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Names for colors vary widely across languages, but color categories are remarkably consistent (Berlin & Kay, 1969). Shared
mechanisms of color perception help explain consistent partitions of visible light into discrete color vocabularies (Regier
et al., 2007). But the mappings from colors to words are not identical across languages, which may reflect communicative needs
– how often speakers must refer to objects of different color (Gibson et al., 2017). Here we quantify the communicative needs
of colors in 130 different languages by means of a novel inference algorithm. We find that communicative needs are not uni-
form: some regions of color space exhibit 30-fold greater demand for communication than other regions. The regions of greatest
demand correlate with the colors of salient objects, including ripe fruits in primate diets. Our analysis also reveals a hidden
diversity in the communicative needs of colors across different languages, which is partly explained by differences in geographic
location and the local biogeography of linguistic communities. Accounting for language-specific, non-uniform communicative
needs improves predictions for how a language maps colors to words, and how these mappings vary across languages. Our
account closes an important gap in the compression theory of color naming, while opening new directions to study cross-cultural
variation in the need to communicate different colors and its impact on the cultural evolution of color categories.

The color word problem1

What colors are “green” to an English speaker? Are they the same2

as what a French speaker calls “vert?” Berlin & Kay [1] and Kay3

et al. [4] studied this question on a world-wide scale, surveying4

the color vocabularies of 130 linguistic communities using a stan-5

dardized set of color stimuli (Fig. 1a). They found that color vo-6

cabularies of independent linguistic origin are remarkably consis-7

tent in how they partition color space [1]. In languages with two8

major color terms, one term typically describes white and warm9

colors (red/yellow) and the other describes black and cool col-10

ors (green/blue). If a language has three color terms, there is11

typically a term for white, a term for red/yellow, and a term for12

black/green/blue. Languages with yet larger color vocabularies re-13

main largely predictable in how they partition the space of perceiv-14

able colors into discrete terms [5–8] (Fig. 1b).15

What explains these shared patterns? To talk about color, a lan-16

guage must represent the vast space of human perceivable colors17

with a comparatively small set of color terms. The compression18

theory of color naming [2, 9–11] seeks to explain color vocabu-19

laries as an efficient mapping from colors to terms, based on the20

psychophysics of human color perception and the utility, or need,21

to reference different colors.22

Judgements of color appearance by humans with normal color23

vision are remarkably stable despite genetic variability in photore-24

ceptor spectral sensitivities [12], age-dependent variability in light25

filtering of the eye [13], and variation in the proportion of different26

classes of retinal cone photoreceptors [14, 15]. The shared psy-27

chophysics of perception therefore provides a common metric for28

color similarity, and common limits on the gamut of perceivable29

colors, which each contribute to shared patterns in color naming30

across languages [1, 2, 16–23].31

Recent work [3, 24, 25] has also found that color terms tend32

to reflect how often speakers need to refer to different colors,33

with a trend that emphasizes communication about warm hues34

(red/yellow) over cool hues (blue/green). Shared communicative 35

needs of colors – e.g., emphasizing the colors of greatest impor- 36

tance to ancestral humans, such as those of ripe fruits or dangerous 37

animals [26] – also helps explain shared patterns in color naming 38

across languages. 39

However, estimating communicative needs is non-trivial. Sev- 40

eral approaches have been proposed: using the statistics of sur- 41

face reflectances in natural scenes [9]; assuming a uniform distri- 42

bution over highly saturated colors [2]; using a world-wide average 43

of capacity-achieving priors [11, 27]; or extrapolating from En- 44

glish word-frequency corpus data [28]. The aim of all of these ap- 45

proaches is to approximate a single distribution of needs common 46

to all languages worldwide. But unlike perception, needs may vary 47

across cultures – and this variation might explain why color vo- 48

cabularies, though similar, are far from identical across languages. 49

A complete theory of color naming must explain cross-language 50

variation as well as shared trends. But to date, language-specific 51

communicative needs are unknown. 52

Here, we seek to close this gap in the compression theory 53

of color naming by providing a new way to directly estimate 54

language-specific communicative needs of colors. Without making 55

strong assumptions about the origins or characteristics of commu- 56

nicative needs, we derive a novel algorithm to solve a natural in- 57

verse problem; we infer the most conservative (maximum entropy) 58

distribution of communicative needs across colors consistent with 59

positions of focal colors in a language’s vocabulary – e.g. the “red- 60

dest red” and the “greenest green.” Our approach explains focal 61

colors as a natural part of the compression theory of color naming, 62

and it allows us to test predictions for term maps against indepen- 63

dent empirical data that was not used in fitting our model. 64

Applying our method we infer the language-specific commu- 65

nicative needs for 130 languages around the world. We confirm that 66

shared trends in communicative needs across languages are related 67

to the colors of salient objects [3], but we also find substantial vari- 68

ation in communicative needs across languages. This variation is 69
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Figure 1. Cross-linguistic patterns in color naming and the rate-distortion hypothesis. Berlin & Kay (B&K) [1] and the World Color Survey (WCS) [4] studied
color vocabularies in 130 languages around the world (see Methods: World Color Survey). (a) The 330 color chips named by native speakers in the WCS study.
(b) Empirical color vocabularies for two example languages in the WCS, each with 6 basic color terms. Color chips correspond to panel (a) but they have been
colored according to the focal color of the term chosen by the majority of speakers surveyed†. The languages Vagla and Martu-Wangka, although linguistically
unrelated and separated by nearly 14,000 km, have remarkably similar partitions of colors into basic color terms [4]. (c) Schematic diagram of rate-distortion
theory applied to color naming. A speaker needs to refer to color x with probability p(x). The speaker uses a probabilistic rule p(x̂|x) to assign color terms,
x̂, to colors, x. This rule depends on the perceptual distortion d(x‖x̂) introduced by substituting x̂ for the true color, x, where each term x̂ is associated with a
coordinate in color space. The choice of the term x̂ by the speaker reduces the listener’s uncertainty about the true color being referenced, measured on average
by the mutual information I(X; X̂). While any probabilistic mapping from colors to terms, p(x̂|x), is possible, some mappings are more efficient than others.
Rate-distortion theory provides optimal term mappings that allow a listener to glean as much information as possible, for a given level of tolerable distortion
and distribution of communicative needs p(x).

consequential: accounting for variation in needs substantially im-70

proves the prediction of color terms in each language. Moreover,71

this variation in needs across linguistic communities is meaning-72

ful: it correlates with differences in geographic location and local73

biogeography. Our account supports an emerging, unified view of74

the color word problem that integrates the shared psychophysics of75

color perception with language-specific communicative needs for76

colors. We show that this view is consistent with both shared pat-77

terns and observed variability across languages.78

Color naming as a compression problem79

In the compression model of color naming first introduced by80

Yendrikhovskij [9] and with recent extensions by Zaslavsky81

et al. [11], a color in the set of all perceivable colors, x ∈ X , needs82

to be communicated with some probability, p(x), to a listener. The83

speaker cannot be infinitely precise when referring to x, and must84

instead use a term, x̂, from their shared color vocabulary, X̂ . Many85

colors in X map to the same term, so that a listener hearing x̂ will86

†Or by a mixture of the best choice focal colors when there was more than one best
choice.

not know exactly which color x was referenced. Color naming is 87

then distilled to the following problem: how do we choose the map- 88

ping from colors to color terms? Rate-distortion theory [29–32], 89

the branch of information theory concerned with lossy compres- 90

sion, provides an answer. 91

Mapping colors to a limited set of terms necessarily introduces 92

imprecision or “distortion” in communication. The amount of dis- 93

tortion depends on a listener’s expectation about what color, x, a 94

speaker is referencing when she utters color term x̂. Under the rate- 95

distortion hypothesis, a language’s mapping from colors to terms 96

allows a listener to glean as much information as possible about 97

color x from a speaker’s choice of term x̂ (Fig. 1c). 98

Each color x ∈ X is identified with a unique position, denoted 99

x, in a perceptually uniform color space. Here we use CIE Lab as 100

in Regier et al. [2]. The coordinates corresponding to a color term 101

x̂ are given by its centroid: the weighted average of all colors a 102

speaker associates with that term, x̂ =
∑
x xp(x|x̂). The distortion 103

introduced when a speaker uses x̂ to refer to x is simply the squared 104

Euclidean distance between x and x̂ in CIE Lab , denoted d(x‖x̂). 105

Intuitively, colors that are near x̂ are more likely to be assigned to 106

the term x̂ than colors that are far (Fig. 1c). 107
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The mathematics of compression provides optimal ways to rep-108

resent information for a given level of tolerable distortion. The size109

of a compressed representation, X̂ , is measured by the amount of110

information it retains about the uncompressed source, X , given by111

the mutual information I(X; X̂). Terms represent colors by speci-112

fying the probability of using a particular term x̂ ∈ X̂ to refer to a113

given color x ∈ X , denoted p(x̂|x). Rate-distortion efficient map-114

pings are choices of the mapping p(x̂|x) that minimize I(X; X̂)115

such that the expected distortion, Ed(x‖x̂), does not exceed a given116

tolerable level. Efficient mappings and centroid positions can be117

found for a large class of distortion functions known as Bregman118

divergences, which includes the CIE Lab measure of perceptual119

distance (SI Sec. A).120

Communicative needs of colors121

Rate-distortion theory provides an efficient mapping from colors122

to terms that depends on three choices: the distortion function in123

color space, the degree of distortion tolerated by the language, and124

the probability p(x) that each color needs to be referenced during125

communication, called the “communicative need.” Previous stud-126

ies have largely focused on communicative needs that are shared127

across all languages, considering distributions that are either uni-128

form across the WCS color stimuli [7], correlated with the statistics129

of natural images [9] or the color of salient objects [3], approxi-130

mated by a world-wide average “capacity achieving prior” [11, 27],131

or related to linguistic usage [33] as e.g. approximated by the fre-132

quencies of words for color in English-language corpus data [28].133

As a result, prior studies have drawn conflicting conclusions about134

whether communicative needs matter for color naming, and little is135

known about whether communicative needs vary across languages136

or whether such variation is significant for their color vocabular-137

ies. While the potential importance of language-specific commu-138

nicative needs has been discussed [33], here, for the first time, we139

resolve these questions by directly estimating the communicative140

needs of colors for each of the 130 languages in the combined141

B&K+WCS dataset under the compression theory of color nam-142

ing.143

Algorithm to infer communicative needs144

How can we infer the underlying communicative needs of colors145

from limited empirical data? Here we derive an algorithm that146

finds the maximum-entropy estimate of the underlying commu-147

nicative needs p(x) consistent with a rate-distortion optimal vo-148

cabulary with known centroid coordinates x̂ and term frequencies149

p(x̂), for any Bregman divergence measure of distortion.150

The estimate of communicative needs has the form q(x) =151 ∑
x̂ q
∗(x|x̂)p(x̂), with152

q∗(x|x̂) = arg max
q(x|x̂)∈Q

H(X). (1)

In words, the optimal q∗(x|x̂) is the choice of q(x|x̂) that maxi-153

mizes the entropy, H(X), among the the set of conditional prob-154

ability distributions Q whose predicted focal color coordinates155

match the observed coordinates for each color term. We construct156

this solution via a novel iterative alternating maximization algo- 157

rithm (see SI Sec. B for its derivation), 158

{
qt(x̂|x) ∝ qt(x|x̂)p(x̂),

qt+1(x|x̂) ∝ qt(x̂|x)e〈x,νt(x̂)〉,

(2)

(3)

where the vectors νt(x̂) are chosen so that predicted focal color 159

coordinates match observed coordinates (SI Sec. B). 160

This algorithm provably converges to a unique, globally opti- 161

mal, maximum-entropy estimate of the true communicative need 162

p(x) (SI Sec. B.1 and B.2). Remarkably, we can construct this 163

solution knowing only that the observed coordinates x̂ are rate- 164

distortion optimal centroids, without knowledge of the specific dis- 165

tortion measure (SI Sec. B.3; SI Fig. B1). 166

Inference from focal colors 167

Our algorithm infers a language’s communicative needs from 168

knowledge of the centroids associated with its color terms. Berlin 169

& Kay measured the “focal color” of each color term by asking na- 170

tive speakers to choose from among the Munsell stimuli (Fig. 1a) 171

the “best example” of that term. We propose that the measured fo- 172

cal colors are in fact the centroids for each term.† This hypothesis 173

may appear problematic since laboratory experiments suggest fo- 174

cal colors and category centroids are distinct points in color space 175

[34–36]. However, centroids in those studies were calculated under 176

the implicit assumption of uniform communicative needs, leaving 177

open the possibility that focal colors are centroids under the true 178

distribution of non-uniform needs (SI Sec. A.3). 179

Our approach provides an unbiased inference of language- 180

specific communicative needs that does not make strong assump- 181

tions about the form of p(x) or depend on additional, unmeasured 182

quantities for each WCS language. Prior work on a universal dis- 183

tribution of needs relies on strong assumptions about the form of 184

p(x) (see SI Sec. B.3, & D), and so applying it to individual lan- 185

guages in the WCS produces implausible inferences (SI Fig. C4ab). 186

Alternatively, there is a prior language-specific approach based on 187

word frequency data, but this approach cannot be applied to the 188

vast majority of languages in the WCS that lack this information 189

(SI Sec. D.1, SI Fig. D10b). Moreover, unlike prior work, our infer- 190

ence of language-specific needs does not rely on knowing the em- 191

pirical mapping from colors to terms, p(x̂|x), which is the quantity 192

that we ultimately wish to predict from any theory of color naming 193

(SI Fig. D9). 194

Different colors, different needs 195

Our analysis reveals extensive variation in the demand to speak 196

about different regions of color space (Fig. 2a). Averaged over all 197

130 B&K+WCS languages, the inferred communicative needs em- 198

phasize some colors (e.g. bright yellows and reds) up to 36-fold 199

more strongly than others (e.g. blue/green pastels and browns). 200

This conclusion stands in sharp contrast to prior work that assumed 201

a uniform distribution of needs [2] and attributed color naming to 202

the shape of color space alone. 203

†More precisely, we propose the measured focal colors are the best approximation
to the true centroid among the set of WCS color stimuli.
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Figure 2. Inferred distributions of communicative needs. (a) The mean inferred distribution of communicative need, p(x), averaged across the WCS and B&K survey
data (n = 130 languages). Color chips correspond to those shown in Figure 1a. We infer 36-fold variation in communicative need across color chips, with
greater demand for communication about yellows and reds, for example, than for blues and greens. (b) The color vocabulary of a language predicted by rate-
distortion theory better matches the empirical vocabulary when we account for variation in the need to communicate about different colors. (Top-left) The error
between the predicted and empirical focal color positions across n = 130 languages, where predictions are rate-distortion optimal vocabularies assuming either
a uniform (red) or the inferred (blue) distribution of communicative needs. Root mean square error (RMSE) is measured in units of CIE Lab perceptual distance
(denoted ∆E?; Methods: RMSE of focal color predictions). Reference lines show RMSE when empirical focal points are compared to random focal points
(random), displaced by one WCS column or row (off-by-one), and by sampling from participant responses (WCS variability) (see SI Sec. C.1). (Bottom-left)
The relative improvement (reduction in error) using the inferred versus uniform distribution of communicative need. (Right) Difference in focal point positions
of rate-distortion optimal vocabularies, under inferred versus uniform communicative needs. (c) Two example languages, Múra-Pirahã (left), and Colorado
(right), that illustrate how predicted term maps are improved when accounting for non-uniform communicative needs of colors. The region corresponding to
each term is colored by the WCS chip closest to the term’s focal point (white points). (Top row) The predicted term maps based on the inferred distribution of
communicative needs; (Bottom row) based on a uniform distribution of communicative need; (Middle row) the empirical term maps in the WCS data.

