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ABSTRACT13

Venom is a mixture of substances produced by a venomous organism aiming at preying, defending,
or intraspecific competing resulting in certain unwanted conditions for the target organism. Venom
sequences are a highly divergent class of proteins making their machine learning-based and
homology-based identification challenging. Prominent applications in drug discovery and healthcare,
while having scarcity of annotations in the protein databases, made automatic identification of venom an
important protein informatics task. Most of the existing machine learning approaches rely on engineered
features, where the predictive model is trained on top of those manually designed features. Recently,
transfer learning and representation learning resulted in significant advancements in many machine
learning problem settings by automatically learning the essential features. This paper proposes an
approach, called ToxVec, for automatic representation learning of protein sequences for the task of
venom identification. We show that pre-trained language model-based representation outperforms the
existing approaches in terms of the F1 score of both positive and negative classes achieving a macro-F1
of 0.89. We also show that an ensemble classifier trained over multiple training sets constructed from
multiple down-samplings of the negative class instances can substantially improve a macro-F1 score to
0.93, which is 7 percent higher than the state-of-the-art performance.
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Availability: The ToxVec application is available to use at https://github.com/meahmadi/ToxVec
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1 INTRODUCTION31

Venom is a mixture of enzymatic or non-enzymatic substances produced by the body of a venomous32

organism aiming at preying, defending, or intraspecific competing (Casewell et al., 2013) resulting33

in immobilizing or paralyzing the target organism. Venom has evolved independently multiple times34

throughout the tree of life, making the evolutionary study of venom a significant interest (Jenner et al.,35

2019). Being rich in having ion channels, G-protein-coupled receptors, and transporters have made36

venom an excellent source for therapeutics and drug discoveries (Lewis and Garcia, 2003; Prashanth et al.,37

2017). Despite prominent applications of venom in drug discovery and healthcare, only a small portion of38

proteins are annotated in large protein databases (UniProt/SwissProt) to be venom (Jungo et al., 2012)39

(Currently, 6,736 out of 563,082 protein sequences in Swiss-Prot). This gap motivates computational40

methods that can automatically and accurately identify venom peptides in the large protein datasets. The41

prediction of venoms versus non-venom sequences is not a trivial task protein classification task, where42

the use of BLAST-based approaches is challenging: venoms are often (i) evolved from non-toxic proteins43
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(Hargreaves et al., 2014), (ii) and then have highly diverged (Linial et al., 2017). Several studies have44

proposed computational and machine learning-based methods for predicting or analyzing toxin/venom45

peptides (Cole and Brewer, 2019; Dao et al., 2017; Gacesa et al., 2016; Naamati et al., 2009; Ojeda et al.,46

2018; Pan et al., 2020; Wong et al., 2013). In the following, we summarize some of the recent machine47

learning supervised methods proposed for venom identification with available software/working servers48

which we could compare with our proposed ToxVec.49

ClanTox (Naamati et al., 2009) is a machine learning-based classification of venom available as a50

web-server. In the ClanTox, each sequence is encoded into a vector of 545 global sequence features51

and the predictive model consisting of 10 boosted-stump classifiers is trained over the dataset of known52

venoms (Iba and Langley, 1992) scoring venoms on a scale of -1 to 1. ToxClassifier (Gacesa et al.,53

2016) is an ensemble predictor using nine Support Vector Machine (SVM) (Cortes and Vapnik, 1995),54

Gradient Boosted Machine (GBM)(Friedman, 2002) and Generalised Linear Model (GLM) (Nelder55

and Wedderburn, 1972) classifiers over different combinations of features including sequence length,56

frequency of amino acids, amino acid dimer frequency, Hidden Markov Models (HMM) of tox-bit motifs57

(Starcevic et al., 2015), homology-based features (against a positive venom database).Toxify (Cole and58

