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Abstract

Machine learning (ML) has the potential to revolutionize protein engineer-

ing. However, the field currently lacks standardized and rigorous evaluation

benchmarks for sequence-fitness prediction, which makes accurate evaluation of

the performance of different architectures difficult. Here we propose a unify-

ing framework for ML-driven sequence-fitness prediction. Using simulated (the

NK model) and empirical sequence landscapes, we define four key performance

metrics: interpolation within the training domain, extrapolation outside the

training domain, robustness to sparse training data, and ability to cope with

epistasis/ruggedness. We show that architectural differences between algorithms

consistently affect performance against these metrics across both experimental

and theoretical landscapes. Moreover, landscape ruggedness is revealed to be

the greatest determinant of the accuracy of sequence-fitness prediction. We hope

that this benchmarking method and the code that accompanies it will enable

robust evaluation and comparison of novel architectures in this emerging field

and assist in the adoption of ML for protein engineering.

‡ These authors contributed equally.

1

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 6, 2020. ; https://doi.org/10.1101/2020.09.30.319780doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.30.319780
http://creativecommons.org/licenses/by-nc-nd/4.0/


Introduction1

Machine learning has transformed many domains of science and is poised to revolutionize2

protein science and engineering. The fundamental problem in protein engineering is the3

accurate prediction of protein activity (i.e. fitness) from sequence information. Successfully4

addressing this core problem promises to transform the field, leading to better proteins for5

industry and medicine at a fraction of the cost. A number of ML methods have been imple-6

mented to address this1, including Gaussian process regression2–5, unsupervised statistical7

analyses6, deep neural networks and sequence models7–11. However, a uniformly used set8

of objectives and benchmarks against which each architecture can be evaluated is currently9

unavailable.10

11

As cutting-edge ML models are adapted to protein sequence-fitness prediction in the coming12

years, it is critical that they be evaluated against a standard framework. Developing this13

standard framework requires careful consideration of the fundamental structure on which14

sequence-fitness relationships exist: the fitness landscape. The fitness landscape is a well-15

known idea in biology, first introduced in the seminal work of Sewall Wright12, and applied16

to proteins by John Maynard Smith13. The protein fitness landscape rests on the notion17

of a combinatorial sequence space, an enormous space in which all possible sequences of a18

given length N exist. The neighbors of some sequence X in this space are all sequences one19

mutation away (i.e. Hamming distance14 of 1), and form what we call the first mutational20

regime. Likewise, sequences that are 2 mutations away from X form the second mutational21

regime, and so on (Figure 1 A). Connecting all sequences to their 1-mutation neighbors22

produces a sequence graph (Figure 1 B). A fitness function maps each sequence X in the23

combinatorial sequence space to a numerical fitness value, F , (which is typically measured as24

some biophysical property such as thermostability, fold enrichment, or fluorescence) forming25

a fitness graph (Figure 1 C). The fitness graph can also be construed as the protein fitness26

landscape by embedding it in a Euclidean space (Figure 1 D).27

28

A key characteristic of fitness landscapes is their ruggedness. When the fitnesses of adjacent29
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Figure 1: (A) A section of combinatorial sequence space (for a length 5 protein), with mutational
regimes highlighted relative to the SACLE seed sequence (M0). (B) A graph-theoretic represen-
tation of protein sequence space, where edges connect sequences (i.e. nodes) one mutation away
from each other (i.e. Hamming distance of 1). (C) A fitness function maps each sequence to a
fitness, producing a fitness graph. Here, the darker blues indicate a higher fitness against some
arbitrary fitness metric. (D) The fitness graph can also be construed as the more well-known
concept of the fitness landscape by embedding it within Euclidean space.

sequences are similar, there are smooth changes in fitness as the sequence space is traversed,30

resulting in a smooth or correlated landscape. At the other extreme, in a rugged or uncor-31

related landscape, adjacent sequences can have sharp changes in fitness (akin to sharp crags32

and deep chasms in geographical landscapes), making reliable prediction extremely challeng-33

ing. Highly rugged landscapes generally result from epistasis i.e where the change in fitness34

is dependent on the genetic context or sequence background in which it is introduced15,1635