Our ability to predict the color vocabulary of a language is sub-204

stantially improved once we account for non-uniform communica-205

tive needs (Fig. 2b). We find improvement in an absolute sense,206

as measured by the root mean squared error (RMSE) between pre-207

dicted and empirically measured focal colors, and also in a relative208

sense, measured by percent improvement over a uniform distribu-209

tion of needs. The typical change in predicted focal color once ac-210

counting for non-uniform needs is easily perceivable, correspond-211

ing to a median change of two WCS color chips (Fig. 2b right).212

Not only are the predicted focal points in better agreement with213

the empirical data, once accounting for non-uniform needs, but the214

entire partitioning of colors into discrete terms is substantially im-215

proved, as seen in the example languages Múra-Pirahã and Col-216

orado (Fig. 2c).217

We infer communicative needs and predict color terms using218

data from the first of two experiments in the WCS, which mea-219

sured focal colors (Fig. 3a). This inference and prediction requires220

fitting one parameter that controls the “softness” of the partitioning221

and one hyperparameter to control over-fitting (SI Sec. C). Without222

any additional fitting, we can then compare the predicted mappings223

from colors to terms to the empirical term maps measured in the224

second WCS experiment. For nearly all of the WCS languages an-225

alyzed (n = 110), the color term maps predicted by rate-distortion226

theory are significantly improved once accounting for non-uniform227

communicative needs (improvement in 84% of languages, Fig. 3b).228

Only 15% of languages show little or no improvement, with an229

additional 1 outlier, Huave (Huavean, Mexico), that may violate230

model assumptions in some significant way (see Discussion). The231

substantial improvement in predicted term maps can be attributed232

both to universal patterns in communicative needs, shared across233

languages, and to language-specific variation in needs (Fig. 3c). 234

In contrast to prior work on the compression model of color nam- 235

ing [11, 28], no part of our inference procedure uses empirical data 236

on a language’s mapping from colors to terms, p(x̂|x).† Nor are 237

our predicted color terms simply an out-of-sample prediction, since 238

the predicted quantities, p(x̂|x), are not used to parameterize the 239

model. And so our analysis is not simply a fit of the compression 240

model to data, but rather an empirical test of its ability to predict 241

color naming from first principles. 242

Communicative needs and the colors of salient objects 243

We can interpret the inferred communicative needs of colors by 244

comparing them to what is known about the colors of salient ob- 245

jects. Prior work [3] suggests a warm-to-cool trend in communica- 246

tive need, related to the frequency of colors that appear in fore- 247

ground objects as identified by humans in a large dataset of natural 248

images [37] (Fig. 4a). We find that the same correlation holds, at 249

least when restricting to the middle range of lightness (color chips 250

in rows C–H; two-sided Spearman’s ρ = 0.3, p < 0.001, n = 240). 251

However the pattern of communicative needs is more complex than 252

this warm-cool gradient alone. Pastels that are greenish blue or 253

blue, as well as brownish-greens, need to be communicated less 254

often than dark green or dark blue, for example. Moreover, dark 255

colors in general (e.g. color chips in rows I-J) show a relatively 256

high communicative need under our inference compared to their 257

frequency in foreground objects of natural images (Fig. 4a). 258

†Nor do we use empirical term maps for selection among the small set of non-
unique rate-distortion optimal solutions. In this study, selection is based on focal
points alone. See SI Sec. C.
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Figure 3. Inference and prediction within the World Color Survey. (a) The World Color Survey (WCS) [4] included two separate experiments with native speakers of
each language. In this study we used only the WCS focal color experiment to infer the communicative needs of colors, p(x), and to predict a language’s mapping
from colors to terms, p(x̂|x). Without any additional fitting we then compared the predicted term maps to the empirical term maps observed in the second WCS
experiment. (b) Predicted term maps tend to agree with the observed term maps (see Figure 2c; SI Fig. C2c). Moreover, the predicted term maps show better
agreement with the empirical data than would predictions assuming a uniform distribution of communicative needs. The panel shows the rank ordered mean
percentage improvement in predicted versus observed term maps using the inferred communicative need p(x) compared to a uniform communicative need, with
95% confidence intervals (bootstrap resampling, see Methods: Measuring distance between distributions over colors). Languages (points) colored black have
95% confidence intervals overlapping 0%; blue indicates significant improvement. Languages that do worse under the inferred distribution of needs (red points)
violate model assumptions. (c) Over all languages, the mean percentage improvement (and 95% CIs) in predicted vocabularies when using language-specific
commutative needs compared to uniform needs (“inferred over uniform”), language-specific versus average needs over all languages (“inferred over average”),
and average versus uniform needs (“average over uniform”). Some improvement in predictive accuracy is attributable to commonalities in communicative
needs across languages (third comparison), and yet more improvement is attributable to variation in needs among languages (second comparison).

We also compared communicative needs to spectral measure-259

ments by Sumner & Mollon [38, 39] of unripe and ripe fruit in the260

diets of catarrhine primates, which have trichromatic color vision261

and spectral sensitivities similar to humans. When projected onto262

the WCS color chips (see SI Fig. C6), unripe, midripe, and ripe263

fruit occupy distinct regions of perceptual color space (Fig. 4c)264

corresponding to low, medium, and high values of inferred com-265

municative need, respectively (Fig. 4d). The morphological char-266

acteristics of fruit, including color, are known to be adapted to the267

sensory systems of frugivores that act as their seed dispersers, for268

vertebrates in general [40–42] and primates in particular [43–45].269

And so our results support the hypothesis that shared communica-270

tive needs in human cultures emphasize the colors of salient objects271

that stand out or attract attention in our shared visual system across272

a typical range of environments†.273

Cross-cultural variation274

Languages vary considerably in their needs to communicate about275

different parts of color space (Fig. 5a; SI Fig. E11–E27). The in-276

ferred needs for the language Waorani (Ecuador), for example, em-277

phasize white and mid-value blues, while de-emphasizing yellows278

and greens, relative to the average needs of all B&K+WCS lan-279

guages. Whereas Martu-Wangka (Australia) emphasizes pinks and280

mid-value reds, as well as a light greens, while de-emphasizing281

blues and dark purples (Fig. 5a). In fact, the median distance282

between language-specific communicative needs and the across-283

language average needs is nearly as large as the distance between284

the average needs and uniform needs (9.9 and 11.2, respectively, in285

units of ∆E?).286

†Note that these results do not imply shared communicative needs are determined
by the need to name fruit specifically.

Why do language communities vary in their needs to commu- 287

nicate different colors? Detailed study of this question requires 288

language-specific investigation beyond the scope of the present 289

work. However, we can at least measure how variation in linguis- 290

tic origin, geographic location, and local biogeography (Fig. 5b) 291

relate to differences in communicative needs. We quantified these 292

factors for pairs of languages by determining: (1) whether or not 293

they belong to the same linguistic family in glottolog [46]; (2) the 294

geodesic distance between communities of native speakers; and 295

(3) whether or not language communities share the same “ecore- 296

gion,” a measure of biogeography [47] that delineates boundaries 297

between terrestrial biodiversity patterns [48]. Our statistical anal- 298

ysis also controls for differences in the number of color terms 299

between languages, because we seek to understand cross-cultural 300

variation above and beyond any relationship between vocabulary 301

size and (inferred) communicative needs (SI Sec. C.3). 302

While language differences are largely idiosyncratic, we find a 303

small but measurable impact of distance and biogeography on com- 304

municative needs (Fig. 5c, Methods: Correlates of cross-cultural 305

differences in communicative need). In particular, increasing the 306

geodesic distance between language communities by a factor of 307

10 decreases the mean similarity in their communicative needs 308

by a factor of 2.9% ([1.7%, 4.2%] 95% CI), while sharing the 309

same ecoregion increases the mean similarity by a factor of 8.4% 310

([3.9%, 12.7%] 95% CI). By contrast, we find no significant ef- 311

fect of language genealogy on communicative needs, at least at 312

the coarse scale of language family. Taken together, these results 313

suggest that color vocabularies are adapted to the local context of 314

language communities. 315
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Figure 4. Inferred distributions of communicative needs correlate with the colors of salient objects. (a) Human participants in the Microsoft Research Asia (MSRA)
salient object study were asked to identify the foreground object in 20, 000 images; example foreground mask illustrated in gray. (b) WCS color chips ordered
by their rank frequency in the foreground of MSRA images (rows “MSRA”; see Gibson et al. [3]), and in the inferred distribution of communicative need (rows
“inferred”), averaged across the n = 130 languages in the B&K+WCS survey data. There is a weak positive correlation between the colors that are considered
salient, in the MSRA dataset, and the colors with greatest inferred communicative need, across all WCS color chips (top). This relationship is strengthened
after removing achromatic chips (WCS column 0, rows B and I) from the comparison (bottom). (c) Colors of unripe (top), midripe, and ripe (bottom) fruit in
the diets of catarrhine primates, derived from fruit spectral reflectance measurements collected in the Kibale Rainforest, Uganda, by Sumner & Mollon [38, 39].
The colors of ripe fruit tend to correspond with the colors of greatest inferred communicative need. (d) Average log-probability in the inferred distribution
of communicative need of color corresponding to unripe, midripe, and ripe fruit. n denotes the number of fruit species, and m the total number of spectral
measurements. Error bars show 95% confidence intervals of the means (nonparametric bootstrap by species).

Discussion316

We have inferred language-specific needs to communicate about317

different colors, using a novel algorithm that applies to any rate-318

distortion Bregman clustering. Accounting for non-uniform needs319

substantially improves our ability to predict color vocabularies320

across 130 languages. Neither our predictions of term maps nor,321

in contrast to prior work, our inferences of needs use empirical in-322

formation on the mappings from colors to terms, allowing us to test323

the compression model of color naming against independent data.324

The distribution of communicative needs, averaged across lan-325

guages, reflects a warm-to-cool gradient, as hypothesized in Gib-326

son et al. [3]; and it is related to object salience more generally, as327

indicated by the positioning of ripe fruit coloration in regions of328

highest need. This is true even though the needs p(x) that we infer329

by maximum entropy differ from the notion of communicative ef-330

ficiency, or surprisal, used in prior work (SI Sec. C.6.1). We also331

document extensive variation across languages in the demands on332

different regions of color space, correlated with geographic loca-333

tion and the local biogeography of language communities.334

Our analysis provides clear support for the compression model335

of color naming. Whereas prior work has established the role336

of shared perceptual mechanisms for universal patterns in color 337

naming, our results highlight communicative need as a source of 338

cross-cultural variation that must be included for agreement with 339

empirical measurements. A catalogue of language-specific needs 340

(SI Fig. E11–E27) will enable future study into what drives cultural 341

demands on certain regions of color space, and how they relate to 342

contact rates between linguistic communities, shared cultural his- 343

tory, and local economic and ecological contexts. Our method- 344

ology also provides a theoretical framework and inference proce- 345

dure to study categorization in other cognitive domains, including 346

other perceptual domains of diverse importance worldwide [50], 347

and even in non-human cognitive systems that exhibit categoriza- 348

tion (e.g. Zebra finches [51, 52], the songbird Taeniopygia guttata). 349

Several languages have been advanced as possibly invalidating 350

the universality of color categories [53–55]. Languages are known 351

to vary in the degree to which different sensory domains are coded 352

[50, 56, 57], and in Pirahã and Warlpiri the existence of abstract 353

terms for colors has been disputed [58, 59]. Moreover, the color 354

vocabularies in Karajá and Waorani notably lack alignment with 355

the shape of perceptual color space [7]. Once we account for com- 356

municative needs, however, we find that the color terms of Karajá 357
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Figure 5. The communicative needs of colors vary across languages, and they are correlated with geographic location and ecological region. (a) The inferred
distribution of communicative needs for two example languages (top row). For each language, many color chips have significantly elevated (red border) or
suppressed (blue border) communicative need compared to the across-language average (bottom row; deviations that exceed σ/2 with 95% confidence are
highlighted in red or blue). (b) The approximate locations of WCS native language communities (red points) shown on a world map colored by eco-regions
[47]. (c) Languages spoken in closer proximity to each other and sharing the same eco-region tend to have more similar inferred communicative needs (Type
II Wald Chi-square tests; χ2 = 20.98, df = 1, p < 0.001; and χ2 = 12.91, df = 1, p < 0.001, respectively), whereas shared language family does not have a
significant effect (χ2 = 1.022, df = 1, p = 0.31). Distance and shared eco-region each substantially improve the fit of generalized linear mixed effects models
(GLMMs) predicting the distance between pairs of inferred communicative needs. GLMMs were fit using log-normal link function and a random-effects model
designed for regression on distance matrices [49] (see Methods: Correlates of cross-cultural differences in communicative need). k denotes the total number
of fixed and random effects in each model.

and Waorani are well explained by rate-distortion theory. Likewise,358

while Pirahã may seem exceptional when assuming uniform com-359

municative needs, we recover accurate predictions once accounting360

for a non-uniform distribution of needs (Fig. 2c, Fig. 3b)†.361

Nevertheless, several languages show little or no improvement in362

predicted term maps using inferred versus uniform communicative363

needs, and Warlpiri is among these cases. Before drawing conclu-364

sions about exceptionalism, however, we note that several technical365

assumptions of our analysis may be violated for these languages.366

For one, we assumed that basic color terms are used with equal367

frequency, to first approximation. This is a reasonable assumption368

given that basic color terms are elicited with roughly equal fre-369

quency under a free naming task in e.g. English [36]. Moreover,370

the inferred distribution of needs for WCS and B&K languages are371

†Although this does not imply that color terms in Pirahã are abstract necessarily;
see Regier et al. [60].

relatively insensitive to non-uniformity of color term frequency, up 372

to variation by a factor 1.5 (SI Sec. C.2, SI Fig. C2d). Still, this 373

assumption may not be accurate enough for all languages, and the 374

frequencies of color terms requires future empirical study. Another 375

possibility is that the choice of the WCS stimuli themselves, i.e. the 376

set of Munsell chips, X , may work well for identifying focal colors 377

of most languages, but may be too restrictive in the languages that 378

show little improvement. Future field and lab work could remedy 379

this by broadening the range of color stimuli used in surveys. 380

Another limitation of the WCS is variability in chroma across the 381

Munsell color chips used as stimuli, which might bias participants’ 382

choice of focal color positions [25, 61–64]. While there is no re- 383

lationship between chroma and language-specific communicative 384

needs (see SI Sec. C.6.2; SI Fig. C8b), we do find a small but sta- 385

tistically significant correlation (two-sided Spearman’s ρ = 0.13, 386

p = 0.019, n = 330) between chroma and the inferred distribution 387
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of communicative need averaged across WCS languages. How-388

ever, if this bias dominated the choice of focal colors in the WCS,389

then we would not expect distributions of need inferred from fo-390

cal colors to improve predictions of color term maps. The fact that391

we do see substantial improvement suggests that whatever bias this392

effect may have, it is evidently not large enough to impact the re-393

lationship between focal color positions and color term maps for394

most languages. Nor would chromatic bias in stimuli explain the395

cross-cultural variation in communicative needs that we observe,396

since the set of stimuli was held constant across languages.397

Our study has focused on how languages partition the vast space398

of perceivable colors into discrete terms, and how communicative399

needs shape this partitioning. Why some languages use more ba-400

sic color terms than others remains an open topic for cross-cultural401

study. In principle, the issue of tolerance to imprecision in color402

communication is orthogonal to the distribution of communicative403

needs in a community. In practice, the number of color terms has404

a small impact on the resolution of inferred needs (SI Fig. C3a),405

which we control for in cross-cultural comparisons (SI Fig. C3b).406

Nonetheless, languages that have similar vocabulary sizes tend to407

have more similar communicative needs across colors, and this co-408

variation is greater than any effect of vocabulary size on the res-409

olution of our inferences (SI Fig. C3). These results suggest that410

causal factors driving vocabulary size may also influence a cul-411

ture’s communicative demands on colors – a hypothesis for future412

research.413

Future empirical work may begin to unravel why cultures vary in414

their communicative demands on different regions of color space.415

It is already known that natural environments vary widely in their416

color statistics [65, 66] and this variation matters for color salience417

[67]. The need to reference certain objects, as well as their salience418

relative to similar backgrounds, may help explain why commu-419

nities that share environments prioritize similar regions of color420

space, as we have seen. And so shared environment, physical prox-421

imity, and shared linguistic history at a finer scale than language422

family, are all plausible avenues for future study on the determi-423

nants of color demands. Beyond these factors, there remains sub-424

stantial interest in cultural features that we have not studied here,425

including religion, agriculture, trade, access to pigments and dies,426

and different ways of life, that can all shape a community’s needs427

to refer to different colors, and the resulting language that emerges.428

Methods429

World Color Survey430

Berlin & Kay [1] and Kay et al. [4] surveyed color naming in 130 languages around431

the world using a standardized set of color stimuli. The stimuli (Fig. 1a), a set of432