Brewer, 2019) is a deep learning-based venom predictor employing Recurrent Neural Networks (RNN)59

and, in particular, the Gated Recurrent Units (GRUs) variation of RNN (Cho et al., 2014) for sequence60

modeling and ultimately prediction. For sequence encoding, toxify uses five Atchley factors per amino61

acid in the protein (Atchley et al., 2005). Similarly, in this paper, we propose a deep-learning approach for62

supervised training of the venom predictor model. However, instead of using manually extracted features,63

we propose a transfer learning framework. Similar to ProtVec (Asgari and Mofrad, 2015) and ProtVecX64

(Asgari, 2019; Asgari et al., 2019a), we use a skip-gram network (Bojanowski et al., 2017; Mikolov et al.,65

2013) which is analogous to language modeling. Subsequently, the pretrained network is fine-tuned for66

the venom classification task.67

Recently, transfer learning resulted in significant advancements in many machine learning problem68

settings, particularly for inadequately annotated data (Bengio, 2012; Tan et al., 2018; Wolf et al., 2019).69

Transfer learning in machine learning refers to the use of the solution in a problem setting (source problem)70

with enough training samples/prior knowledge to solve a different problem (target problem) with less71

training samples/prior knowledge. Using a neural network trained relevant representations for a specific72

task for another task is also an instance of transfer learning through representation learning (Bengio, 2012;73

Tan et al., 2018). Combinations of being self-supervised and being general enough make neural language74

modeling an ideal candidate for transfer learning on the sequential data (Howard and Ruder, 2018).75

Afterward, the trained language modeling network can be fine-tuned for any particular task, even when76

only a limited number of annotations are available. Here we describe the use of Skip-gram (Bojanowski77

et al., 2017; Mikolov et al., 2013), one of the most successful architecture to perform transfer learning on78

natural language text for the task of venom prediction.79

This paper shows that fine-tuning of language model-based representation outperforms the state-of-80

the-art approaches in venom peptide classification. In addition, ensemble classifiers trained on resamples81

of negative samples (the major class) further improve the macro-F1 of both negative and positive classes.82

METHODS83

1.1 Datasets84

For the ease of benchmarking, we use the dataset created and proposed by Toxify (Cole and Brewer, 2019)85

containing training and test protein sequences:86

87

The Toxify training dataset contains (i) Positive examples: 6,133 venom protein sequences extracted88

from Swiss-Prot sequences annotated with annotation:(type: tissue specificity venom)), (i) Negative89

examples: 50,000 random protein sequences from Swiss-Prot satisfying the query NOT annotation:(type:90

tissue specificity venom), these sequences only include the sequences uploaded prior to June 2016 on91

Swiss-Prot.92

93

The Toxify test dataset contains 274 verified venom protein sequences (2016–2018, not included in the94

training) and 94 verified non-venom protein sequences from the same time interval of (2016–2018).95

2/9

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 1, 2020. ; https://doi.org/10.1101/2020.09.29.319046doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.29.319046


1.2 Skip-gram analogous to Language Modeling96

Language modeling aims to assign a probability P(w1,w2, . . . ,wN) to a given sequence of elements (words,97

phrases, or amino acids in proteins) w1,w2, . . . ,wN . Language modeling is a vital component in many98

language processing applications, particularly the applications containing language generation or the99

evaluation of text correctness, e.g., chat-bot or machine translation. Language modeling probability can100

be written as follows using the chain rule:101

P(w1,w2, . . . ,wN) = P(w1)×P(w2|w1)×P(w3|w1,w2)× . . .×P(wN |w1, . . . ,wN−1)

Requiring only raw data and being general enough has made language modeling a favorable task for102

transfer learning. Recently, transfer learning from the language modeling became a very popular method103

in natural language processing and bioinformatics and obtained state-of-the-art performance in many104

tasks (Asgari and Mofrad, 2015; Bengio, 2012; Howard and Ruder, 2018; Rao et al., 2019; Tan et al.,105

2018). A variety of language models are proposed in the literature. In this paper, we focus on Skip-gram106

neural network (depicted in Figure 1.1) whose objective is analogous to the objective of the language107

modeling task. However, in skip-gram the input and output are swapped and it predicts the surroundings108

(context) for a given textual unit. The objective of skip-gram is to maximize the following log-likelihood:109