36

The goal of ML sequence-fitness predictors is to approximate the fitness function for a par-37

ticular functional subspace (i.e. a specific protein fold) of sequence space, ideally from sparse38

experimental sampling of the fitness landscape. Typically, the experimental sampling is con-39

strained within a certain mutational regime Mh, where h is the Hamming distance from40

the central, or wild-type, sequence, which could be arbitrarily chosen17,18. Once the fitness41

function is learnt by the ML algorithm, the ML algorithm can interpolate, i.e. predict the42

fitnesses of sequences within the mutational regimes of the training set and extrapolate, i.e.43

predict the fitnesses of sequences outside the mutational regimes of the training set.44

45

We posit 4 metrics against which to rigorously assess ML algorithm performance in the con-46
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text of the fitness landscape: (1) ability to interpolate within mutational regimes present in47

the training set; (2) ability to extrapolate beyond the mutational regimes present in the train-48

ing set; (3) ability to cope with increasing landscape ruggedness; and (4) sensitivity to sparse49

experimental sampling of the fitness landscape in the training data. Formally assessing all of50

these metrics requires a single training dataset that exhaustively spans multiple mutational51

regimes and is of increasing, and a priori known, ruggedness. The former is prohibitive52

experimentally, and the latter is not viable in reality because the same region of sequence53

space (i.e. protein) cannot have multiple ruggedness values against the same fitness criterion.54

55

The shortcomings of incomplete and untuneable datasets can be overcome through the use of56

simulated landscapes. The NK landscape19 of Kauffman and colleagues provides a precise57

and mathematically rigorous simulated fitness landscape for a length N protein, and has58

previously been used in a narrow sense to evaluate ML models20. In the NK landscape, fit-59

nesses are distributed according to the K parameter, which controls the degree of epistasis,60

and hence ruggedness of the landscape, with higher K values produce higher degrees of epis-61

tasis and hence ruggedness. In other words, the NK mathematical model allows complete62

landscapes to be generated and for the ruggedness of these landscapes to be tuned.63

64

Here we develop a unifying framework for the field that provides a standard against which65

ML algorithms can be rigorously evaluated, as well as a useful conceptual framework for66

thinking about ML problems in the context of protein sequence-function relationships. By67

(1) simulating NK landscapes of increasing ruggedness, (2) stratifying the sequences in68

each into mutational regimes (Mh), and (3) training on training sets of varying sampling69

density, it becomes possible to evaluate any ML model against the four metrics posited.70

This approach provides a benchmark against which the capacity of an ML model to learn71

sequence-fitness relationships can be assessed and compared. We analyze a variety of mod-72

els, including decision-tree based architectures (random forest (RF)21 and gradient boosted73

(GB) decision tree regression22); deep learning architectures (multilayer perceptron (MLP)74

and recurrent neural network (RNN)23); and linear regression methods (multivariate linear75

regression (Linear) and support vector regression (SVR)). Tests with the NK landscape,76
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alongside well-characterized experimental datasets show that the NK landscape is a faith-77

ful substitute for real fitness landscapes and a valid benchmark landscape for ML-driven78

sequence-fitness prediction. Finally, we provide a lightweight, open-source Python package79

that simplifies the integration of protein datasets with scikit-learn24 and provides the tools80

to perform the evaluations presented in this paper.81

82

Results83

Interpolation and extrapolation performance. On any dataset that spans multiple84

mutational regimes, interpolation and extrapolation can be assessed concurrently by strat-85

ifying the data into mutation regimes Mh from some seed sequence M0 (which could be86

the wild-type), followed by expanding the training data to include an increasing number of87

mutational regimes (Figure 2).88

89

This test was performed for all models on NK landscapes of increasing ruggedness (K =90