Munsell† color chips, were designed to cover the gamut of human perceivable colors433

at maximum saturation, across a broad range of lightness values. Native speakers434

were asked to choose among the basic color terms in their language to name each435

color chip, one at a time, in randomized order. The WCS study surveyed 25 native436

speakers in each of 110 small, pre-industrial language communities; the B&K study437

†The Munsell color system was created as a means to index human perceivable
color by hue, value, and chroma, at empirically measured perceptually uniform
intervals along each dimension. In the WCS notation, rows correspond to equally
spaced Munsell values, and columns 1–40 correspond to equally spaced Munsell
hues. For column 0 Munsell chroma is 0; for all other columns Munsell chroma
was chosen as the maximum for the given hue and value.

surveyed one native speaker in each of 20 languages from a mixture of both large 438

(e.g. Arabic, English, and Mandarin) and comparatively small (e.g. Ibibio, Pomo, 439

and Tzeltal) pre- and post-industrial societies. 440

The stimuli provided by the Munsell color chips are a function of the color pig- 441

ment of the chips and the ambient light illuminating them. The ambient light source 442

was approximately controlled by conducting the survey at noon and outdoors in 443

shade, corresponding to CIE standard illuminant C. To the extent possible, partici- 444

pants were surveyed independently, although preventing the discussion of responses 445

among participants was not always possible (discussed in Regier et al. [60]). 446

In our treatment of the color naming data, for each language we include all 447

recorded terms that had an associated focal color, was used by at least two surveyed 448

speakers (unless a B&K language, in which case only one speaker was surveyed), 449

and was considered the best choice for at least one WCS color chip. 450

The 20 B&K languages were included in our analyses where appropriate: com- 451

parisons based on focal colors and inferred communicative needs. They were ex- 452

cluded from term map comparisons because the methods of estimating term maps 453

differed methodologically from those in the WCS [68], and they do not provide 454

straightforward estimates of p(x̂|x). In addition, B&K languages with significant 455

geographic extent, e.g. Arabic and English, were excluded from statistical analysis 456

of the correlates of cross-cultural differences in communicative needs, because esti- 457

mating geographic distance or local biogeography would make little sense for these 458

languages. 459

RMSE of focal color predictions 460

Language-specific focal color positions were compared to model predictions using 461

the root mean squared error (RMSE) between observation and prediction in units of 462

CIE Lab ∆E?, computed for each WCS language i according to 463

RMSEi ,

 1

3ni

∑
x̂∈X̂i

3∑
j=1

(
x̃(j) − x̂(j)

)2 1
2

, (4)

where the superscript (j) specifies the coordinate in the CIE Lab color space of po- 464

sition vectors x̃ and x̂, corresponding respectively to the predicted and empirically 465

observed coordinates of the focal color for term x̂ in language i’s vocabulary, X̂i. 466

Here ni = |X̂i| denotes the number of basic color terms in language i’s vocabulary. 467

Spectral measurements of ripening fruit 468

Spectral measurements of ripening fruit in the diets of caterrhine primates were 469

obtained from the Cambridge database of natural spectra.‡ Reflectance data for fruit 470

taken from the Kibale Forest, Uganda, were converted to CIE XYZ 1931 color space 471

coordinates using CIE standard illuminant C. We then converted points from XYZ 472

to CIE Lab space using the XYZ values for CIE standard illuminant C (2°standard 473

observer model) as the white point, in order to match the WCS construction of CIE 474

Lab color chip coordinates. Calculations were performed in R (v3.6.3) using the 475

package colorscience (v1.0.8). 476

Indicators of fruit ripeness include color, odor, and smell. Therefore, to measure 477

visual salience we considered only fruit that had a discernable (in terms of CIE Lab 478

∆E?) difference between unripe and ripe measurements (see Fig. C6a for determi- 479

nation of statistical threshold on change in chromaticity). For fruits with detectable 480

changes in chromaticity, we projected their unripe, midripe, and ripe positions onto 481

the WCS color chips such that absolute lightness, L?, and the ratio of a? to b? was 482

preserved (Fig. C6b). 483

Measuring distance between distributions over colors 484

We quantified the perceptual difference between any two distributions over the WCS 485

color chips in terms of their Wasserstein distance (used in Fig. 5c), defined as 486

W [p‖q] , min
r(x,x′)∈R

∑
x,x′

r(x, x′)‖x− x′‖2 (5)

where R is the set of joint distributions satisfying
∑
x r(x, x

′) = p(x′) and 487∑
x′ r(x, x

′) = q(x). The CIE Lab coordinates of x and x′ are given by x 488

and x′, respectively, and the Euclidean distance between them approximates their 489

perceptual dissimilarity, by design of the CIE Lab system. Under this measure, a 490

small displacement in CIE Lab space of distributional emphasis is distinguishable 491

from a large displacement. For example, for discrete distribution p(x) = α if 492

‡http://vision.psychol.cam.ac.uk/spectra
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x = xp ∈ X , p(x) = (1 − α)/(|X | − 1) otherwise, let distribution q(x) be493

defined identically except substituting xq ∈ X for xp. Then the Wasserstein dis-494

tance between p and q will increase with the Euclidean distance between xp and495

xq , whereas e.g. the Kullback–Leibler divergence between p and q would remain496

constant for any xp 6= xq .497

We used a generalization of this distance measure to quantify the match between498

predicted and measured term maps. To make this comparison we find the minimum-499

CIE ∆E?partial matching between predicted and measured term map categories,500

p(x̂|x), for each term x̂ (used in Fig. 3b). To do this we find the minimum cost501

achievable by any assignment of chips empirically labeled by x̂ to those predicted502

to be labeled x̂, weighted by the measured and predicted p(x̂|x). The best partial503

matching accommodates for the fact that predicted and measured categories can504

differ in total weight. This measure is known as the Earth mover’s distance [69]505

(EMD), which has the Wasserstein distance as a special case with matching total506

weights. Both measures were computed in R (v3.6.3) using the emdist (v0.3-507

1) package.508

Correlates of cross-cultural differences in communica-509

tive need510

We modeled the pairwise dissimilarity in communicative need between B&K+WCS511

languages as a log-linear function of the geodesic distance between language512

communities, shared linguistic family, and shared ecoregion, using a maximum-513

likelihood population-effects model (MLPE) structure to account for the depen-514

dence among pairwise measurements [49]. For languages j = 2, . . . , n, i =515

1, . . . , j − 1, we use a generalized linear mixed effects model with form516

η(ij) = θᵀd(ij) + τi + τj , (6)

d(ij) =
[
1, d

(ij)
geo , δ

(ij)
fam, δ

(ij)
eco , ∆

(ij)
terms

]ᵀ
, (7)

τ1, . . . , τn ∼ N (0, σ2
τ ), (8)

w(ij) ∼ N (eη
(ij)

, σ2
w), (9)

where w(ij) is the Wasserstein distance between the inferred distributions of com-517

municative need for languages i and j; d(ij)geo is their estimated geodesic dis-518

tance (Haversine method) in standardized (normalized by standard deviation) units519

based on geographic coordinates in glottolog (and restricting to languages with520

small geographic extent); δ(ij)fam is a binary indicator of being in the same lin-521

guistic family or not (1 or 0, respectively); δ(ij)eco is a binary indicator of being522

in the same ecoregion or not (1 or 0, respectively); and ∆
(ij)
terms is the difference523

in their number of color terms, which we include as a control. The random ef-524

fects τ1, . . . , τn model the dependence structure of the pairwise measurements.525

Model diagnostics suggest reasonable behavior of residuals using a log-link func-526

tion (SI Fig. C7). Fitted coefficients indicate a positive increase in dissimilarity527

with geodesic distance, and a decrease in dissimilarity with ecoregion, but no sig-528

nificant effect of shared language family (SI Fig. C7). GLMM fits were performed529

in R (v3.6.3) using the lme4 (v1.1-21)package, with MLPE structure based on code530

from resistanceGA [70]. Model diagnostics based on simulated residuals were531

done using package DHARMa (v0.2.6).532

Pseudo-R2 measuring overall model fit was computed as R2
cor =533

cor(w(ij), ŵ(ij))2, where ŵ(ij) is the model predicted value for w(ij), based534

on Zheng & Agresti [71]. For our model, R2
cor = 0.64. However, there535

is no standard, single measure of R2 for models with mixed effects. A re-536

cent proposal [72, 73] suggests reporting two separate quantities, a conditional537

and marginal R2, which can be interpreted as measuring the variance explained538

by both fixed and random effects combined (R2
GLMM(c)), and the variance ex-539

plained by fixed effects alone (R2
GLMM(m)). For our model we computed these as540

R2
GLMM(c) = (σ2

θ + 2σ2
τ )/σ2

total and R2
GLMM(m) = σ2

θ/σ
2
total, respectively, where541

σ2
total = σ2

θ + 2σ2
τ + log

(
1 +

σ2
w

(Ew)2

)
based on Nakagawa et al. [73]. For our542

model, conditional R2
GLMM(c) = 43.3% and marginal R2

GLMM(m) = 12.7%. We543

based the inclusion of fixed effects on AIC (Fig. 5c) following best practices for544

MLPE models [74].545

Data availability546

All data came from pre-existing datasets. Color vocabulary data was sourced from547

the World Color Survey online repository (http://www1.icsi.berkeley.548

edu/wcs/data.html). Additional language data was sourced through glottolog549

v3.4, available online (https://glottolog.org/meta/downloads). 550

Data on biogeographic regions were provided by the World Wildlife Foundation, 551

available online (https://www.worldwildlife.org/publications/ 552

terrestrial-ecoregions-of-the-world). Fruit reflectance data came 553

from the Cambridge database of natural spectra, available online (http:// 554

vision.psychol.cam.ac.uk/spectra). Salient object data originating 555

from the Microsoft Research Asia (MSRA) dataset are not publicly available, but 556

were kindly provided to us on request by the corresponding authors of Gibson et al. 557

[3]. Data generated by our inference method and used to estimate the average com- 558

municative needs across languages (Fig. 2a) and language specific communicative 559

needs (SI Fig. SI E11–E27) will be shared under a creative commons license and 560

made available on github. 561

Code availability 562

Custom code was developed to infer communicative needs using the algorithm de- 563

rived in this paper (SI Sec. B). All code will be made available as open source and 564

shared via github. 565
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40. Lomáscolo, S. B., Levey, D. J., Kimball, R. T., Bolker, B. M., & Alborn, H. T.658

(2010) Dispersers shape fruit diversity in Ficus (moraceae). PNAS, 107(33):659

14668–14672.660

41. Nevo, O., Valenta, K., Razafimandimby, D., Melin, A. D., Ayasse, M., & Chap-661

man, C. A. (2018) Frugivores and the evolution of fruit colour. Biol. Lett., 14662

(9). doi: 10.1098/rsbl.2018.0377.663

42. Valenta, K. & Nevo, O. (2020) The dispersal syndrome hypothesis: how ani-664

mals shaped fruit traits, and how they did not. Funct. Ecol. doi: 10.1111/1365-665

2435.13564.666

43. Regan, B. C., Julliot, C., Simmen, B., Viénot, F., Charles-Dominique, P., &667
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Supplementary Information765

A Rate-distortion theory766

Rate-distortion theory [1, 2] provides a mathematical treatment of the problem of lossy compression, based on767

information-theoretic quantities. In information theory [1], the entropy of a discrete random variable, X , defined768

H(X) ,
∑

x∈X
p(x) log

1

p(x)
, (10)

provides a measure of the average length of the shortest description (“amount of information”) needed to specify the769

outcome of random variable X with outcomes in the set X occurring with probability p(x). The joint entropy of X770

and a second random variable, Y , H(X,Y ), is defined similarly in terms of the joint distribution of X and Y , p(x, y),771

and measures the average length of the shortest description needed to specify the outcomes of both random variables772

together. When the outcome of X is related to the outcome of Y in some (possibly nonlinear and stochastic) way, then773

the shortest description of both X and Y together may be smaller than the shortest descriptions of each of X and Y774

separately. In general, H(X,Y ) ≤ H(X) +H(Y ), with equality if and only if X and Y are statistically independent.775

The mutual information between X and Y , defined,776

I(X;Y ) , H(X) +H(Y )−H(X,Y ), (11)

then gives a non-negative measure of the average amount of information X and Y contain about each other, which is777

nonzero if and only if X and Y are not independent.778

In the lossy-compression context, for a given source (random variable) X and a description of that source, X̂ , the779

mutual information I(X; X̂) measures the amount of information the description contains about X , and it is this780

quantity we wish to minimize for compression, subject to a loss function, i.e. a measure of distortion. This can be781

formalized as782

R(D) = min
p(x̂|x) : Ed(x,x̂)≤D

I(X; X̂), (12)

where the loss is measured in terms of an expected distortion, Ed(x, x̂) =
∑
x∈X

∑
x̂∈X̂ p(x̂|x)p(x)d(x, x̂), with p(x)783

a property of the source, and p(x̂|x) the mapping of x to x̂ chosen to achieve on average the smallest description size784

possible, R(D), for a given allowable average distortion, D. Intuitively, the minimum compressed description size,785

R(D), increases as the allowable average distortion, D, decreases, dependent on the details of the source, X , and loss786

function, d.787

A.1 Bregman clustering788

The classical formulation of the rate-distortion tradeoff gives an optimal mapping of X to X̂ for fixed d(x, x̂). When789

every x and x̂ has coordinates in a vector space, denoted x and x̂, respectively, then for a large family of distortion790

measures known as Bregman divergences, optimal coordinates for each x̂ can be found [3] in addition to the optimal791

mapping between X and X̂ . For Bregman divergence dφ(x‖x̂), defined792

dφ(x‖x̂) , φ(x)− φ(x̂)− 〈x− x̂,∇φ(x̂)〉, (13)

with convex function φ, gradient ∇φ(x̂) evaluated at x̂, and inner product denoted 〈·, ·〉, the centroid of the mapping793

from X̂ to X is the minimizer of the average distortion for x̂, i.e.794

Ep(x|x̂)x = arg min
x̂

Ep(x|x̂)dφ(x‖x̂). (14)

Solutions to rate-distortion Bregman clustering (RDBC) problems have the property that each x̂ satisfies Eq. 14.795
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A.2 Compression model of color naming796

The first RDBC model of color naming appears in work by Yendrikhovskij [4]. Using a perceptual measure of distor-797

tion, Yendrikhovskij [4] worked to show that efficient solutions to a tradeoff between average perceptual distortion and798

vocabulary size account for color categories based on natural image statistics. While the results are likely sensitive to799

the exact, unreported choices of natural images used to produce the image statistics [5], the conceptual link to a rate-800

distortion tradeoff has proved significantly productive. Using essentially the same RDBC-based compression model801

but disregarding scene statistics, instead using the neurophysiological constraints of perceptual discrimination and802

gamut alone, Regier et al. [6] showed that the compression model of color naming can qualitatively explain many of803

the typical vocabularies of natural languages in the WCS. Subsequent work by Zaslavsky et al. [7] investigated a “soft”804

partitioning variant of this same conceptual framework (although with additionally a mixture of Gaussians based mea-805

sure of distortion derived from a Bayesian listener model of color naming), allowing for uncertainty in the mapping806

between terms and colors. In all cases, implicitly or explicitly, we can equivalently restate these compression-based807

accounts of color naming in terms of RDBC.808

A.3 Focal colors as category centroids809

In the World Color Survey, participants were asked to identify among the WCS color chips the “best example” of each810

basic color term identified in their vocabulary. In the WCS instructions to scientists conducting the field work, this811

is intended to elicit a response in the participant that identifies a color chip that “. . . is a good, typical, or ideal. . . ”†812

example of a given color term. In this work, we hypothesize that focal colors are observations of the centroids defined813

by Eq. 14. Two objections to this hypothesis immediately arise.814

First, past work has shown that empirical measurements of category centroids differ from focal point positions815

[8–10], which would seem to invalidate our hypothesis. However, the discrepancy can be resolved by understanding816

how past work measured category centroids. Sturges and Whitfield [9], following earlier work by Boynton and Olson817

[8], conducted a color naming experiment similar to the WCS but in controlled laboratory conditions (and for English818

speakers only). Similar to the WCS, participants were asked to name, one by one in randomized sequence, a presented819

color chip, recording both the response as well as the timing of the response. The chips with shortest response times820

were considered the focal colors, and despite the difference in method these appear to be in good agreement with the821