M

∑
t=1

∑
c∈[t−N,t+N]

log p(wc | wt), (1)

where N is the surrounding window size around word wt , c is the context indices around index t, and M is110

the corpus size in terms of the number of available words and context pairs. This probability of observing111

a context word wc given wt is parameterized using word embedding:112

p(wc | wt ;θ) =
evc·vt

∑c′∈C evc′ ·vt
, (2)

where C denotes all existing contexts in the training data. However, iterating over all existing contexts113

is computationally expensive. This issue can be efficiently addressed by using negative sampling. In a114

negative sampling framework, we can rewrite Equation 1 as follows:115

T

∑
t=1

[
∑

c∈[t−N,t+N]

log
(

1+ e−s(wt , wc)
)
+ ∑

wr∈Nt,c

log
(

1+ es(wt , wr)
)]

, (3)

where Nt,c denotes a set of randomly selected negative examples sampled from the vocabulary116

collection as non-contexts of wt and s(wt , wc) = vt
> ·vc (parameterization with the word vector vt and the117

context vector vc) (Goldberg and Levy, 2014). The use of Skip-gram for protein sequences and transfer118

learning in protein informatics has been proposed by a number of recent works (Asgari et al., 2019a;119

Asgari and Mofrad, 2015; Wan and Zeng, 2016).120

1.3 Overview of Approach121

Here we describe our approach ToxVec in the use of language-model based representation for the classifi-122

cation of venom peptides. The ToxVec computational workflow has the following steps (as depicted in123

Figure 1):124

125

1. Unsupervised Training of the Language Model-based Embeddings: In this step (Figure 1.1), we126

train a protein k-mer representation proposed in (Asgari and Mofrad, 2015), ProtVec. For this study, we127

used a recent version of ProtVec where the training is expanded from Swiss-Prot (containing ≈ 500K128

sequences) to a much larger set, UniRe f 90, containing ≈ 115M protein sequences. Next, the protein129

sequences are divided into non-overlapping 3-mers by adding two starting symbols of ## and two end-130

ing symbols of @@. As detailed in (Asgari and Mofrad, 2015) and also shown in Figure 1, all three131

ways of splitting (based on the starting position for splitting) is done (i) to increase the training size to132
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≈ 115M×3 = 445M sequences of k-mers and (ii) to capture all possible neighborhoods. The skip-gram133

network is trained on the mentioned collection of divided sequences, with the window size of 20, and the134

vector size of 3000.135

136

3-mer splitting

Sigmoid

Average

Xt

Xt-N Xt-N+1 Xt+NXt+N-1

The left context of xt The right context of xt

output layer

input layer

hidden layer
After Training

(3) Supervised: Fine-tune embeddings(1) Unsupervised Language Model-based Embedding

UniRef90 Sequence (115M sequences)  Venom protein prediction (56K)

High resource to low resource

Negative Set
Negative Set

Resample

Positive Set

Positive Set
Down-sampling

(2) Multiple resampling from the negative set

N

(4) Aggregation of classifications

Check the consensus of N classifiers

N Classifiers

Test set 
(367)

Check for 
Consensus

##e sec pwh pwc
#es ecp whp wc@
ese cpw hpw c@@

esecpwhpwc
Sequence Label

Venom

Example

Venom
Venom
Venom

Sequence Label

Figure 1. Overview of the ToxVec approach for the detection of venom proteins using fine-tuning of
language model-based representations. The steps are detailed in the §1.3. (1) The first step is the training
of Skip-gram embedding for protein k-mers over UniRef90, (2) We draw multiple (N=10) resamples from
the major class (negative set), (3) We fine-tune the Skip-gram embeddings for the venom classification in
the classification network, (4) The eventual output is the aggregated result from (N = 10 classifiers).