0, 1, 2, 3, 4 for N = 5). The seed sequence was arbitrarily chosen. To avoid sampling arte-91

facts, five instances of each landscape were randomly generated, and the results on each92

were averaged as a variant on cross validation. Each of the training mutational regimes were93

split into 80%/20% training and testing data respectively, while the mutational regimes be-94

yond the training data were used in their entirety to test the models’ performance (Figure95

2). Their performance on each test set is evaluated as the coefficient of determination (R2)96

between the ground-truth value and the ML predicted value.97

98

To validate the NK model as a benchmark, experimental datasets must be used. It is not99

experimentally tractable for any real protein dataset to exhaustively search three, let alone100

five, mutational regimes. As a compromise, we used G domain B1 dataset (GB1-4) of Wu101

et al.18, a combinatorial fitness landscape of all 20 amino acids at 4 unique amino acid sites102

thus spanning the sequence space (M1 - M4) at the 4 positions that are mutated, permitting103

extrapolation to be tested on an experimental dataset. Results of these tests for all model104

architectures are shown in 3.105
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Figure 2: (A) Small model combinatorial sequence spaces, stratified into mutational
regimes M1 −M5 from a seed sequence M0 (black node). In interpolation, the same
mutational regimes (in this case, M0 to M3) are represented in the train and test sets,
typically with a random 80%:20% train/test split; in extrapolation, different mutational
regimes are represented in the train set (here, M0 to M3) and the test set (here M4 to
M5). In extrapolation as performed in this work, there is 100 % representation from the
train mutational regimes and the testing mutational regimes in the train and test sets,
respectively. Note that in later sections where sensitivity to sparse data is tested, the 80%
train set is further ablated to different sampling densities. (B) Paradigm for assessing in-
terpolation and extrapolation performance. For interpolation, performance is evaluated on
an expanding number of mutational regimes, with the test set being drawn randomly from
the data. For extrapolation, the model is trained on an expanding number of mutational
regimes, but performance is evaluated on mutational regimes not included in the train set.
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106

As expected, all models perform worse on interpolation as ruggedness increases. At the107

limit of the completely uncorrelated landscapes (K = 4 for N = 5) all models catastroph-108

ically fail. The decision-tree methods outperformed the other categories, with RF leading109

in terms of capacity to cope with ruggedness, and GB producing the best interpolation and110

extrapolation in lower mutational regimes. Both deep learning architectures (i.e. multilayer111

perceptron (MLP) and recurrent neural network (RNN)) show strong performance, with112

the RNN competing with the GB at extrapolation and, to a lesser extend, interpolation on113

K = 0; however this performance diminishes sharply with increasing ruggedness. The linear114

methods showed the worst performance, with SVR outperforming the linear model.115

116

The trends observed across the NK landscape are clearly replicated in the experimental117

dataset, with the decision tree based models performing the best and demonstrating minor118

extrapolative ability. The RNN is the best of the remaining models; however, its predictions119

only become meaningful when large volumes of data are available; i.e., when more mutational120

regimes are used in the training dataset. Once again, the linear and SVR models perform121

very poorly on this task.122

123

The decrease in performance as a result of ruggedness is seen across all models. Increasing124

ruggedness implies that the landscape is becoming less correlated and therefore random.125

For any statistical inference method, including the ML models used here, as the complex-126

ity/randomness of a function increases, the accuracy of approximation decreases if the num-127

ber of samples is kept constant. A corollary of this is that as the complexity/randomness128

of a function increases, it is necessary for an inference method to be informed with greater129

number of samples. In the limit of a completely random function, the number of samples130

required is equal to the number of points in the function. This dependence of machine learn-131

ing performance on landscape ruggedness highlights the need for a clear understanding of132