“best example” focal colors recorded by Berlin & Kay for English speakers.822

For each participant, the centroid of a category was computed as the average of all the color chips (in a given823

color space) that the participant named with that category’s color term (e.g. “red,” “green,” etc.). To write this out824

mathematically, we have a sequence of participant responses, x̂(1), x̂(2), . . . , x̂(n), where each response is a color825

term, i.e. x̂(i) ∈ X̂ , elicited by an experimenter presented color chip, x(1), x(2), . . . , x(n), where x(i) ∈ X . Note that826

each color chip in X was presented more than once in the sequence of n presentations. Then the centroid for category827

x̂ was computed as828

centroid(x̂) =
1∑n

i=1 1(x̂(i) = x̂)

n∑

i=1

x(i)1(x̂(i) = x̂), (15)

where 1(·) is the indicator function equal to 1 if its argument is true and 0 otherwise, and x(i) gives the coordinates of829

color x(i) in color space. Let n(x̂|x) =
∑n
i=1 1(x̂(i) = x̂)1(x(i) = x) count the occurrences of x̂ given presentation830

of color chip x, then we have831

centroid(x̂) =
1∑

x n(x̂|x)

∑

x

xn(x̂|x). (16)

Let n(x) =
∑n
i=1 1(x(i) = x) count the occurrences of x in the sequence. Then n(x̂|x) ≤ n(x), and p(x̂|x) =832

n(x̂|x)/n(x) gives the fraction of times x̂ was used to name x, out of a total of n(x) occurrences. Since each color833

†http://www1.icsi.berkeley.edu/wcs/data.html
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chip was presented the same number of times, we have further that n(x) = m. Then we have equivalently834

centroid(x̂) =
1

m
∑
x p(x̂|x)

∑

x

xp(x̂|x)m, (17)

=
1∑

x p(x̂|x)

∑

x

xp(x̂|x). (18)

Lastly, note that
∑
x p(x̂|x) = p(x̂)nX , where nX is the total number of color chips used, i.e. the cardinality of X ,835

and p(x̂) is the fraction of occurrences of x̂ in the sequence. Thus we have836

centroid(x̂) =
1

nX

1

p(x̂)

∑

x

xp(x̂|x), (19)

which by Bayes rule is equivalent to our definition of centroid with a uniform distribution of communicative need over837

the color chips, i.e. p(x) = 1/nX . Thus in past work centroids have been shown to differ from focal colors when838

a uniform distribution of communicative need over color chips is assumed. In this paper, by contrast, we show that839

by inferring and using a non-uniform distribution of communicative need we better predict both empirical color term840

maps and focal point positions, and that focal point positions coincide with category centroids under this non-uniform841

distribution of needs.842

The second objection stems from work done by Abbott et al. [11] investigating a measure of the “representativeness”843

of focal colors based on color category extents for the WCS. Representative colors of a given category are not necessar-844

ily those with the highest likelihood, i.e. maximizing p(x|x̂), but instead are the most likely relative to their likelihood845

given any other category, weighted by the prior of that category, i.e. maximizing p(x|x̂)/
∑
x̂′ 6=x̂ p(x|x̂′)p(x̂′). This846

appears problematic for the hypothesis that category centroids are equivalent to focal points, due to the bijection847

between Bregman divergences and regular exponential family distributions, and the equivalence between Bregman848

divergence minimization and maximum likelihood estimation [3, 12]. Again, it is crucial to examine definitions to849

see that the discrepancy is resolved by the assumption placed on the form of p(x|x̂). In Abbott et al. [11] p(x|x̂) was850

assumed to be normally distributed. Whereas under the compression hypothesis, the maximum likelihood is taken over851

the mixture model as a whole, and the form of p(x|x̂) = p(x̂|x)p(x)/p(x̂) is not normally distributed in general. The852

broader message of Abbott et al. [11] is that focal color positions reflect a balance between typicality within a category853

and distinction from other categories; and this interpretation agrees with our identification of focal colors as category854

centroids when category centroids “compete” to represent different parts of color space, as in the compression model855

of color naming.856

B Inverse inference of source distribution857

In this section we address the general problem of inferring an unknown source distribution, p(x), from knowledge of858

its compressed representation (i.e. a representation X̂ that lies on the rate-distortion curve for some unknown value of859

the tradeoff parameter, β). Concretely, we wish to find the q(x) that best approximates the unknown distribution p(x)860

using only what we know about p(x̂) and x̂ from its compressed representation, with no other assumptions. For fixed861

marginal distribution p(x̂) over X̂ , this can naturally be expressed as a problem of finding the conditional distributions862

q(x|x̂) that together maximize the entropy of the marginal distribution q(x) =
∑
x̂ q(x|x̂)p(x̂) over X , subject to a set863

of constraints that enforces we recover the known compressed representation, i.e.864

max
q(x|x̂) : ∀x̂∈X̂, d(x̃‖x̂) = 0

H(X), (20)

where H(X) is the Shannon entropy of X and x̃ =
∑
x xq(x|x̂).865

We show that a numerical solution to this problem can be found via an alternating minimization strategy used by866

Blahut and Arimoto in their solutions to the channel maximization and rate-distortion problems [13, 14] and later867

generalized by Csiszár & Tusnády [15]. To do so, we first note that the objective function can be rewritten as868

max
q(x|x̂)∈Q

I(X; X̂) +H(X|X̂), (21)
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using the fact that I(X; X̂) = H(X) −H(X|X̂). Here Q is the set of all conditional probability distributions such869

that d(x̃‖x̂) = 0 for all x̂ ∈ X̂ . Since the mutual information term can be written as a maximization over q(x̂|x),870

[13, 14] i.e.871

I(X; X̂) = max
q(x̂|x)

∑

x

∑

x̂

q(x|x̂)p(x̂) log
q(x̂|x)

p(x̂)
, (22)

and H(X|X̂) = −∑
x

∑
x̂ q(x|x̂)p(x̂) log q(x|x̂) is constant with respect to varying q(x̂|x), we can rewrite our872

objective function as a double maximization of the function873

J [q(x|x̂), q(x̂|x)] = I(X; X̂) +H(X|X̂) (23)

=
∑

x

∑

x̂

q(x|x̂)p(x̂) log
q(x̂|x)

p(x̂)
−
∑

x

∑

x̂

q(x|x̂)p(x̂) log q(x|x̂), (24)

=
∑

x

∑

x̂

q(x|x̂)p(x̂) log
q(x̂|x)

q(x|x̂)p(x̂)
, (25)

to change the problem into one of alternating maximizations over q(x|x̂) and q(x̂|x), i.e.874

max
q(x|x̂)∈Q

max
q(x̂|x)

J [q(x|x̂), q(x̂|x)] . (26)

The inner maximization over q(x̂|x) for constant q(x|x̂) is given by q(x̂|x) = q(x|x̂)p(x̂)∑
x̂ q(x|x̂)p(x̂)

, as previously shown875

by Blahut and Arimoto. The outer maximization over q(x|x̂) must respect a set of constraints that ensure we recover876

x̂ as a minimum distortion representation of x and that we have a valid probability distribution, i.e.877





d(x̃‖x̂) = 0,
∑

x

q(x|x̂) = 1,

q(x|x̂) ≥ 0,

(27)

(28)

(29)

where x̃ =
∑
x̂ xq(x|x̂). Eq. 27 enforces that there is no difference between the true compressed representation878

centroids x̂ and those generated by the estimated q(x|x̂), while the remaining two constraints ensure that q(x|x̂) is a879

proper probability distribution.880

Temporarily setting aside the non-negativity constraint (it will be enforced by the form of the solution), the La-881

grangian is then882

L [q(x|x̂)] = J [q(x|x̂), q(x̂|x)]−
∑

x̂

λ(x̂)d(x̃‖x̂) +
∑

x̂

γ(x̂)
∑

x

q(x|x̂) (30)

for fixed q(x̂|x). Taking the derivative with respect to q(x|x̂) and setting equal to zero, we have883

0 = p(x̂)

[
log

q(x̂|x)

q(x|x̂)p(x̂)
− 1− λ(x̂)

∂

∂q(x|x̂)
d(
∑

x

xq(x|x̂)‖x̂)

]
+ γ(x̂), (31)

where we absorb a 1/p(x̂) term into each Lagrange multiplier λ(x̂). If the function d is a Bregman divergence, i.e. it884

can be written as dφ(u‖v) = φ(u)− φ(v)− 〈u− v,∇φ(v)〉 for some convex function φ, then885

log
q(x|x̂)

µ(x̂)
= log

q(x̂|x)

p(x̂)
− λ(x̂)〈x,∇φ(x̃)−∇φ(x̂)〉 (32)

q(x|x̂) =
1

µ(x̂)

q(x̂|x)

p(x̂)
e−λ(x̂)〈x,∇φ(x̃)−∇φ(x̂)〉 (33)

Where logµ(x̂) = γ(x̂)
p(x̂) − 1.886
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For the constraint
∑
x q(x|x̂) = 1 to be true, the Lagrange multipliers, µ(x̂), must act as a normalization factor,887

giving us888

q(x|x̂) =
q(x̂|x)e−λ(x̂)〈x,∇φ(x̃)−∇φ(x̂)〉∑
x′ q(x̂|x′)e−λ(x̂)〈x

′,∇φ(x̃)−∇φ(x̂)〉
. (34)

This also satisfies the non-negativity constraint for each q(x|x̂), since q(x̂|x) ≥ 0, and ex ≥ 0 for any x ∈ R. Finally,889

we can combine the unknown scalar −λ(x̂) and vector∇φ(x̃)−∇φ(x̂) into a single unknown vector ν(x̂), giving890

q(x|x̂) =
q(x̂|x)e〈x,ν(x̂)〉∑
x′ q(x̂|x′)e〈x

′,ν(x̂)〉 , (35)

where ν(x̂) must be chosen such that Eq. 27 is true.891

For any Bregman divergence, dφ(u‖v) = 0 iff u = v (see Banerjee et al. [3]). Thus to enforce Eq. 27, we need to892

find ν(x̂) s.t. x̃ =
∑
x xq(x|x̂) = x̂. Let Gx̂(ν) = log

∑
x q(x̂|x) exp〈x, ν〉. Then the vector of partial derivatives of893

Gx̂(ν) with respect to ν are given by894

∇Gx̂(ν) =
∑

x

x
q(x̂|x)e〈x,ν〉∑
x′ q(x̂|x′)e〈x

′,ν〉 = x̃(ν). (36)

Since Gx̂(ν) is strictly convex, we have by Legendre transform its convex conjugate dual,895

G∗x̂(x̃) = sup
ν
〈x̃, ν〉 −Gx̂(ν). (37)

and vector of partial derivatives896

∇G∗x̂(x̃) = arg sup
ν
〈x̃, ν〉 −Gx̂(ν). (38)

By the strict convexity of Gx̂ and the definition of the Legendre transform we have that ∇G∗x̂(x̃) = (∇Gx̂(x̃))−1 =897

ν(x̃), i.e. the unique choice of ν for a given value of x̃. The unique choice of ν to guarantee x̃ = x̂ is then simply898

ν(x̂) = ∇G∗x̂(x̂), which can be computed numerically via e.g. BFGS.899

The alternating maximization algorithm is then to iterate900





qt(x̂|x) =
qt(x|x̂)p(x̂)∑
x̂ qt(x|x̂)p(x̂)

qt+1(x|x̂) =
qt(x̂|x)e〈x,νt(x̂)〉∑
x′ qt(x̂|x′)e〈x

′,νt(x̂)〉
,

(39)

(40)

with νt(x̂) = ∇G∗x̂,t(x̂), and starting from any initial q0(x|x̂). By construction, the choice of qt(x̂|x) maximizes J901

for fixed qt(x|x̂), and qt+1(x|x̂) maximizes J for fixed qt(x̂|x), subject to their respective constraints. We thus have a902

sequence indexed by t of non-decreasing values for J , which converges whenever the maximum entropy is finite. The903

solution for the marginal distribution of X is then given by q(x) =
∑
x̂ q∞(x|x̂)p(x̂).904

B.1 Convergence to the global optimum905

In this section we will show that the alternating minimization algorithm defined by Eq. 39 and Eq. 40 converges906

to the global maximum of J [q(x|x̂), q(x̂|x)] for any initial choice of q0(x̂|x). We will do this using a geometric907

approach developed by Csiszár & Tusnády [15]†, which for example can be used to prove convergence to the global908

optimum for the alternating minimization algorithm proposed by Blahut [14] to find numerical solutions to the rate-909

distortion problem. First, note that maximizing J [q(x|x̂), q(x̂|x)] is equivalent to minimizing D [q(x|x̂), q(x̂|x)] =910

−J [q(x|x̂), q(x̂|x)]. Then by Theorems 1 and 2 of Csiszár & Tusnády [15], to show convergence to the global911

minimum via alternating minimizations of D it is sufficient to show that the “three points property” and “four points912

property” both hold for D and a choice of functional, δ.913

†See also Byrne [16] as a helpful reference.
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Definition 1. (From Csiszár & Tusnády [15]) Let δ [p, p′] be a non-negative valued function on P × P such that914

δ [p, p] = 0 for each p ∈ P . Given D and δ, for a p ∈ P the three points property holds if915

δ [p, pt+1] +D [pt+1, qt] ≤ D [p, qt] , (41)

whenever pt+1 = arg minpD [p, qt]. The four points property holds for a p ∈ P if for every q ∈ Q916

D [p, qt] ≤ δ [p, pt] +D [p, q] , (42)

whenever qt = arg minqD [pt, q].917

We will show that the three and four point properties hold for D and the following choice of δ,918

δ [q(x|x̂), q′(x|x̂)] =
∑

x̂

p(x̂)
∑

x

q(x|x̂) log
q(x|x̂)

q′(x|x̂)
. (43)

Non-negativity of Eq. 43 follows directly from the non-negativity of the KL-divergence and p(x̂), as does equality919

holding iff q(x|x̂) = q′(x|x̂).920

We will also make use of the fact that we can rewrite both the definition of δ given by Eq. 43 and D in terms of the921

following Bregman divergence,922

dψ(x‖y) =
∑

i

wi
∑

j

xij log
xij
yij
−

∑

i

wi
∑

j

(xij − yij), (44)

where wi are constant non-negative weights that sum to one, and xij , yij ≥ 0, not necessarily summing to one. In this923

case ψ is the strictly convex function ψ(x) =
∑
i wi

∑
j xij log xij . Then with wi = p(x̂), i indexing elements of X̂ ,924

and j indexing elements of X , we have that925

δ [q(x|x̂), q′(x|x̂)] = dψ(q(x|x̂)‖q′(x|x̂)), (45)

and926

D [q(x|x̂), q(x̂|x)] = −J [q(x|x̂), q(x̂|x)] , (46)

=
∑

x

∑

x̂

q(x|x̂)p(x̂) log
q(x|x̂)p(x̂)

q(x̂|x)
, (47)

=
∑

x̂

p(x̂)
∑

x

q(x|x̂) log
q(x|x̂)

q(x̂|x)
+

∑

x̂

p(x̂) log p(x̂), (48)

=
∑

x̂

p(x̂)
∑

x

q(x|x̂) log
q(x|x̂)

q(x̂|x)
−H(X̂)

−
[∑

x̂

p(x̂)
∑

x

(q(x|x̂)− q(x̂|x))

]
+

[∑

x̂

p(x̂)
∑

x

(q(x|x̂)− q(x̂|x))

]
, (49)

= dψ(q(x|x̂)‖q(x̂|x)) + 1−
∑

x̂

p(x̂)
∑

x

q(x̂|x)−H(X̂). (50)

Lemma 1. The three points property, δ [q(x|x̂), qt+1(x|x̂)] + D [qt+1(x|x̂), qt(x̂|x)] ≤ D [q(x|x̂), qt(x̂|x)], where927

qt+1(x|x̂) = arg minq(x|x̂)D [q(x|x̂), qt(x̂|x)], holds.928

Proof. Rewriting using Eq. 45 and Eq. 50, we must show that929

dψ(q(x|x̂)‖qt+1(x|x̂)) + dψ(qt+1(x|x̂)‖qt(x̂|x)) + 1−
∑

x̂

p(x̂)
∑

x

qt(x̂|x)−H(X̂) (51)