2. Multiple Resampling from the Major Class (negative) Since in the training dataset provided by137

(Cole and Brewer, 2019), the negative set is almost eight times larger than the positive set, the classifier is138

subject to be biased towards the negative class. To address this issue, we downsample the negative set to139

the positive set’s size to mitigate this bias. In addition, next, to ensure the use of more negative samples,140

we perform N resamplings of the negative set and subsequently train N classifiers (N=10).141

142

3. Supervised Fine-tuning of Embeddings for the Venom Classification For each resampled training143

set (in step 2), we train a classification network in the next step. As classification model, we used144

the f asttext model (Bojanowski et al., 2017), a simple but effective model for sentence classification145

in NLP: the input embeddings (here k-mer embedding) are averaged followed by a feedforward layer146

before the ending sigmoid layer produces the class conditional probabilities. For the k-mer embedding147

of the input sequences, we use the ProtVec embeddings detailed in the 1st step. We fine-tune the k-148

mers embedding in the course of supervised training. To investigate the role of pretrained ProtVec in149

classification performance, we repeat the same experiment with randomly initialized k-mer embedding.150

Furthermore, since in the creation of embedding training corpus (step 1), each protein sequence151

is divided into three sequences of k-mers (k=3), the test set sequences would also undergo the same152

procedure. Thus, at the inference time, for each test sequence, we would have three possible segmentations153

(e.g., esecpwhpwc → (1) ##e, sec, pwh, pwc (2) #es, ecp, whp, wc@ (3) ese, cpw, hpw, c@@) and154

subsequently we would have three classification outcomes. This way, we have three binary outcomes for155
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Figure 2. Distribution of biophysical and biochemical properties in the protein trimers (except (f)) and
in venom sequences versus non-venoms (f) in the embedding space visualized using t-SNE. The five
heatmaps scatter plots of biophysical properties (Figures (a) to (e)) show the standardized scales averaged
for each trimer. Figure (f) shows the distribution of training instances of venom (colored in red) versus
non-venom (colored in blue) in this space.

Figure 3. Visualization of test (a), train (f), and misclassified instances ((b) to (e)) using different
existing venom predictive models in the embedding space of protein k-mers (timers) for venom
prediction. The ToxVec (b), Toxify (c), ClanTox (d), ToxClassifier (f), and ToxVec misclassified
instances are compared. In Figures (a) and (f), the red points are venom sequences and the blue points
indicate the non-venom sequences. In Figures (b) to (e), the red points indicate the venom sequences
identified as non-venom by the predictor and the blue points are the non-venom sequences identified as
venom sequences.

each protein sequence in the test set, and we assign the majority class for each sequence.156
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157

4. The ensemble classifier of different resamples As discussed in step 2, we create N = 10 training sets158

resulting in 10 predictive models. We consider a positive sample for the eventual classification output if159

and only if all 10 models confirm this.160

2 RESULTS161

Venom Protein classification results over the Toxify test set for ToxVec, Toxi f y, ToxClassi f ier, and162

ClanTox are provided in Table 1. For the evaluation, the accuracy, the F1 score of positive and negative163

classes, and their average (macro-F1) are reported. Our ToxVec outperformed ClanTox, ToxClassi f ier,164

and Toxi f y in terms of F1 on both positive and negative class by improving macro-F1 (average of F1165

on positive and negative classes) for 3 percent from 0.86 to 0.89. Furthermore, the incorporation of166

negative-set resamplings increased the performance to a macro-F1 of 0.93.167

Table 1. The summary of evaluation results for detecting venom proteins in the Toxify test set: We
compare the performance of where ToxVec and its ensemble version with Clantox, ToxClassi f ier, and
Toxi f y approaches in terms of accuracy, F1s of both positive and negative classes, and the macro-average
of F1s. The performance of ToxVec for both initialization modes (random initialization and
ProtVec-based initialization) are provided.

Method Accuracy F1-positive F1-negative macro-F1
ClanTox 0.79 0.84 0.69 0.77
ToxClassifier 0.73 0.78 0.65 0.72
Toxify 0.86 0.85 0.87 0.86
ToxVec(Random− init−Emb) 0.9 82 0.93 0.88
ToxVec−Ensembled(Random− init−Emb) 0.94 0.87 0.96 0.92
ToxVec(UniRe f 90−Emb) 0.91 0.84 0.94 0.89
ToxVec−Ensembled(UniRe f 90−Emb) 0.95 0.89 0.96 0.93