ruggedness in experimental landscapes.133

134
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Figure 3: Interpolation and extrapolation performance for all models on both NK land-
scapes and GB1-4. Five different NK landscapes with ruggedness (K) between 0-4 are
shown, with results being averaged across five instances of each. Experimental results used
5 fold cross validation to ensure robustness. Each heatmap shows how the correlation be-
tween ground truth and predicted values changes as a larger number of mutational regimes
are used for training. Extrapolation into one mutational regimes beyond the training data
is highlighted in cells with a black border.
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Figure 4: Performance on ablated train data for RF, GB, MLP, RNN, SVR and Linear
models. Train data was randomly ablated to 90, 70, 50, 30 and 10% of original. Heatmap
shows model performance (R2) on test data at each train data sampling density, for NK
landscapes of increasing ruggedness (K = 0, .., 4), and for the 3 experimental datasets.

Robustness to sparse training data. Learning from sparse training data is resource-135

efficient, saving time, effort and money. The ideal ML sequence-function algorithm inter-136

polates and extrapolates accurately after training on sparse training data. Recognising (1)137

that extrapolation performance varies directly with interpolation performance as landscape138

ruggedness increases, and (2) running extrapolation tests for each model is computationally139

very expensive, we recommend testing robustness to sparse training data in the context of140

interpolation. Note that, even when sparse, training data should sample diverse regions141

of the relevant fitness landscape in order to maximally inform the ML algorithm. To test142

robustness to training data sparsity, the test set is kept at a constant size (20% of the total143

dataset) while the train set is randomly ablated to the desired sampling density (10%, 30%,144

50%, 70%, and 90%). The dataset is shuffled and fresh train/test splits are initialised for145

each sampling density before train set ablation in order to avoid sampling artefacts.146

147

We tested robustness to training data ablation for our chosen ML models (Figure 4). As148

seen in interpolation and extrapolation, the performance of all models declines as landscape149

ruggedness increases. Additionally, higher ruggedness values also cause a quicker drop in150
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performance as less training data is sampled; the magnitude of this decline varies between151

models. AtK = 0, GB and RNN models have the best performance, but this declines rapidly152

for the RNN. Overall, RF is the most robust to data ablation. Deep learning models such as153

the MLP and RNN are notoriously data-dependent and performed poorly at lower sampling154

densities. This illustrates a severe limitation not only in protein sequence-fitness prediction155

but in ML more broadly; the complexity and large number of parameters of deep learning156

models often means that large amounts of data are required to train them appropriately.157

In the setting of protein sequence-fitness prediction, acquiring such large training datasets158

experimentally can be prohibitively resource intensive. Benchmarking candidate models for159

robustness to low training data volume permits judicious choice of ML model, thereby re-160

ducing the resource burdens of experimental data collection.161

162

To confirm whether the results from the simulated dataset were consistent with empirical163

datasets, data ablation studies were performed. We again used experimental datasets to164

validate the NK model as a benchmark. In this case, we selected the GB1-4 dataset, the G165

domain B1 dataset (GB1-2) dataset of Olson et al.17, a combinatorial sequence space of all166

20 amino acids at all sequence positions except the first, and the VIM2 (VIM2-1) dataset of167

Tokuriki et al.25, in which deep mutational scanning was used to characterize the functional168

behaviour of 5600 single amino acid variants of the β-lactam degrading antibiotic resistance169

enzyme VIM-2. The SVR did not train in a reasonable amount of time (>750 CPU hours)170

and was thus omitted. The results are shown in Figure 4. Again, the experimental results171

conform to the NK landscape results Again, the experimental results conform to the NK172

landscape results, with decision-tree based models exhibiting the strongest predictive per-173

formance and resistance to ablation. The MLP produces strong results but demonstrates174

susceptibility to ablation. This sensitivity is particularly severe for GB1-4, where the per-175

formance rapidly declines. It seems that experimental landscapes have substantial variance176

in terms of their ruggedness, with GB1-2 ostensibly being quite smooth, leading to commen-177

surately high-quality predictions. Based on model performance, the VIM2-1 dataset seems178

to exhibit a much higher degree of ruggedness. Nevertheless, there may be other factors179

that lead to decreased performance such as the very different sequence lengths. All models180
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struggle to interpolate when trained only on the first mutational regime (M1) (Figure 3).181