≤ dψ(q(x|x̂)‖qt(x̂|x)) + 1−
∑

x̂

p(x̂)
∑

x

qt(x̂|x)−H(X̂). (52)
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Cancelling, we need to show930

dψ(q(x|x̂)‖qt+1(x|x̂)) + dψ(qt+1(x|x̂)‖qt(x̂|x)) ≤ dψ(q(x|x̂)‖qt(x̂|x)), (53)

which follows immediately from the Generalized Pythagoras Theorem [3] and the fact that by construction solutions931

of Eq. 40 maximize J for fixed qt(x̂|x), so that932

qt+1(x|x̂) = arg min
q(x|x̂)

D [q(x|x̂), qt(x̂|x)] , (54)

= arg min
q(x|x̂)

dψ(q(x|x̂)‖qt(x̂|x)) + 1−
∑

x̂

p(x̂)
∑

x

qt(x̂|x)−H(X̂)

︸ ︷︷ ︸
constant

, (55)

= arg min
q(x|x̂)

dψ(q(x|x̂)‖qt(x̂|x)). (56)

�933

Lemma 2. The four points property, D [q(x|x̂), qt(x̂|x)] ≤ δ [q(x|x̂), qt(x|x̂)] +D [q(x|x̂), q(x̂|x)], where qt(x̂|x) =934

arg minq(x̂|x)D [qt(x|x̂), q(x̂|x)], holds.935

Proof. From the definitions of D and δ, we must show that936

∑

x̂

p(x̂)
∑

x

q(x|x̂) log
q(x|x̂)p(x̂)

qt(x̂|x)
≤

∑

x̂

p(x̂)q(x|x̂) log
q(x|x̂)

qt(x|x̂)
+

∑

x̂

p(x̂)
∑

x

q(x|x̂) log
q(x|x̂)p(x̂)

q(x̂|x)
. (57)

By subtraction, equivalently we must show that937

0 ≤
∑

x̂

p(x̂)q(x|x̂) log
q(x|x̂)

qt(x|x̂)
+
∑

x̂

p(x̂)
∑

x

q(x|x̂) log
qt(x̂|x)

q(x̂|x)
. (58)

Denoting qt(x) =
∑
x̂ qt(x|x̂)p(x̂), from Eq. 39 we have that qt(x̂|x) = qt(x|x̂)p(x̂)/qt(x). Then by substitution we938

have939

0 ≤
∑

x̂

p(x̂)q(x|x̂) log
q(x|x̂)

qt(x|x̂)
+

∑

x̂

p(x̂)
∑

x

q(x|x̂) log
qt(x|x̂)p(x̂)

q(x̂|x)qt(x)
, (59)

=
∑

x̂

p(x̂)q(x|x̂) log
q(x|x̂)p(x̂)

q(x̂|x)qt(x)
, (60)

=
∑

x̂

p(x̂)q(x|x̂) log
q(x)

qt(x)
, (61)

=
∑

x

q(x) log
q(x)

qt(x)
, (62)

where Eq. 61 follows from the fact that q(x) = q(x|x̂)p(x̂)/q(x̂|x), and Eq. 62 from the fact that q(x) =940 ∑
x̂ q(x|x̂)p(x̂). Then this is equivalent to the statement that 0 ≤ DKL [q(x)‖qt(x)], which is true by non-negativity941

of the KL-divergence. �942

Theorem 1. The sequence of alternating maximizations defined by Eq. 39 and Eq. 40 converges to the global maxi-943

mum of J [q(x|x̂), q(x̂|x)] for any initial choice of q0(x̂|x).944

Proof. Proof of Theorem B.1 follows from satisfying the five point property of Csiszár & Tusnády [15], which is945

implied by satisfying the three and four points properties from Lemma 1 and Lemma 2, respectively. �946
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B.2 Uniqueness947

In the previous section we showed that the solution found by the alternating maximization algorithm is globally948

optimal. Here we show that the optimal q(x) distribution is also unique.949

Theorem 2. The distribution q∗(x) =
∑
x̂ q
∗(x|x̂)p(x̂) for the q∗(x|x̂) achieving the maximum of J [q(x|x̂), q(x̂|x)]950

is unique.951

Proof. Assume q∗(x) is not unique, and there exists a distinct solution q′(x) that also achieves the maximum of952

J [q(x|x̂), q(x̂|x)] with q′(x|x̂). Then two things must be true.953

First, since q∗(x) and q′(x) are distinct, then 0 < DKL [q∗(x)‖q′(x)]. From the definition of the KL-divergence954

and using the fact that q(x) =
∑
x̂ q(x|x̂)p(x̂), we have that955

0 <
∑

x

∑

x̂

q∗(x|x̂)p(x̂) log
q∗(x)

q′(x)
. (63)

Since q(x) = q(x|x̂)p(x̂)/q(x̂|x) (for any choice of x̂), the definition q(x|x̂) from Eq. 40, and the equivalence of956

ν∗(x̂) = ν′(x̂) = ν(x̂), we have957

0 <
∑

x

∑

x̂

q∗(x|x̂)p(x̂) log

e〈x,ν(x̂)〉∑
x′ q
∗(x̂|x)e〈x′,ν(x̂)〉

e〈x,ν(x̂)〉∑
x′ q
′(x̂|x)e〈x′,ν(x̂)〉

, (64)

=
∑

x̂

p(x̂) log

∑
x′ q
′(x̂|x)e〈x′,ν(x̂)〉∑

x′ q
∗(x̂|x)e〈x′,ν(x̂)〉

, (65)

since after cancellation none of the terms depend on x except q∗(x|x̂), and
∑
x q
∗(x|x̂) = 1.958

Second, since both q∗(x) and q′(x) achieve the global optimum, we must have that J [q∗(x|x̂), q∗(x̂|x)] =959

J [q′(x|x̂), q′(x̂|x)]. Then after cancelling we have960

∑

x̂

p(x̂)
∑

x

q∗(x|x̂) log
q∗(x̂|x)

q∗(x|x̂)
=

∑

x̂

p(x̂)
∑

x

q′(x|x̂) log
q′(x̂|x)

q′(x|x̂)
. (66)

From the definition of q(x|x̂) in Eq. 40 and the equivalence of ν∗(x̂) = ν′(x̂) = ν(x̂),961

∑

x̂

p(x̂)
∑

x

q∗(x|x̂) log
e〈x,ν(x̂)〉∑

x′ q
∗(x̂|x)e〈x′,ν(x̂)〉

=
∑

x̂

p(x̂)
∑

x

q′(x|x̂) log
e〈x,ν(x̂)〉∑

x′ q
′(x̂|x)e〈x′,ν(x̂)〉

. (67)

Then, since
∑
x xq

∗(x|x̂) =
∑
x xq

′(x|x̂) = x̂, we can cancel the
∑
x̂ p(x̂)〈x̂, ν(x̂)〉 term from both sides, and using962

the fact that
∑
x q
∗(x|x̂) =

∑
x q
′(x|x̂) = 1, we have963

0 =
∑

x̂

p(x̂) log

∑
x′ q
′(x̂|x)e〈x′,ν(x̂)〉∑

x′ q
∗(x̂|x)e〈x′,ν(x̂)〉

. (68)

But this contradicts the inequality established by Eq. 65. Thus q∗(x) must be unique. �964

B.3 Example inference and comparison to prior work965

As an illustrative example, we present the results of the inverse inference method above for a known distribution of966

needs, p(x). This toy example allows us to study the properties of the inverse inference when the ground truth, p(x),967

is known. We also use this example to illustrate the difference between our inference method and inferences based968

on two prior methods in the literature. Rather than solving for the maximum entropy distribution consistent with a969

rate-distortion optimal vocabulary, the “capacity achieving prior” (CAP) method [7] assumes instead that the true p(x)970

will be one such that, given a vocabulary of term mappings p(x̂|x), we only ever need to communicate the x’s that are971
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maximally unambiguous to specify with that vocabulary. The CAP distribution is the one that achieves the maximum972

channel capacity for the given term map p(x̂|x) (the specification of the channel from X to X̂), i.e. satisfying973

pCAP(x) = arg max
q(x)

∑

x,x̂

p(x̂|x)q(x) log
p(x̂|x)

q(x̂)
, (69)

where q(x̂) =
∑
x′ p(x̂|x′)q(x′). This is a strong assumption in general, and when it is violated, as we will see in this974

section, the CAP provides a poor approximation of the true distribution p(x).975

We also compare our approach to the word-frequency method (here abbreviated WF) proposed in [17], which asks976

for the maximum entropy distribution pWF(x) that satisfies the linear constraints p(x̂) =
∑
x p(x̂|x)pWF(x). In other977

words, the WF method solves for the distribution of communicative needs consistent with a given term mapping,978

p(x̂|x), and known word frequencies, p(x̂). To understand what this does in practice, it is instructive to consider the979

case of “hard” clusters where p(x̂|x) equals either 1 or 0. In this case, we derive an analytical solution for the WF980

inference (see SI Sec. D.1), which is given by pWF(x) = p(x̂(x))/
∑
x′ p(x̂(x)|x′), where x̂(x) is the unique nonzero981

x̂ in p(x̂|x); i.e., the x̂ chosen for a given x. In effect, then, the WF method approximates communicative need by982

dividing the frequency of a given word, p(x̂), uniformly across its mapped domain. In the “soft” case, solutions983

behave similarly but with an additional factor accounting for “fuzzy” boundaries between x̂ domains. While this984

gives considerably more reasonable estimates of needs than the CAP approach, it depends on the availability of word985

frequencies, p(x̂), and it again requires knowledge of the term maps p(x̂|x); the former is unknown for almost all986

WCS languages, and the latter introduces circularity when aiming to predict term maps based on language-specific987

communicative needs.988

In our toy example x ∈ X covers the unit grid (n = 100× 100) with an arbitrary but specified distribution p(x), as989

shown in Fig. B1a (ground truth). The figure also shows the RDBC solutions for either 4 or 8 terms (Fig. B1a and B1b,990

respectively; this example uses squared Euclidean distance as the distortion measure). The ground truth distribution991

p(x) was chosen to be nonuniform, with a broad probability gradient from (0, 0) to (1, 1), and a smaller-scale low to992

high to low to high oscillation in probability along the x-axis. The RDBC centroids and Voronoi (nearest-centroid)993

regions show a non-uniform division of X into clusters (or “terms,” to link this to the terminology of the color naming994

problem), as a result of using a non-uniform p(x).995

Based on only the positions of the focal terms x̂ and the term frequencies p(x̂), our inverse method produces an996

estimate of p(x) that recapitulates the broad-scale features of the ground truth. The inverse inference performs well997

even with as few as 4 terms (Fig. B1a), with some additional, fine-scale details captured when inferring from 8 terms998

(Fig. B1b). By contrast, the distributions inferred by the CAP method, which are not based on x̂ and p(x̂) but instead999

require knowing the full term map p(x̂|x), deviate significantly from the ground truth (Fig. B1a and B1b; note different1000

scale).1001

In Fig. B1c, the entropy of inferred and CAP solutions are shown for a broader range of vocabulary sizes (from1002

2 to 10). The figure also quantifies the dissimilarity between the ground truth and the estimated distributions, based1003

on their KL-divergence. Successive iterations of the inverse inference algorithm show monotonic convergence to a1004

maximal entropy value that lies between the ground-truth entropy and the unconstrained maximum entropy distribu-1005

tion (uniform over X). Note there are only small differences between the maximum entropy values achieved when1006

varying the vocabulary size used (the equivalent of the number of color terms). While not directly constrained by the1007

inverse inference method, since the ground truth distribution is assumed unknown, the inverse method converges to1008

distributions that are very close to the true distribution. Solutions become closer to ground truth as the vocabulary size1009

increases, but even small vocabularies provide inferences that closely approximate the ground truth. By comparison,1010

CAP solutions have entropies that are substantially lower than the maximum or even the ground truth entropy, and they1011

are sensitive to vocabulary size. CAP solutions are orders of magnitude more divergent from ground truth, compared1012

to the results of the inverse inference method we have developed.1013

C Application to color categories1014

We use the inverse inference method of SI Sec. B to find the distributions of communicative need for empirical color1015

vocabularies via the following correspondence (outlined in Fig. 1c). In this application, the source, X , denotes the1016

visible colors that need to be communicated, which are the WCS stimuli set. Each WCS stimulus color, x, in the1017

set of WCS stimuli, X , has a position x in CIE Lab , a perceptually uniform color space. The unknown distribution1018

of communicative need we wish to infer is p(x). Our estimate of p(x) will be the one that best matches the known1019
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Figure B1. Example inference of the distribution, p(x), underlying a given rate-distortion solution. (a) An example rate-distortion vocabulary
(left) with 4 terms (black points show position of term centroids, x̂) giving a compressed representation of a dense square grid
(100 × 100) of elements X with distribution p(x) (middle-left “ground truth”). Using the positions, x̂, and probabilities, p(x̂),
of the vocabulary terms alone, the inverse algorithm infers distribution pinf(x) (middle-center), which approximates the main features
of the true distribution p(x) (same color scale). For comparison, we also show the distributions inferred under the word-frequency
(WF) method (middle-right) and the capacity achieving distribution (CAP, right). (b) The same example as in (a) but for an 8-term rate-
distortion vocabulary (grid and ground truth distributions are identical). (c) Evolution of the key quantities in the inference algorithm’s
iterative solutions to the example used in (a) & (b), for vocabulary sizes 2, 4, 8, and 16, with comparisons to WF and CAP used in prior
work. (Left) The entropy of the inferred distribution monotonically increases with each iteration of the inverse inference algorithm,
and converges to values between the true entropy (dotted line labeled “ground truth”) and the maximum entropy (dashed line labeled
“uniform”) for this example as expected. The entropy is reduced and approaches the true entropy as the number of terms is increased,
but only to a small degree compared to CAP. The adjacent figure with expanded y-axis shows converged values for inferred, WF,
and CAP distributions (circles, crosses, and triangle plotting symbols, respectively). CAP solutions have lower entropy than the true
distribution, are more sensitive to the number of vocabulary terms, and become increasingly different as the number of terms increases.
(Right) The KL-divergence between the inferred distribution and true distribution tends to decrease and converges to small values.
This is a consequence of matching the term centroids since the true distribution is not known to the inverse inference algorithm. The
adjacent figure compares the inferred, WF, and CAP distributions KL-divergence to the true distribution at convergence (log scale).
The distributions inferred by our method are close to the true distribution, and become even closer with increasing vocabulary size;
while the CAP distributions are far from the ground truth and become increasingly farther, even more so than uniform. The WF
solutions are sensitive to the number of terms available, and at 10 terms give solutions that are nearly a factor 3 further from ground
truth than our inferred solutions for 2 terms (0.04 vs. 0.014).
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position, x̂, of each “best-example,” or focal, color for each term, x̂, in the language’s color vocabulary, X̂ , and is1020

otherwise maximally unbiased (maximizes the entropy of the inferred distribution).1021

Intuitively, in the inverse inference procedure (SI Sec. B), the vectors ν(x̂) can be thought of as “pulling” on the1022

inferred distribution such that the inferred centroids match the position of the true centroids. In the example shown in1023

SI Sec. B.3, the positions of the true centroids lie in the interior of the boundary of all the x positions. To match prior1024

work and the WCS itself, we use the WCS color chips (Fig. 1a) as the support set for the inverse inference. Since1025

WCS participants selected focal colors from this same set, the average focal color position across participants could1026

lie on or near the boundary of the support set if there is high agreement among participants. To match these positions1027

with the given support set, the inverse method would be forced to “pull” with overly large magnitudes towards these1028

remote points, when this is just an artifact of the constraints on participants and the choice of support.1029

To check if this was the case, and to mitigate any impact it may have, we constrained the maximum magnitude1030

that any ν(x̂) could have, and varied this value as a parameter, λ. At λ = 0 the inverse method makes no attempt to1031

match the language centroids, and we recover only the uniform distribution over the WCS color chips. At λ = ∞,1032

we recover the unconstrained inverse inference method. At intermediate values of λ, pathologically large magnitudes1033

have limited impact on the inference. If indeed there are pathologically large magnitudes at play, then there should be1034

a large difference between the entropy at λ = ∞, where the inferred distribution becomes overly concentrated at the1035

problematic focal point, and at intermediate values of λ for which the nearly the same RMSE between inferred and1036

true focal points is achieved. Fig. C2a shows that this is exactly the case, and suggests that λ ≤ 0.25 is sufficient to1037

achieve RMSE’s close to the unconstrained solutions, while maintaining substantially higher entropies.1038