We created a t-SNE (Maaten and Hinton, 2008) visualization of the Skip-gram embedding space of168

protein trimers (Figure 2). In this figure, the trimers of vector size 3000 are mapped into a 2D space. Next,169

to see how biophysical properties are distributed in this embedding space we color the k-mers for different170

properties, including mean molecular weight, mean surface accessibility (Emini et al., 1985), mean KD171

hydrophilicity (Kyte and Doolittle, 1982), mean flexibility (Vihinen et al., 1994), and mean Janin Interior172

to surface transfer energy scale (Janin et al., 1988). The mentioned biophysical scales are standardized173

(zero mean and unit variance) to be comparable. Higher intensity (lighter color) indicates being higher in174

the scales. We can see that the k-mers of similar properties are close in the embedding space. Afterward,175

we represent Toxify’s training instances with the average of their overlapping timers and then mapped176

them to the 2D space using the same t-SNE projection of simple trimers. The buttom-right sub-figure177

in Figure 2 shows the venom sequences in red and the non-venoms in blue. Comparison of training178

instances and the biophysical properties shows the average properties of typical venom sequences versus179

non-venom protein sequences. The illustration shows that the venoms are diverse in terms of averaged180

biophysical properties, which is confirmed previously even within certain snake families (Nawarak et al.,181

2003).182

CONCLUSIONS AND DISCUSSIONS183

Here, we described ToxVec, a deep learning model using language model-based representation learning184

of proteins for venom protein identification. We compared the performance of ToxVec with recent super-185

vised approaches in venom identification and showed that the supervised fine-tuning of protein language186

model-based representation achieved state-of-the-art performance in this task. We also addressed the187

class-imbalance problem in training a predictive model by ensembling models trained on the major class’s188

downsampling, further improving the performance by 4 percent macro F1 (a macro-F1 of 0.93).189

190

Figure 3 showed the visualization of test cases (a), train cases (f, and the misclassified instances191

using different approaches. The figure suggests that the test cases were not similar to the typical training192

instances, and the problem has not been trivial for the embedding space. The misclassified instances of193

6/9

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 1, 2020. ; https://doi.org/10.1101/2020.09.29.319046doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.29.319046


Toxify, ToxClassifier, and ClanTox follow the same patterns. When ToxVec was employed, the F1 scores194

on both venoms/non-venoms classes were improved, which was even better in the negative class.195

We observed that the ToxVec outperformed the state-of-the-art venom predictors by 2% to 7% macro-196

F1 (averaged F1 in the positive and negative class). The minimum macro-F1 of ToxVec, 0.88, which197

was still higher than existing approaches macro-F1 (0.86), was achieved when an embedding layer was198

trained for k-mers from scratch in a supervised manner. By ensembling ten classifiers trained on different199

downsampling of the negative set, this performance increased to a macro-F1 of 0.92. We also showed200

that when the pretrained Skip-grams over UniRed are used, the macro-F1 and all scores are increased201

by one more point (macro-F1 = 0.93). These results suggest that automatic feature learning, either202

by random initialization and then supervised training or fine-tuning of self-supervised embedding, can203

improve venom identification performance compared to methods using manual feature engineering. Like204

natural language processing scenarios, fine-tuning of language model-baed representations improved the205

downstream supervised task performance, which is particularly evident for small training sets. The success206

of automatic representation learning approaches in our experiments motivates exploring of contextualized207

embedding (transformers (Rao et al., 2019) or ELMo embeddings (Asgari et al., 2019b; Heinzinger et al.,208

2019)) as future directions.209
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Cho, K., van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., and Bengio, Y.228

(2014). Learning phrase representations using RNN encoder–decoder for statistical machine translation.229

In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing230

(EMNLP), pages 1724–1734, Doha, Qatar. Association for Computational Linguistics.231

Cole, T. J. and Brewer, M. S. (2019). Toxify: a deep learning approach to classify animal venom proteins.232

PeerJ, 7:e7200.233

Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3):273–297.234

Dao, F.-Y., Yang, H., Su, Z.-D., Yang, W., Wu, Y., Hui, D., Chen, W., Tang, H., and Lin, H. (2017). Recent235

advances in conotoxin classification by using machine learning methods. Molecules, 22(7):1057.236