Initially this appears to be a problem of data scarcity. However, there is a more subtle effect182

that we believe is responsible for this behaviour: the demanding nature of what we term183

positional extrapolation.184

185

Positional extrapolation. We have thus far considered extrapolation in the context of186

concurrent amino acid mutations, e.g. changing two positions simultaneously produces a187

sequence at a Hamming distance of 2 from the seed sequence, and thus inM2. An additional188

type of extrapolation that is rarely considered involves tasking the model with predicting189

the influence of a mutation at a position has not been altered in the training set. To distin-190

guish these two forms, we refer to the previously introduced form (extrapolating to higher191

mutational regimes) as regime extrapolation and this new form as positional extrapolation.192

In positional extrapolation, the model is tasked with predicting the effect of mutations at193

sequence positions that are never modified in the training data. This type of extrapolation is194

particularly pronounced when assessing interpolation on M1, as any splitting of this regime195

is likely to remove all training examples of some positions in the sequence, thus demanding196

that the model perform positional extrapolation. To highlight the challenge presented by197

position extrapolation we benchmark all models on five NK landscapes, but the stratifica-198

tion in this case is not performed by distance, but rather by position.199

200

The results of these tests are shown in Figure 5. The heatmap appears featureless; however,201

what is shown is a complete collapse of all models in terms of their performance on this task.202

This highlights the sheer difficulty of this task; the model cannot learn from any examples203

of the positions being modified. This requirement is the cause of the “not in either” segment204

of the data, which contains samples in which, of the two positions modified, one falls into205

the train category and one into the test category. Providing the model with these types of206

sequences would give it information about its test regimes, and thus compromise the rigor207

of the challenge, hence producing large numbers of samples which must be omitted. While208

seemingly contrived, this represents a very common expectation of these models: given209
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Figure 5: Results for positional extrapolation across all ML architectures except SVR (due
to its inability to train in the allotted time). The left hand side demonstrates the separation
of the sequence based on mutatted positions, with the bar chart showing how much data
is in each of the three possible datasets with “not in either” representing species that have
one mutation in each of the two categories.

modifications to a portion of the protein sequence, predict what happens at unmodified210

positions. These results cast serious doubt as to the ability of simple predictive models,211

(e.g. the ones tested here) to perform such a task. We posit that only models with explicit212

structural understanding of the protein, or a large amount of transfer learning (in which213

large unlabelled datasets are used for unsupervised training before fine-tuning this system214

with labelled data) would be capable of meaningfully performing positional extrapolation.215

Indeed, recent work that produces meaningful predictions from low data sampling relies on216

this precise idea10,11. When analysing the performance of future models to understand where217

predictions do, and do not, make sense, an understanding of the nuances of extrapolation is218

clearly required so as to avoid relying on simple scalar metrics like mean absolute deviation,219

which can obfuscate areas in which the model is catastrophically failing.220

Estimating landscape ruggedness. Our results have highlighted the critical importance221

of landscape ruggedness in ML sequence-fitness prediction performance. In simulated land-222

scapes, ruggedness is known a priori ; in empirical landscapes, it must be estimated. There is223

no clear consensus regarding the best methods to estimate landscape ruggedness26; therefore,224

we chose two metrics that performed similarly and showed capacity to scale to large empir-225

ical datasets: (1) extrema ruggedness estimation (an extension of maxima estimation26,27)226

which counts the number of extrema in the landscape and normalises to the number of data227

points; and (2) r/s slope estimation28, which compares the slope, s, of a linear fit to the228

root mean squared error r to produce an estimate of ruggedness/non-linearity that a linear229

model cannot account for.230
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Figure 6: Ruggedness Estimator Comparison: Top row shows r/s estimation, while
bottom shows extrema estimator. Full NK landscape shows the estimation for the entire
NK landscape as a function of K. Extrapolation shows how the estimation changes
when limited mutational regimes are used. Ablation shows how the estimates change as
fractions of the data are used. Experimental shows how ruggedness across the three
datasets from the methods, with GB1-2 having been split into its two mutational regimes,
with the respective regimes identified using Mh notation.