Note that RMSE is measured using the empirical focal points and the position of the focal points for the optimal1039

rate-distortion fit using the inferred distribution at a given value of λ. Rate-distortion solutions were found using the1040

standard alternating minimization algorithm (see Banerjee et al. [3]),1041





x̂t =
∑

x

xqt(x|x̂),

qt(x̂) =
∑

x

qt(x̂|x)p(x),

qt+1(x̂|x) =
qt(x̂)e−βd(x‖x̂t)∑
x̂′ qt(x̂

′)e−βd(x‖x̂
′
t)
,

(70)

(71)

(72)

where qt(x|x̂) = qt(x̂|x)p(x)/
∑
x′ qt(x̂|x′)p(x′), and β is a parameter that acts as an “inverse temperature,” control-1042

ling the “softness” (low values of β) or “hardness” (high values) of the boundaries between terms given by p(x̂|x).1043

Since RDBC solutions are not unique, we run the algorithm starting from many different initial conditions (initial1044

x̂ positions drawn uniformly at random from the set of WCS color chips) until convergence (change in x̂ positions1045

between iterations is < 1× 10−5 or the maximum number of iterations is reached; max iterations 1× 104 used in1046

searches for the optimal value of β; max iterations 5× 104 for calculation of RDBC solution using the optimal value1047

β), and keep the solution with lowest mean squared error. We used a standard derivative-free nonlinear optimiza-1048

tion method (bound optimization by quadratic approximation [18], via the nloptr (v1.2.1) package for R v3.6.3) to1049

search for lowest mean squared error values of β.1050

For each B&K+WCS language, the minimal RMSE for inverse inference with λ ≤ 0.25 is shown in Fig. C2b1051

(y-axis), and compared with the minimal RMSE (same optimization procedure for non-unique RDBC solutions and1052

choice of β) for uniform (x-axis). In all cases, use of the inferred distribution reduces RMSE compared to uniform1053

(all points below 1–1 line). As useful references, we quantified the RMSE for within-language variability in focal1054

point positions among participants (via bootstrap resampling of participant responses and measuring their RMSE with1055

respect to the mean focal point positions for that language), as well as the RMSE when all terms are off by one WCS1056

color chip. Most inferred distribution RMSE’s are between the median values of these two reference quantities, which1057

is not the case for uniform.1058

Similarly, in Fig. C2c we show the absolute improvement in term map predictions for the WCS languages shown in1059

Fig. 3b, comparing the Earth mover’s distance (EMD) between predicted and empirical term maps based on inferred1060

(y-axis) and uniform (x-axis) distributions. WCS languages were used for term map comparisons both for the ability to1061

resample from among speaker responses (the B&K data surveyed only one speaker per language) to assess confidence1062

intervals on improvement in Fig. 3b, and because the B&K study design substantially differed methodologically from1063

the WCS in the color naming task.† In the WCS color naming was assayed for each color chip, whereas in B&K1064

†The focal color assays of B&K and the WCS were essentially the same, however. Hence the inclusion of both data sets in other analyses where
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participants selected chips out of the full set of stimuli [19]. While the B&K term maps are related to p(x̂|x), they1065

are not straightforward estimates of p(x̂|x) as in the WCS, and behave qualitatively differently. As useful reference1066

points, we computed the EMD between empirical vocabularies and rotations thereof, approximated by cycling WCS1067

columns 2:41. This transform preserves the structure of each vocabulary while increasing the displacement (in hue)1068

between the true and rotated terms, and has been used in prior work on color naming [6]. Here it provides a more1069

meaningful distance scale for the EMD measurements than e.g. chip-wise randomization.1070
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Figure C2. Application of inverse inference algorithm to WCS. (a) In the constrained-maximum version of the inverse inference method, small
values of the inverse tolerance parameter, λ, (x-axis) can achieve values of RMSE (mean and 95% confidence intervals shown scaled
relative to uniform) comparable to the non-relaxed inverse inference (λ =∞), while maintaining a much higher entropy (shown scaled
relative to uniform). (b) RMSE between rate-distortion optimal vocabularies under inferred distribution, pinf(x), (y-axis) and empiri-
cal ground truth, compared to RMSE under uniform distirbution, punif(x), (x-axis). All points lie below 1–1 line (black), showing that
inferred strictly improves over uniform for matching focal point posisitions. Regions bounded by reference lines for median RMSE
from within-language variability in focal point position (“WCS variability”) and median all focal point positions off-by-one WCS
chip (“off-by-one”) are shown overlapping in green. (c) Average Earth mover’s distance (EMD) between rate-distortion predicted and
empirically observed term maps for each WCS language vocabulary under a uniform distribution of communicative need (x-axis) or
the language inferred distribution (y-axis). Reference lines at ±1, ±3, and ±5 chips show the median EMD across languages com-
paring empirically observed languages to themselves ± a rotation in hue (rotation of WCS columns 1:40). (d) Sensitivity of inferred
language-specific communicative needs to the assumption of uniform term frequencies, p(x̂). Mean and standard deviation Wasser-
stein distance is shown between inferred distributions under a uniform p(x̂) and an asymmetric (“skewed”) distribution constructed
with varying ratios of max p(x̂) to min p(x̂) (x-axis). Reference line (blue) shows median Wasserstein distance and 95% CI between
inferred distributions derived from language mean focal color position and focal colors resampled from language speaker responses
(based on WCS languages).

C.1 RMSE reference points1071

We provide three points of comparison for the RMSE distributions shown in Fig. 2b. First, the “WCS variability”1072

reference line was computed by resampling participant focal point choices by language, recomputing the mean focal1073

point across resampled participants, and measuring the RMSE between the recomputed focal points and the actual1074

language focal points. We used the median computed RMSE as a useful reference point approximating a lower1075

bound on how well predicted focal points might be expected to perform. Second, the “off-by-one” reference line1076

was computed by repeatedly offsetting each focal point by one WCS chip sampled uniformly at random from the1077

neighborhood of WCS color chips in Fig. 1a and measuring the RMSE between the set of perturbed focal points1078

for a language and the actual focal points. The median computed RMSE in this case gives an intermediate point1079

of comparison for predicted focal point RMSE distributions. Third, the “random” reference line was computed by1080

resampling each language’s focal points from the WCS color chips uniformly at random without replacement, then1081

assigning each resampled focal point to the nearest true focal point, and measuring the RMSE of the two sets of focal1082

points under this assignment. This gives an approximate upper bound on how poorly a predicted set of focal points1083

might perform, using the same procedure for assigning predicted focal points under the rate-distortion model to actual1084

language focal points.1085

only focal color estimates are necessary.
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C.2 Sensitivity of inferred distributions to term frequencies, p(x̂)1086

The inverse inference algorithm uses the frequency of vocabulary terms, p(x̂), as part of the inference process for1087

determining p(x). This information is not available for color vocabularies in the B&K and WCS datasets, and further1088

field work would be required to estimate these quantities directly (with the additional caveat that vocabularies may1089

have changed since having been originally surveyed). And so the present work uses the simplifying assumption of a1090

uniform p(x̂). This is a reasonable approximation, given the WCS selection criteria for basic color terms and evidence1091

in English that basic color terms are elicited with approximately equal frequency under a free naming task [10]. Nev-1092

ertheless, to investigate the sensitivity of inferred distributions to this choice, we compared inferred distributions under1093

increasingly asymmetric (“skewed”) distributions for p(x̂), sampled from a linearly increasing set of probabilities be-1094

tween the minimum and maximum p(x̂). Fig. C2d shows the Wasserstein distance between the inferred distributions1095

under uniform p(x̂) and the skewed distribution as a function of the ratio between the maximum and minimum p(x̂).1096

As a useful reference point, we computed the median Wasserstein distance between inferred distributions under the1097

uniform p(x̂) assumption re-sampled from the WCS language speaker populations. Ratios in usage greater than ap-1098

proximately 1.5 would be needed before non-uniformity would begin to have a more significant impact on inferred1099

distributions than the among-speaker variability inherent in the data. While this suggests the choice of a uniform p(x̂)1100

is reasonable to a first approximation, the extent to which this assumption of uniformity may be violated in some1101

languages remains an open, but potentially tractable, question for future field work.1102

C.3 Sensitivity of inferred distributions to vocabulary size, |X̂ |1103

Under the rate distortion hypothesis, color vocabularies optimize the information a listener can infer about the color1104

being referenced, based on the color term chosen by a speaker. Because there are far fewer terms than perceivable1105

colors, there is by necessity some loss of information caused by the compression of colors into terms. As a result,1106

the size of a vocabulary (number of terms) should have some impact on our ability to infer the underlying distribution1107

of communicative needs, p(x): larger vocabularies should provide more resolution and more detail in the inferred1108

distribution. For the B&K+WCS languages, we can expect that fewer terms will result in the recovery of only broad-1109

scale features of a language’s communicative needs, while more terms allow for additional detail.1110

This effect is demonstrated in Figure C3a. Here we generated rate-distortion efficient vocabularies for simulated1111

languages, each generated from the same underlying distribution of underlying communicative needs and differing1112

only in the number of color terms. We then inferred the distribution of needs from the simulated focal color positions,1113

using our inverse inference method. As expected, we find that having more color terms allows for more detail to1114

be recovered in the inferred distribution of needs, although the results are qualitatively similar across a range of1115

vocabulary sizes.1116

We also investigated the relationship between vocabulary size and inferred needs in more systematic detail. To1117

do so, we again generated rate-distortion efficient vocabularies for pairs of languages sharing the same underlying1118

communicative needs and differing only in vocabulary size. We used the B&K+WCS average inferred distribution as1119

a “ground truth,” and the number of terms in each simulated vocabulary was restricted to the range of terms found in1120

the B&K+WCS data. We then inferred the communicative needs for each simulated vocabulary in the pair, and we1121

measured their Wasserstein distance. Figure C3b shows a small but statistically significant impact of differences in1122

vocabulary size on the measured distance between inferred distributions of need – which arises because vocabulary1123

size has an impact on the resolution of the inference. For comparison to these simulations, in which the underlying1124

needs are kept constant, we also plotted the distances between inferred needs measured in the empirical data, for1125

all pairs of B&K+WCS languages. The empirical distances between inferred needs are much larger than can be1126

explained by the simulated data. These results imply that differences in vocabulary size alone cannot explain the1127

large differences observed among B&K+WCS inferred communicative needs. Moreover, the relationship between1128

differences in vocabulary size and differences in inferred needs has substantially greater magnitude in the empirical1129

data than in the simulated languages. This suggests that there may be typical ways in which communicative needs1130

evolve as the vocabularies of languages change in size – which is an interesting hypothesis for future study.1131

C.4 Capacity achieving distributions for individual WCS languages1132

The capacity achieving distributions, which are referred to as priors (CAP) in the literature, should not in general be1133

expected to approximate the true distribution of communicative need, as shown in SI Sec. B.3. Here we reproduce1134

24

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 7, 2021. ; https://doi.org/10.1101/2020.09.29.319517doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.29.319517
http://creativecommons.org/licenses/by-nc-nd/4.0/


a 3 terms

J

I

H

G

F

E

D

C

B

A

4 terms

J

I

H

G

F

E

D

C

B

A

5 terms

J

I

H

G

F

E

D

C

B

A

6 terms

J

I

H

G

F

E

D

C

B

A

7 terms

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

J

I

H

G

F

E

D

C

B

A

−7

−6

−5

−4

−3
log p(x) b

0 2 4 6 8 10 12 14

simulated

0

5

10

15

20

25

30

35

40

W
D

∆ num. terms

●●●●●●●●●●●●●●●

θ = 0.18

0 2 4 6 8 10 12 14

empirical

0

5

10

15

20

25

30

35

40

●●
●●●●●

●●
●

●
●

●●●

θ = 0.58

Figure C3. Sensitivity to number of color terms. (a) Average inferred distributions of communicative need for rate-distortion optimal vo-
cabularies simulated with different numbers of terms but the same underlying communicative need (the B&K+WCS average inferred
distribution). A larger number of terms provides more resolution and detail in the inferred distribution of needs, but the inferred
distributions are nonetheless qualitatively the same. (b) Simulated (left) and empirical (right) Wasserstein distances (WD) between
inferred distributions of need for pairs of languages, shown as a function of the difference in the number of their terms (∆ num. terms,
white points show mean WD for each ∆ num. terms). Differences in inferred communicative needs (WD) are substantially smaller in
the simulations, which isolate the effects attributable to vocabulary size alone, compared to the differences observed among empirical
languages (red and blue bands show 90% extent of simulated and empirical distances, respectively). Also, the relationship between
vocabulary size and differences in inferred needs (WD) is substantially smaller (slope of linear regression θ = 0.18, red line) in the
simulated data with a single shared distribution of needs, compared to the relationship observed in the empirical data (slope θ = 0.58,
blue line).

the average CAP across the WCS languages reported in Zaslavsky et al. [7, 17]. The average CAP differs by several1135

orders of magnitude from the average distribution p(x) inferred in this paper (Fig. C4a). The language-specific CAP’s1136

for Waorani and Martu-Wangka are shown in Fig. C4b: they each differ radically from the communicative needs we1137

estimate by our inference method. The CAP distributions feature implausible variation in communicative need across1138

nearby colors.1139

C.5 Field work variability1140

Variability in how the field work for the WCS was conducted for different languages does not appear to explain the in-1141

stances of non-improvement in Fig. 3b term map predictions. For the WCS, native speakers were asked to use only the1142

basic color terms of their language, as previously identified according to a set of specific linguistic criteria. However1143

in some cases it seems that native speakers apparently were not so constrained, either by experimenter or participant1144

choice. Based on the identification of these two modes in the WCS by Gibson et al. [20] in their supplementary mate-1145

rials, there was no apparent relationship between the choice of methodology and a language showing improvement or1146

no improvement under the inferred distribution vs. uniform.1147

C.6 Potential correlates of communicative needs1148

Here we consider possible correlates of the communicative needs we infer, based on proxy measures and potential1149

confounds suggested by prior work.1150
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Figure C4. Comparison to the capacity maximizing distributions (“capacity achieving priors”) for WCS languages. (a) (Top) Approximate
replication of Fig. 3a from Zaslavsky et al. [17] showing capacity achieving prior (CAP) averaged across WCS languages (here we
include all WCS languages; some were excluded in Zaslavsky et al. [17]). (Bottom) The difference between the average CAP and
average prior we infer (see Fig. 2a) ranges over several orders of magnitude (log scale). (b) CAP distributions for two languages used
as examples in Fig. 5a (note different scale). Under the CAP inference, two neighboring Munsell color chips may exhibit a 10300-fold
difference in communicative need.
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Figure C5. Results for WCS languages previously identified in the literature as possible outliers. RDBC results shown for the languages
labeled in Fig. 3b (Pirahá shown in Fig. 2c). Prior work has hypothesized that Pirahá [21], Warlpiri [22], Waorani [23], and Karajá
[23], may be exceptions in some way to the broad trends identified in the WCS. All but Warlpiri appear to be substantially improved
when we account for language specific communicative needs.
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Figure C6. Treatment of Sumner & Mollon fruit chromaticity measurements. (a) Empirical cumulative distribution function (ECDF) of the
change in fruit chromaticity between unripe and ripe states. Not all fruits signal ripeness by a change in chromaticity [24, 25]; other
indicators may include size or smell. For each species collected by Sumner & Mollon having at least one measurement in each of
the ‘unripe’ and ‘ripe’ classifications, the species’ chromaticity measurements is included in our analysis (Fig. 4c & d if the CIE Lab
difference (∆E?) between the mean unripe and ripe measurements is greater than a threshold (red vertical line). This threshold is
determined by the minimum ∆E of a subset of the species measurements for which we could establish a significant change in mean
CIE Lab coordinates at the p < 0.01 level based on a Hotelling T2 test. (b) After conversion from spectral measurements to CIE
Lab coordinates, the final step is to find the nearest WCS color chip in CIE Lab space. The WCS color chips form a high-saturation
outer shell of the Munsell color array, privileging lightness (L) and hue angle over saturation. We adopt this same choice by selecting
nearest neighbors based on L and hue angle (i.e. normalizing the (a?, b?) position sub-vector), ignoring saturation. (c) The choice of
matching by projection rather than directly by ∆E?better constrains the difference in lightness (L) and hue (h) between the matched
WCS color chips and the true CIE Lab coordinates, with the tradeoff of a small increase in the overal mean ∆E?(35.5 vs. 44.7).
However this tradeoff appears to be necessary to make meaningful comparisons between fruit ripeness categories; without projection
there is substantial variation in the residuals as a function of L and h. Box-plots show median and first and third quartiles; whiskers
extend to the minimum (maximum) up to 1.5 times the interquartile range, with outliers shown as individual points.
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Figure C7. Diagnostics for GLMM of differences in communicative need between languages. (Left) Uniform quantile–quantile (QQ) plot
of expected vs. observed GLMM model residuals. (Middle) Rank transformed model predicted values (pred) vs. residuals (res), with
quantile regressions (red lines) compared to theoretical quantiles (dashed white lines at 0.25, 0.50, and 0.75); simulation outliers
shown as red stars. (Right) Fixed effect coefficients and 95% confidence intervals for geodesic distance (Haversine method; standard-
ized units), shared linguistic family (TRUE=1, FALSE=0), and shared ecoregion (TRUE=1, FALSE=0). Positive coefficients indicate
an increase in dissimilarity (increase in Wasserstein distance), while negative coefficients indicate a decrease. Out of n = 1252 lan-
guage pairs, 73% and 60% shared the same linguistic family or ecoregion, respectively. Variance inflation factors (VIFs) for distance,
family, and ecoregion were 1.291, 1.219, 1.149, respectively. All VIFs are less than 5, showing low multicollinearity.
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C.6.1 Communicative efficiency (surprisal)1151

