strains cultured individually. The third column shows the metabolite dynamics for pair-cultures
of the two strains (points) with zero free parameter predictions using the consumer-resource model
(curves, see panel B for model). Errors in pair-culture predictions are shown in each panel in the third
column as quantified by the normalized root-mean-square error (NRMSE). We define NRMSE;; =

RMSE;;/ \/ (RMSE? + RM SE]2) /2, where RMSE;; is the root-mean-square error between model

predictions and observed metabolite concentrations of strains ¢ and j in pair-culture, and RMSE,; and
RMSE; are the RMSES of strains 7 and j in monoculture. NRMSE values between 0 and 2 indicate pre-
dictions of pair-culture metabolite dynamics of similar quality to the corresponding monocultures. (B)
An N-strain consumer-resource model (based on Fig. 1C) was used to predict pair-culture metabolite
dynamics (N = 2). A and [ are nitrate and nitrite concentrations respectively. x; denotes abundance
of strain ¢ with parameters rf4, fyil, r} and ’yjl, which were determined from monoculture experiments
(Fig. 1D). The K, values are fixed for all strains. (C) A matrix of NRMSE values quantifying the qual-
ity of model predictions for all pairs of 12 strains: 4 Nar/Nir, 4 Nar, 4 Nir as indicated left and below.
Strain names correspond to Figs. 1D and 2A. Only Nar + Nir communities are poorly predicted by the
consumer-resource model (permutation test, p < 1075, Fig. S16, Figure 4). See also Figs. S15 and S16.
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ics for most types of communities (e.g., Nar/Nir + Nar or Nar + Nar) but failed only in the case
where Nar strains were cultured with Nir strains (Fig. 3A and C, Fig. S17). We speculate that
the failure of the model to predict metabolite dynamics in Nar + Nir communities was caused by
excretion of nitric oxide by the Nir strain, which can be cytotoxic to strains that do not express
nitric oxide reductase (Braun and Zumft, 1991), and may consequently slow Nar strain growth.
Although both Nar/Nir and Nir strains are capable of generating extracellular nitric oxide, Nir
isolates have been observed in a previous study to transiently generate nitric oxide at higher
concentrations (Lycus et al., 2017), possibly explaining why the 2-strain additive model fails
only to predict Nar + Nir communities.

We next asked whether information from monocultures also successfully predicted metabo-
lite dynamics in 3-strain communities. We applied the additive model to predicting the nitrate
and nitrite dynamics in 81 random combinations of 3 strains from the 12-strain subset. In com-
munities that did not contain a Nar + Nir pair (e.g., Fig. 4A), we found that prediction accuracy
was high (grey points, Fig. 4B, Fig. S18). This again indicated that in most combinations of phe-
notypes, community dynamics were predictable from consumer-resource parameters for each
strain in the community. However, in communities that contained a Nar + Nir pair, predictions
were relatively poor (yellow points, Fig. 4B, Fig. S18), suggesting that interactions between
Nar and Nir phenotypes that were not captured in the additive model were again driving low
prediction accuracy.

To address the impact of interactions between Nar and Nir strains not accounted for by
our additive model in 3-strain communities, we took a coarse-graining approach. We asked
whether the collective metabolism of Nar + Nir pairs could be treated as modules within 3-strain
communities. To accomplish this we re-fitted nitrate and nitrite reduction rates (74, ;) to pair-
culture data for each Nar + Nir pair, leaving yields fixed (Fig. 4C, Supplemental Information,
Fig. S19). This resulted in effective nitrate and nitrite reduction rates (74, 7;) for each Nar +
Nir pair. We then used these rates to make predictions for 3-strain communities that included
a Nar + Nir pair (e.g., Fig. 4D). For 3-strain communities that included multiple Nar + Nir
pairs (e.g., Nar + Nar + Nir), we developed simple rules for determining the effective rates
from the rates for each Nar + Nir pair present (Supplemental Information). We found that the
metabolite dynamics in 3-strain communities containing Nar + Nir pairs were quantitatively
predicted by this coarse-graining approach (yellow points, Fig. 4B). We conclude that treating
Nar + Nir pairs as effective modules within larger communities recovers the predictive power
of the additive consumer-resource model.