Emini, E. A., Hughes, J. V., Perlow, D., and Boger, J. (1985). Induction of hepatitis a virus-neutralizing237

antibody by a virus-specific synthetic peptide. J. Virology, 55(3):836–839.238

Friedman, J. H. (2002). Stochastic gradient boosting. Computational statistics & data analysis, 38(4):367–239

378.240

Gacesa, R., Barlow, D. J., and Long, P. F. (2016). Machine learning can differentiate venom toxins from241

other proteins having non-toxic physiological functions. PeerJ Computer Science, 2:e90.242

Goldberg, Y. and Levy, O. (2014). word2vec explained: deriving mikolov et al.’s negative-sampling243

word-embedding method. arXiv preprint arXiv:1402.3722.244

Hargreaves, A. D., Swain, M. T., Hegarty, M. J., Logan, D. W., and Mulley, J. F. (2014). Restriction and245

recruitment—gene duplication and the origin and evolution of snake venom toxins. Genome biology246

and evolution, 6(8):2088–2095.247

7/9

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 1, 2020. ; https://doi.org/10.1101/2020.09.29.319046doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.29.319046


Heinzinger, M., Elnaggar, A., Wang, Y., Dallago, C., Nechaev, D., Matthes, F., and Rost, B. (2019). Mod-248

eling aspects of the language of life through transfer-learning protein sequences. BMC bioinformatics,249

20(1):723.250

Howard, J. and Ruder, S. (2018). Universal language model fine-tuning for text classification. In251

Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1:252

Long Papers), pages 328–339, Melbourne, Australia. Association for Computational Linguistics.253

Iba, W. and Langley, P. (1992). Induction of one-level decision trees. In Machine Learning Proceedings254

1992, pages 233–240. Elsevier.255

Janin, J., Miller, S., and Chothia, C. (1988). Surface, subunit interfaces and interior of oligomeric proteins.256

Journal of molecular biology, 204(1):155–164.257

Jenner, R. A., von Reumont, B. M., Campbell, L. I., and Undheim, E. A. B. (2019). Parallel Evolution258

of Complex Centipede Venoms Revealed by Comparative Proteotranscriptomic Analyses. Molecular259

Biology and Evolution, 36(12):2748–2763.260

Jungo, F., Bougueleret, L., Xenarios, I., and Poux, S. (2012). The uniprotkb/swiss-prot tox-prot program:261

a central hub of integrated venom protein data. Toxicon, 60(4):551–557.262

Kyte, J. and Doolittle, R. F. (1982). A simple method for displaying the hydropathic character of a protein.263

J. Mol. Biol., 157(1):105–132.264

Lewis, R. J. and Garcia, M. L. (2003). Therapeutic potential of venom peptides. Nature reviews drug265

discovery, 2(10):790–802.266

Linial, M., Rappoport, N., and Ofer, D. (2017). Overlooked short toxin-like proteins: a shortcut to drug267

design. Toxins, 9(11):350.268

Maaten, L. v. d. and Hinton, G. (2008). Visualizing data using t-sne. Journal of machine learning research,269

9(Nov):2579–2605.270

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013). Distributed representations of271

words and phrases and their compositionality. In Advances in neural information processing systems,272

pages 3111–3119.273

Naamati, G., Askenazi, M., and Linial, M. (2009). Clantox: a classifier of short animal toxins. Nucleic274

acids research, 37(suppl 2):W363–W368.275

Nawarak, J., Sinchaikul, S., Wu, C.-Y., Liau, M.-Y., Phutrakul, S., and Chen, S.-T. (2003). Proteomics of276

snake venoms from elapidae and viperidae families by multidimensional chromatographic methods.277

Electrophoresis, 24(16):2838–2854.278

Nelder, J. A. and Wedderburn, R. W. (1972). Generalized linear models. Journal of the Royal Statistical279

Society: Series A (General), 135(3):370–384.280

Ojeda, P. G., Ramı́rez, D., Alzate-Morales, J., Caballero, J., Kaas, Q., and González, W. (2018). Compu-281
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