Gibson et al. [20] sought to understand communicative needs by estimating communicative efficiency, or surprisal,1152

defined as1153

S(x) = −
∑

x̂

p(x̂|x) log p(x|x̂), (73)

(Eq. 1 of Gibson et al. 2017), where x are color stimuli (i.e. the WCS color chips), x̂ are color terms, and1154

p(x|x̂) ∝ p(x̂|x) by Bayes rule under the assumption of a uniform p(x). This is distinct from our work, where1155

by “communicative needs” we in fact mean the quantity p(x) – namely, the chance that a speaker needs to reference1156

color x – which we infer directly for individual languages by maximum entropy (SI Sec. B). Nevertheless, we can1157

ask whether surprisal S(x) is predictive of the language-specific communicative needs we infer. While we do find a1158

moderate positive correlation (Pearson’s ρ = 0.41; n = 36,300; see SI Fig. C8a), the vast majority of variance in needs1159

p(x) remains unexplained (1 − R2 = 0.83). The substantial differences between these two quantities explains why1160

the needs that we infer have a comparatively weak correlation with the warm-cool trend in colors of salient objects,1161

whereas the warm-cool trend is stronger for the surprisal measure.1162

C.6.2 Color saturation (chroma)1163

The WCS color chip stimuli were chosen to cover a range of Munsell lightness values and hues at approximately1164

maximal “saturation” (Munsell chroma). Maximal color saturation, or chroma, thus varies as a function of Munsell1165

lightness value and hue for these stimuli. Our inference of communicative needs depends on the positions of color1166

chips used in the WCS. One concern, then, might be that the variation in color saturation, or chroma, in some way1167

directly determines our inferred communicative needs. If this were the case, then we would expect to find a systematic1168

relationship between inferred language-specific communicative needs and Munsell chroma. But we do not find any1169

systematic relationship (SI Fig. C8b), even though the highest values of chroma tend to correspond to high values of1170

p(x). This relationship for high chroma values may reflect the observation that participants choice of focal colors can1171

be biased towards highly saturated colors [26]. Or it could alternatively, or additionally, reflect a common cause in the1172

determinants of communicative needs and perceptual discrimination.1173
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Figure C8. Relationship of inferred language-specific communicative needs to surprisal (Gibson et al. 2017) and color saturation of WCS
stimuli (Munsell chroma). (a) Surprisal is moderately correlated, but not strongly predictive, of inferred communicative needs. Red
line and legend show linear relationship between standardized rank values; light-red area indicates 95% prediction interval. Points
show average (over languages) standardized rank inferred communicative needs (y-axis) compared with average (over languages)
standardized rank surprisal (x-axis) for each WCS color chip. (b) Munsell chroma (color saturation) of WCS stimuli are not predictive
of language-specific inferred communicative needs. Red line and legend describe linear relationship based on 110 languages and
330 color chips per language; n = 36,300 total comparisons. Points show the Munsell chroma (+ jitter; x-axis) and average (over
languages) standardized rank inferred communicative needs for each WCS color chip (y-axis). Standardized ranks are computed per
language. The total number of WCS color chips of each Munsell chroma used in the WCS is shown at top. Blue points show expected
values of inferred communicative needs by Munsell chroma. Expected values are poor summaries for intermediate chroma values due
to multi-modality.
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D Comparison to alternative approaches1174

In this section we provide additional discussion and comparison of our approach to inferring communicative needs1175

with prior approaches. While past work proposed methods in the context of approximating a single, global distribution1176

of need [7, 17, 27], it is reasonable to consider whether or not those approaches could also be used to estimate1177

language-specific needs. First, for intuition, we provide a brief derivation of an analytical solution to Zaslavsky et1178

al.’s word-frequency (WF) approach [17] for the special case of “hard” category boundaries, i.e. p(x̂|x) equal to either1179

1 or 0 only. Second, we give illustrative examples comparing our approach with that of WF [17] and CAP [7] for1180

inference of communicative needs and prediction of color naming maps. Finally, we provide a systematic comparison1181

of estimation methods for communicative needs when word frequencies are unknown (which is the case for almost all1182

languages in the WCS).1183

D.1 Analytical solution for a special case of the WF method1184

The WF method [17] approximates communicative needs by finding the maximum entropy distribution over colors, x,1185

such that the marginalization of the joint distribution formed by measured term maps, p(x̂|x), and estimated pWF(x),1186

matches the measured word frequencies, p(x̂); i.e., such that p(x̂) =
∑
x p(x̂|x)pWF(x). The method assumes that1187

word frequencies p(x̂) are known. By Lagrange multipliers, one can show that solutions (for “hard” or “soft” condi-1188

tions), must have the form pWF(x) ∝ exp [
∑
x̂ ν(x̂)p(x̂|x)], where the constant of proportionality normalizes pWF(x),1189

and ν(x̂) are Lagrange multipliers that need to be chosen to enforce the constraint that p(x̂) =
∑
x p(x̂|x)pWF(x).1190

Let µ be the constant of proportionality; in the case of hard clustering, let x̂(x) denote the one nonzero x̂ for a given1191

x’s p(x̂|x) distribution; and with a slight abuse of notation, let x ∈ x̂ indicate the set of all x s.t. p(x̂|x) = 1. Then for1192

hard clustering we can decompose the constraint into two parts,1193

p(x̂) =
∑

x∈x̂

p(x̂|x)µ−1eν(x̂)p(x̂|x) +
∑

x/∈x̂

p(x̂|x)µ−1eν(x̂(x))p(x̂(x)|x), (74)

= µ−1eν(x̂)
∑

x∈x̂

p(x̂|x), (75)

ν(x̂) = log
p(x̂)µ∑
x∈x̂ p(x̂|x)

, (76)

where the second step follows because (for hard clustering) p(x̂|x) = 1 for any x ∈ x̂ and = 0 for any x /∈ x̂. Then1194

after plugging this into the form of the solution and cancelling out µ, we have1195

pWF(x) =
p(x̂(x))∑

x′∈x̂(x) p(x̂(x)|x′) , (77)

where the denominator simplifies to
∑′
x p(x̂(x)|x′) = |{x ∈ x̂}|. In words, the maximum entropy solution for hard1196

clustering under the WF constraints simply apportions the frequency of a word, p(x̂), evenly across its domain as1197

given by p(x̂|x). This analytical solution for the hard clustering case gives a helpful intuition for understanding the1198

performance of WF more generally, as we describe in the subsequent two sections.1199

D.2 Illustrative comparison of approaches for language-specific needs1200

Here, we consider two illustrative examples of our inference method and model predictions in comparison to past1201

work, where the ground truth is known. For each example, we generated a simple, arbitrary ground truth distribution1202

of communicative needs over a unit square domain. (We consider a comparison across a more diverse set of system-1203

atically generated examples in the subsequent section, SI Section D.3). In the first example, shown in SI Fig. D9a,1204

the true distribution of communicative needs has a maximum near the top right, and a minimum near the bottom left.1205

The ground truth RDBC for this example provides just three categories (centroids and largest-likelihood p(x̂|x) shown1206

with unique colors). Without using knowledge of the term map, p(x̂|x), our inference method is able to recover the1207

coarse features of the true distribution of needs. The WF method approximately evenly divides the frequency of each1208

term, p(x̂), across its mapped domain, p(x̂|x), similar to the “hard” partitioning case solved analytically in SI Sec-1209

tion D.1. The CAP method exponentially concentrates probability mass away from the boundaries between terms (all1210

distributions in SI Fig. D9 are shown on a log scale).1211
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Figure D9. Comparison of methods for inference of communicative needs and prediction of term maps, when the ground truth is known.
(a) A rate-distortion optimal “vocabulary” with three terms for the unit square is shown at top-left, with category centroids (points)
and best-choice term maps (colored regions). The true distribution of communicative needs, p(x), is shown in the middle row (ground
truth). Our inference method (second column) takes as input the category centroids and, if available, their frequencies, p(x̂), and
produces an estimate of communicative need (middle row, same column). Our model of color naming then predicts term maps (bottom
row, same column) using the inferred communicative need. Inferences based on the word-frequency based approach of Zaslavsky et al.
[17] (third column), and the CAP approach of Zaslavsky et al. [7] (fourth column) do not accurately reconstruct the true distribution of
needs. These two methods each use the IB model for prediction of term maps. Note that for language-specific communicative needs,
term maps would necessarily be inputs for both the WF and CAP methods, leading to circularity in prediction of term maps. (b) A
seven-term vocabulary example.

In these examples, the ground truth rate-distortion Bregman clustering (RDBC) is based on a squared-error measure1212

of distortion. It then seems surprising that predictions of term maps using the CAP distribution, which does not well1213

approximate the ground truth communicative need distribution, nonetheless closely resemble the true term mapping,1214

p(x̂|x), when using with the information bottleneck (IB) model proposed in Zaslavsky et al. [7]. Under the IB model,1215

categories are not characterized by a centroid at a single point in space, but by a distribution over all points in space,1216

which gives a large degree of additional flexibility. When coupled with language-specific inferences based on e.g. CAP,1217

this evidently allows for recovery of the ground truth term maps despite the difference between the true generative1218

process (based on centroids at single points in space with distortion measured by squared-error between points) in this1219

example and the process specified by the IB model (based on mixtures of Gaussians over all points in space, with1220

distortion measured by the KL-divergence between Gaussian mixtures). More critically, the requirement of empirical1221

term maps, p(x̂|x), as inputs for both the CAP and WF approaches necessarily leads to circularity if these methods are1222

then used for predicting language term maps based on language-specific inferences of communicative need.1223

D.3 Systematic comparison of approaches for language-specific needs1224

The examples shown in SI Fig. D9 and earlier in SI Fig. B1 illustrate the relative performance of our method, the1225

WF approach, and CAP, under a few ideal test conditions. Next, we conduct a systematic investigation of these1226

three methods controlling for the level of spatial detail in the ground truth distributions of communicative need, and1227

withholding information about p(x̂), which is unknown for virtually all WCS languages, from all inference methods.1228

Ground truth distributions were generated on a log scale from sinusoids with random phase and amplitude below a1229

given spatial frequency. Distributions were scaled such that entropy was held constant across all generated examples1230

for all spatial frequency cutoffs. This scaling fixes the KL-divergence between each generated ground truth distribution1231

and uniformity at a constant, providing a consistent scale across examples.1232

SI Fig. D10 shows the KL-divergence between the distributions of communicative need recovered by each method1233

and the generated ground truth distribution, as a percentage of the divergence between uniformity and ground truth,1234
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with unknown word frequencies
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Figure D10. Systematic comparison of inference methods for language-specific communicative needs when word frequencies are unknown
(e.g. in the WCS). Ground truth distributions of communicative need were generated with spatial variation up to a given cutoff spatial
frequency (x-axis), and scaled such that the entropy was held constant across all generated examples. Accuracy of inference (y-axis;
lower is better) is measured as the KL-divergence between inferred versus ground truth communicative needs, for each example,
expressed as a percentage of the KL-divergence between uniform and ground truth (dashed line at 100%). Curves are shown for
inferences based on rate-distortion vocabularies for 2, 4, 6, 8, and 10 “words” (number of categories), when word-frequencies are
unknown. (a) Inferences using the method proposed in this paper (Twomey et al); (b) based on the word-frequency (WF) method
of Zaslavsky et al. [17]; and (c) based on the CAP approach of Zaslavsky et al. [7]. For language-specific inferences, our method
achieves high accuracy for recovering low-frequency information about the true communicative need, and it does so in a manner that
is invariant to the number of available “words” (categories).

averaged over 500 examples at each spatial frequency cutoff. Our method (SI Fig. D10a) recovers the low-frequency1235

features of the ground truth distribution even when p(x̂) is unknown (assumed uniform) and in a manner that is1236

relatively insensitive to the number of categories (number of terms) of the RDBC on which it is based. High-frequency1237

information is lost, as expected, though recovery of low-frequency information across all spatial frequency cutoffs1238

always improves estimates over uniform.1239

By contrast, the WF method (SI Fig. D10b) is highly sensitive to the number of categories available to it through1240

p(x̂|x), and it requires a large number of categories to improve by even 40% over uniform when p(x̂) is unknown (as-1241

sumed uniform). High spatial frequency information is lost, and when word frequencies are unknown this apparently1242

inhibits recovery of low-frequency information as well. Performance at intermediate scales can approach our method1243

for large enough vocabularies (number of categories), but even at these scales our method provides consistently better1244

performance across vocabulary sizes. Inferences by CAP (SI Fig. D10c) never improve over uniform and they are1245

highly sensitive to vocabulary size (number of categories).1246
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inferred p(x) for Agarabi (Trans−New Guinea family; Papua New Guinea)
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inferred p(x) for Agta (Austronesian family; Philippines)
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significant differences between average and inferred p(x) for Aguacatec
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inferred p(x) for Aguacatec (Mayan family; Guatemala)

●

●

●

●

●

●

●

●

●

num. foci = 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

J

I

H

G

F

E

D

C

B

A

−13.0

−10.2

−7.5

−4.8

−2.0

log p(x)

significant differences between average and inferred p(x) for Amarakaeri
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inferred p(x) for Amarakaeri (Arawakan family; Peru)

●

●

●

●

●

●

●

num. foci = 7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

J

I

H

G

F

E

D

C

B

A

−13.0

−10.2

−7.5

−4.8

−2.0

log p(x)

significant differences between average and inferred p(x) for Ampeeli
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inferred p(x) for Ampeeli (Angan family; Papua New Guinea)
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significant differences between average and inferred p(x) for Amuzgo
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inferred p(x) for Amuzgo (Oto−Manguean family; Mexico)
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●

●

●

●

●

●

●

num. foci = 7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

J

I

H

G

F

E

D

C

B

A

−13.0

−10.2

−7.5

−4.8

−2.0

log p(x)

Figure E11. Inferred communicative needs for 130 languages on a common scale. Each row corresponds to a language in the combined WCS+B&K survey data.
(Left column) Significant differences between language-specific and across-language average communicative needs, shown as in Fig. 5. Deviations that
exceed σ/2 with 95% confidence are highlighted in red (elevated) or blue (suppressed). (Right column) Language-specific communicative needs (log scale)
shown with language focal color positions projected on to the WCS color chips (white points). Focal points may overlap on the same color chip.
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significant differences between average and inferred p(x) for Arabela
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inferred p(x) for Arabela (Zaparoan family; Peru)
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significant differences between average and inferred p(x) for Bahinemo
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inferred p(x) for Bahinemo (Sepik Hill family; Papua New Guinea)
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significant differences between average and inferred p(x) for Bauzi
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inferred p(x) for Bauzi (Geelvink Bay family; Indonesia)
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significant differences between average and inferred p(x) for Berik

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

J

I

H

G

F

E

D

C

B

A

inferred p(x) for Berik (Trans−New Guinea family; Indonesia)