Discussion

Quantifying the metabolic phenotypes of a diverse library of natural isolates using a consumer-
resource model allowed us to take a statistical approach to connecting genotypes to dynamical
metabolic phenotypes. The outcome was a sparse mapping from gene content to single-strain
metabolite dynamics that appears to exploit known mechanistic features of genes in the denitrifi-
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Figure 4: Metabolite dynamics in 3-strain communities are predictable. The consumer-resource
model provides predictions for metabolite dynamics in communities of three strains, and these predic-
tions were verified experimentally. (A) Metabolite dynamics for an example 3-strain (Nar/Nir + Nar/Nir
+ Nar) community. The first three panels show metabolite dynamics for each strain cultured individu-
ally, and the fourth panel shows the metabolite dynamics of the 3-strain community. Curves show the
prediction of the consumer-resource model (Fig. 3B). (B) NRMSE (see Fig. 3 caption) values quantify-
ing quality of consumer-resource model predictions for 3-strain communities. Orange and (gray) points
denote 3-strain communities that do (do not) contain a Nar + Nir pair. Nar + Nir pair-culture dynam-
ics are poorly predicted by the model (Fig. 3C) and result in high NRMSE in 3-strain communities
containing Nar + Nir pairs (compare orange and gray points). Top and bottom scatter plots compare
predictions from a consumer-resource model using only monoculture data to a coarse-graining approach
that describes Nar + Nir pairs as modules within the 3-strain community (described in C-D). The coarse-
graining approach improves the 3-strain community predictions (¢-test, **** denotes p = 7 x 107%). (C)
Metabolite dynamics for an example Nar + Nir pair, where curves in the left panel show the prediction
of the consumer-resource model using only parameters fit to monocultures, and curves in the right panel
show the results of refitting the reduction rates (74, r7) to Nar + Nir pair-culture data but leaving yields
(74, 7v1) fixed to monoculture values. (D) Metabolite dynamics for a 3-strain community containing a
Nar/Nir strain and the Nar + Nir pair shown in panel C. Curves in the left panel show the prediction of
the consumer-resource model using parameters inferred from monoculture experiments for each strain,
and curves in the right panel show the prediction when the Nar + Nir pair is treated as a module with
rate parameters refit from pair-culture data (right panel in C). Note the reduction in NRMSE due to the
coarse-graining of the Nar + Nir pair. Panels in beige denote zero free parameter predictions. See also
Figs. S17-S19.
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cation pathway to achieve predictive power. The resource-based modeling formalism permitted
quantitative predictions of community-level metabolite dynamics. As a result, the approach
yielded a direct mapping from genomic structure to metabolite dynamics at the community-
level.

Our most surprising result is the extent to which gene presence and absence predicts metabo-
lite dynamics at the strain and community-level. One might expect that the details of genomic
or community context are necessary for predicting metabolite dynamics from genomes. Our
results contradict this intuition, instead suggesting that, to a large extent, genes have a con-
served impact on phenotypes irrespective of their genomic context. The result suggests that the
observed conservation of gene content in wild communities has interpretable functional impli-
cations.

At the strain level, the apparent mechanistic relevance of the regression coefficients in this
study suggests that a statistical approach, coupled with large-scale culturing and phenotyping
on libraries of isolates (Connon and Giovannoni, 2002; Kehe et al., 2019), should be exploited
to discover the salient features of genomes that determine diverse metabolic functions. Higher
throughput measurements will enable a more detailed interrogation of genomic features, allow-
ing us to extend our statistical approach to gene sequences and synteny. These insights might
then be used to design genomes and communities with predefined metabolic capabilities by the
addition or deletion of specific genes (Shaw et al., 2008). Data from phenotyping of diverse
libraries of isolates could be combined with our approach to streamline the process of building
constraint-based models for novel strains directly from genomic data (Norsigian et al., 2020)
by allowing phenotypes to be predicted statistically rather than measured experimentally.

At the community level our approach could eventually enable the prediction of metabolite
dynamics in complex communities where functional gene content has been assigned to indi-
vidual genomes (Sieber et al., 2018). Soils and host-associated communities typically contain
hundreds of bacterial taxa, so it may be necessary to test the predictive power of the consumer-
resource formalism in communities of many taxa. However, micron-scale spatial structure in
soils suggests that denitrification may occur locally, in communities of just a few taxa (Lensi
et al., 1995), meaning that the genomic rules of denitrification discovered here are potentially
relevant to important environmental contexts.

It is striking that communities containing both Nar and Nir phenotypes departed from the
expectation of an additive model (Figure 3), and instead behaved as a single metabolic unit
(Figure 4). We note that communities of Nar and Nir strains differ from a community contain-
ing Nar/Nir strains since they divide the denitrification cascade across two genomes. Consistent
with our results (Figure 3A) and previous studies (Lilja and Johnson, 2016), segregating nitrate
and nitrite reduction across genomes reduces the transient accumulation of nitrite during den-
itrification. Reducing transient nitrite accumulation is advantageous in low pH environments
where nitrite is toxic (Lilja and Johnson, 2016). Our finding points to the possibility that Nar
and Nir strains may have co-evolved to regulate nitrite accumulation, and this may reflect a
community-level adaptation to acidic environments. Understanding the genomic control of the
accumulation of intermediates during denitrification is essential for minimizing harmful nitrous
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oxide emissions (Cavigelli and Robertson, 2000) and controlling bacterial nitric oxide produc-
tion in mammalian hosts (Hyde et al., 2014).

Understanding the evolutionary origins of the mapping from genomic structure to metabolic
function is a key challenge going forward. Our study lends support to the idea that different
genes in the denitrification pathway are adapted to different ecological niches (Jones and Hallin,
2010; Graf et al., 2014). In this light, our results potentially provide a route to understanding
gene gain and loss statistics (Sela et al., 2019), or recent gene flow events (Arevalo et al.,
2019), in terms of variation in metabolic phenotypes and their associated ecological niches.
Uncovering the ecological niches and evolutionary forces that have shaped the sparse mapping
from genomic structure to metabolic function could enable principled strategies for the design,
control, and directed evolution of bacterial communities.
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