●

●

●

●

●

●

num. foci = 6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

J

I

H

G

F

E

D

C

B

A

−13.0

−10.2

−7.5

−4.8

−2.0

log p(x)

significant differences between average and inferred p(x) for Bété
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inferred p(x) for Bété (Kru family; Ivory Coast)
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significant differences between average and inferred p(x) for Bhili
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inferred p(x) for Bhili (Indic family; India)
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significant differences between average and inferred p(x) for Buglere
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inferred p(x) for Buglere (Chibchan family; Panama)
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Figure E12. Inferred communicative needs for 130 languages on a common scale (continued).
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significant differences between average and inferred p(x) for Cakchiquel
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inferred p(x) for Cakchiquel (Mayan family; Guatemala)
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significant differences between average and inferred p(x) for Campa
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inferred p(x) for Campa (Arawakan family; Peru)
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significant differences between average and inferred p(x) for Camsa
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inferred p(x) for Camsa (Camsa family; Columbia)
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significant differences between average and inferred p(x) for Candoshi
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inferred p(x) for Candoshi (Jivaroan family; Peru)
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significant differences between average and inferred p(x) for Cavineña
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inferred p(x) for Cavineña (Tacanan family; Bolivia)
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significant differences between average and inferred p(x) for Cayapa
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inferred p(x) for Cayapa (Barbacoan−Paezan family; Ecuador)
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significant differences between average and inferred p(x) for Chácobo
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inferred p(x) for Chácobo (Panoan family; Bolivia)
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significant differences between average and inferred p(x) for Chavacano (Zamboangueño)
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inferred p(x) for Chavacano (Zamboangueño) ([creole] family; Philippines)
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Figure E13. Inferred communicative needs for 130 languages on a common scale (continued).
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significant differences between average and inferred p(x) for Chayahuita
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inferred p(x) for Chayahuita (Chayahuita (Jivaroan?) family; Peru)
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significant differences between average and inferred p(x) for Chinantec
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inferred p(x) for Chinantec (Oto−Manguean family; Mexico)

●

●

●

●

●

●

●

●
num. foci = 8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

J

I

H

G

F

E

D

C

B

A

−13.0

−10.2

−7.5

−4.8

−2.0

log p(x)

significant differences between average and inferred p(x) for Chiquitano
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inferred p(x) for Chiquitano (Macro−Ge family; Bolivia)
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significant differences between average and inferred p(x) for Chumburu
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inferred p(x) for Chumburu (Chumburung family; Ghana)
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significant differences between average and inferred p(x) for Cofán
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inferred p(x) for Cofán (Chibchan family; Ecuador)
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significant differences between average and inferred p(x) for Colorado

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

J

I

H

G

F

E

D

C

B

A

inferred p(x) for Colorado (Barbacoan family; Ecuador)
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significant differences between average and inferred p(x) for Cree
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inferred p(x) for Cree (Algonquian family; Canada)
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significant differences between average and inferred p(x) for Culina
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inferred p(x) for Culina (Arauan family; Peru, Brazil)
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Figure E14. Inferred communicative needs for 130 languages on a common scale (continued).
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significant differences between average and inferred p(x) for Didinga
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inferred p(x) for Didinga (Nilo−Sarahan family; Sudan)
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significant differences between average and inferred p(x) for Djuka
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inferred p(x) for Djuka ([creole] family; Surinam)
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significant differences between average and inferred p(x) for Dyimini
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inferred p(x) for Dyimini (Gur family; Ivory Coast)
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significant differences between average and inferred p(x) for Ejagam
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inferred p(x) for Ejagam (Bantoid family; Nigeria, Cameroon)
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significant differences between average and inferred p(x) for Ese Ejja
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inferred p(x) for Ese Ejja (Tacanan family; Bolivia)
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significant differences between average and inferred p(x) for Garífuna (Black Carib)
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inferred p(x) for Garífuna (Black Carib) ([creole] family; Guatemala)
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significant differences between average and inferred p(x) for Guahibo
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inferred p(x) for Guahibo (Arawakan family; Colombia)
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significant differences between average and inferred p(x) for Guambiano
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inferred p(x) for Guambiano (Paezan family; Columbia)
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Figure E15. Inferred communicative needs for 130 languages on a common scale (continued).
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significant differences between average and inferred p(x) for Guarijío
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inferred p(x) for Guarijío (Uto−Aztecan family; Mexico)
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significant differences between average and inferred p(x) for Guaymí (Ngäbere)
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inferred p(x) for Guaymí (Ngäbere) (Chibchan family; Panama)
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significant differences between average and inferred p(x) for Gunu

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

J

I

H

G

F

E

D

C

B

A

inferred p(x) for Gunu (Bantoid family; Cameroon)
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significant differences between average and inferred p(x) for Halbi
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inferred p(x) for Halbi (Indic family; India)
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significant differences between average and inferred p(x) for Huastec
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inferred p(x) for Huastec (Mayan family; Mexico)
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significant differences between average and inferred p(x) for Huave
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inferred p(x) for Huave (Huavean family; Mexico)
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significant differences between average and inferred p(x) for Iduna
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inferred p(x) for Iduna (Oceanic family; Papua New Guinea)
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significant differences between average and inferred p(x) for Ifugao
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inferred p(x) for Ifugao (Austronesian family; Philippines)
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Figure E16. Inferred communicative needs for 130 languages on a common scale (continued).

39

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 7, 2021. ; https://doi.org/10.1101/2020.09.29.319517doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.29.319517
http://creativecommons.org/licenses/by-nc-nd/4.0/


significant differences between average and inferred p(x) for Iwam
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inferred p(x) for Iwam (Upper Sepik family; Papua New Guinea)
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significant differences between average and inferred p(x) for Jicaque
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inferred p(x) for Jicaque (Jicaque family; Honduras)
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significant differences between average and inferred p(x) for Kalam
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inferred p(x) for Kalam (East New Guinea Highlands family; Papua New Guinea)
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significant differences between average and inferred p(x) for Kamano−Kafe
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inferred p(x) for Kamano−Kafe (East New Guinea Highlands family; Papua New Guinea)
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significant differences between average and inferred p(x) for Karajá
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inferred p(x) for Karajá (Macro−Ge family; Brazil)
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significant differences between average and inferred p(x) for Kemtuik
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inferred p(x) for Kemtuik (Nimboran family; Indonesia)
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significant differences between average and inferred p(x) for Kokni (Kokoni)
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inferred p(x) for Kokni (Kokoni) (Indic family; India)
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significant differences between average and inferred p(x) for Konkomba
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inferred p(x) for Konkomba (Gur family; Ghana)
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Figure E17. Inferred communicative needs for 130 languages on a common scale (continued).
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significant differences between average and inferred p(x) for Kriol
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inferred p(x) for Kriol ([creole] family; Australia)
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significant differences between average and inferred p(x) for Kuku−Yalanji
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inferred p(x) for Kuku−Yalanji (Pama−Nyungan family; Australia)
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significant differences between average and inferred p(x) for Kuna
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inferred p(x) for Kuna (Chibchan family; Panama)
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significant differences between average and inferred p(x) for Kwerba
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inferred p(x) for Kwerba (Dani−Kwerba family; Indonesia)
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significant differences between average and inferred p(x) for Lele
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inferred p(x) for Lele (East Chadic family; Chad)
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significant differences between average and inferred p(x) for Mampruli
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inferred p(x) for Mampruli (Gur family; Ghana)
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significant differences between average and inferred p(x) for Maring
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inferred p(x) for Maring (Trans−New Guinea family; Papua New Guinea)
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significant differences between average and inferred p(x) for Martu−Wangka
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inferred p(x) for Martu−Wangka (Martu−Wangka family; Australia)
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Figure E18. Inferred communicative needs for 130 languages on a common scale (continued).
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significant differences between average and inferred p(x) for Mawchi
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inferred p(x) for Mawchi (Indic family; India)
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significant differences between average and inferred p(x) for Mayoruna
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inferred p(x) for Mayoruna (Panoan family; Peru)
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significant differences between average and inferred p(x) for Mazahua
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inferred p(x) for Mazahua (Oto−Manguean family; Mexico)
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significant differences between average and inferred p(x) for Mazatec
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inferred p(x) for Mazatec (Oto−Manguean family; Mexico)
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significant differences between average and inferred p(x) for Menye
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inferred p(x) for Menye (Angan family; Papua New Guinea)
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significant differences between average and inferred p(x) for Micmac
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inferred p(x) for Micmac (Algonquian family; Canada)
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significant differences between average and inferred p(x) for Mikasuki

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

J

I

H

G

F

E

D

C

B

A

inferred p(x) for Mikasuki (Muskogean family; USA)
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significant differences between average and inferred p(x) for Mixtec
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inferred p(x) for Mixtec (Oto−Manguean family; Mexico)
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Figure E19. Inferred communicative needs for 130 languages on a common scale (continued).
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significant differences between average and inferred p(x) for Mundu
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inferred p(x) for Mundu (Adamawa−Ubangi family; Sudan)
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significant differences between average and inferred p(x) for Múra−Pirahá
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inferred p(x) for Múra−Pirahá (Pirahá family; Brazil)
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significant differences between average and inferred p(x) for Murle
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inferred p(x) for Murle (Nilo−Sarahan family; Sudan)
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significant differences between average and inferred p(x) for Murrinh−Patha
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inferred p(x) for Murrinh−Patha (Murrinh−Patha family; Australia)
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significant differences between average and inferred p(x) for Nafaanra
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inferred p(x) for Nafaanra (Gur family; Ghana)
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significant differences between average and inferred p(x) for Nahuatl
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inferred p(x) for Nahuatl (Uto−Aztecan family; Mexico)
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significant differences between average and inferred p(x) for Ocaina
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inferred p(x) for Ocaina (Witotoan family; Peru)
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significant differences between average and inferred p(x) for Papago (Oodham)
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inferred p(x) for Papago (Oodham) (Uto−Aztecan family; USA, Mexico)
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Figure E20. Inferred communicative needs for 130 languages on a common scale (continued).
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significant differences between average and inferred p(x) for Patep
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

J

I

H

G

F

E

D

C

B

A

inferred p(x) for Patep (Austronesian family; Papua New Guinea)
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significant differences between average and inferred p(x) for Paya
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inferred p(x) for Paya (Chibchan family; Honduras)
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significant differences between average and inferred p(x) for Podopa
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inferred p(x) for Podopa (Trans−New Guinea family; Papua New Guinea)
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significant differences between average and inferred p(x) for Saramaccan
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inferred p(x) for Saramaccan ([creole] family; Surinam)
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significant differences between average and inferred p(x) for Seri

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

J

I

H

G

F

E

D

C

B

A

inferred p(x) for Seri (Hokan family; Mexico)
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significant differences between average and inferred p(x) for Shipibo
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inferred p(x) for Shipibo (Panoan family; Peru)
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significant differences between average and inferred p(x) for Sirionó
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inferred p(x) for Sirionó (Tupi family; Bolivia)
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significant differences between average and inferred p(x) for Slave
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inferred p(x) for Slave (Athabaskan family; Canada)
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Figure E21. Inferred communicative needs for 130 languages on a common scale (continued).
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significant differences between average and inferred p(x) for Sursurunga
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inferred p(x) for Sursurunga (Austronesian family; Papua New Guinea)
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significant differences between average and inferred p(x) for Tabla
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inferred p(x) for Tabla (Trans−New Guinea family; Indonesia)
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significant differences between average and inferred p(x) for Tacana
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inferred p(x) for Tacana (Tacanan family; Bolivia)
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significant differences between average and inferred p(x) for Tarahumara (Central)
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inferred p(x) for Tarahumara (Central) (Uto−Aztecan family; Mexico)
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significant differences between average and inferred p(x) for Tarahumara (Western)
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inferred p(x) for Tarahumara (Western) (Uto−Aztecan family; Mexico)
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significant differences between average and inferred p(x) for Tboli
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inferred p(x) for Tboli (Austronesian family; Philippines)
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significant differences between average and inferred p(x) for Teribe
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inferred p(x) for Teribe (Chibchan family; Panama)
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significant differences between average and inferred p(x) for Ticuna
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inferred p(x) for Ticuna (Ticuna family; Peru)
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Figure E22. Inferred communicative needs for 130 languages on a common scale (continued).
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significant differences between average and inferred p(x) for Tifal
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inferred p(x) for Tifal (Trans−New Guinea family; Papua New Guinea)
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significant differences between average and inferred p(x) for Tlapanec
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inferred p(x) for Tlapanec (Subtiaba−Tlapanec family; Mexico)
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significant differences between average and inferred p(x) for Tucano
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inferred p(x) for Tucano (Tucanoan family; Colombia)
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significant differences between average and inferred p(x) for Vagla
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inferred p(x) for Vagla (Gur family; Ghana)
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significant differences between average and inferred p(x) for Vasavi
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inferred p(x) for Vasavi (Indic family; India)
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significant differences between average and inferred p(x) for Waorani (Auca, Huao)
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inferred p(x) for Waorani (Auca, Huao) (Waorani family; Ecuador)
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significant differences between average and inferred p(x) for Walpiri
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inferred p(x) for Walpiri (Pama−Nyungan family; Australia)
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significant differences between average and inferred p(x) for Wobé
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inferred p(x) for Wobé (Niger−Congo family; Ivory Coast)
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Figure E23. Inferred communicative needs for 130 languages on a common scale (continued).
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significant differences between average and inferred p(x) for Yacouba
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inferred p(x) for Yacouba (Dan family; Ivory Coast)
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significant differences between average and inferred p(x) for Yakan
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inferred p(x) for Yakan (Austronesian family; Philippines)
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significant differences between average and inferred p(x) for Yaminahua
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inferred p(x) for Yaminahua (Panoan family; Peru)
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significant differences between average and inferred p(x) for Yucuna
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inferred p(x) for Yucuna (Arawakan family; Colombia)
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significant differences between average and inferred p(x) for Yupik
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inferred p(x) for Yupik (Eskimo−Aleut family; USA)
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significant differences between average and inferred p(x) for Zapotec
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inferred p(x) for Zapotec (Oto−Manguean family; Mexico)
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significant differences between average and inferred p(x) for Arabic
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inferred p(x) for Arabic (Afro−Asiatic family; Africa Eurasia)
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significant differences between average and inferred p(x) for Bahasa Indonesia
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Figure E24. Inferred communicative needs for 130 languages on a common scale (continued).
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significant differences between average and inferred p(x) for Bulgarian
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significant differences between average and inferred p(x) for Cantonese
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inferred p(x) for Cantonese (Sino−Tibetan family; Eurasia)
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significant differences between average and inferred p(x) for Catalan
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inferred p(x) for Catalan (Indo−European family; Spain)
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significant differences between average and inferred p(x) for English (American)
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inferred p(x) for English (American) (Indo−European family; North America)
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significant differences between average and inferred p(x) for Hebrew
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inferred p(x) for Hebrew (Afro−Asiatic family; Eurasia)
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significant differences between average and inferred p(x) for Hungarian
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inferred p(x) for Hungarian (Uralic family; Hungary)
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significant differences between average and inferred p(x) for Ibibio
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inferred p(x) for Ibibio (Atlantic−Congo family; Nigeria)
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significant differences between average and inferred p(x) for Japanese
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Figure E25. Inferred communicative needs for 130 languages on a common scale (continued).
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significant differences between average and inferred p(x) for Korean
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inferred p(x) for Korean (Koreanic family; Korea)
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significant differences between average and inferred p(x) for Mandarin
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inferred p(x) for Mandarin (Sino−Tibetan family; China)
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significant differences between average and inferred p(x) for Spanish (Mexican)
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inferred p(x) for Spanish (Mexican) (Indo−European family; Mexico)
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significant differences between average and inferred p(x) for Pomo
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inferred p(x) for Pomo (Atlantic−Congo family; Congo)
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significant differences between average and inferred p(x) for Swahili
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inferred p(x) for Swahili (Atlantic−Congo family; Tanzania)
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significant differences between average and inferred p(x) for Tagalog
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inferred p(x) for Tagalog (Austronesian family; Philippines)
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significant differences between average and inferred p(x) for Thai
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inferred p(x) for Thai (Tai−Kadai family; Thailand)
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significant differences between average and inferred p(x) for Tzeltal
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inferred p(x) for Tzeltal (Mayan family; Mexico)
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Figure E26. Inferred communicative needs for 130 languages on a common scale (continued).
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significant differences between average and inferred p(x) for Urdu
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inferred p(x) for Urdu (Indo−European family; India)
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significant differences between average and inferred p(x) for Vietnamese
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inferred p(x) for Vietnamese (Austroasiatic family; Vietnam)
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Figure E27. Inferred communicative needs for 130 languages on a common scale (continued).
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