231

Figure 6 demonstrates that both ruggedness estimators produce sensible results for the NK232

landscapes, showing a steep rise in both values as K increases. The NK landscape, with its233

a priori known ruggedness, provides an ideal control for testing ruggedness estimators. We234

hypothesised that estimated ruggedness would show dependence on the mutational regimes235

considered in the calculation: as more mutational regimes are included, a richer view of the236

landscape is obtained (e.g. higher orders of epistasis), providing a better estimate of its237

features. In order to test this hypothesis, we again stratified NK landscapes of increasing a238

priori known ruggedness (K = 0 to K = 4) into mutational regimes (M1 −M5), and then239

assessed ruggedness on expanding subsets of these (Figure 6). From the results, it is evident240

that both r/s and extrema metrics improve as more mutational regimes are considered in the241

calculations, with all estimated ruggedness values being equal (and therefore meaningless)242

for M1. The reason for this is that if fewer neighbors an individual node are considered,243

13

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 6, 2020. ; https://doi.org/10.1101/2020.09.30.319780doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.30.319780
http://creativecommons.org/licenses/by-nc-nd/4.0/


then the likelihood of the node being assessed as an extrema increases. This produces the244

diminshing ruggedness value as more points are considered as seen in both regime sampling245

and ablation. This is concerning, as it corresponds to the majority of datasets obtained from246

deep sequencing, which typically only sample M1, making it difficult to accurately approxi-247

mate ruggedness. Nevertheless, it is a logical consequence of the data structure: ruggedness248

is largely derived from higher-order epistasis, i.e. the non-additivity of mutations, which249

cannot be captured by examining a Hamming distance of 1 from the seed sequence.250

251

An additional factor that can influence ruggedness estimation is the sampling density of the252

landscape. To evaluate the effect of data sparsity on ruggedness calculation, we ablated253

the NK landscape data randomly and assessed the performance of the estimators using di-254

minishing fractions of the data. Both r/s and extrema estimation function well even with255

limited data (Figure 6); however, the r/s metric shows greater dependence on data than256

does the extrema metric. Parallels can be seen between these two tests (regime sampling257

and ablation) and the two dominant paradigms of data acquisition in protein science: deep258

scanning, in which few mutational regimes are exhaustively sampled, and directed evolution259

experiments, in which many mutational regimes are sampled sparsely through evolutionary260

trajectories.261

262

Having performed these control experiments on NK landscapes, we then tested the rugged-263

ness across experimental datasets (Figure 6). We stratified GB1-2 into the mutational264

regimesM1 andM1−M2; GB1-4 contains 4 mutational regimes (M1−M4); and the VIM2-1265

β-lactamase dataset contains only 1 mutational regime (M1). In accordance with our results266

for NK landscapes, we infer that the extrema ruggedness values obtained for GB1-2M1 and267

β-lactamase are effectively meaningless, being almost indistinguishable. However, estimates268

based on r/s ruggedness vary enormously. This is because this method is capable of estimat-269

ing magnitude of ruggedness, which extrema estimation cannot26. The implication that the270

β-lactamase dataset is far more rugged conforms with the difficulties which all models have271

demonstrated in generating meaningful predictions on it.272

273
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Interestingly, the ruggedness of any landscape can be broadly inferred in a reverse manner274

by assessing the performance of the ML models studied here, and comparing the results to275

that of the NK landscape. While not rigorous, this provides a useful heuristic to develop276

an expectation for the performance of models on novel datasets.277

278

Sensitivity to sequence length. As a final test, the sensitivity of each model to sequence279

length was assessed. To test this, a random sequence of a particular length N was gener-280

ated and the NK data was injected at randomly chosen indices to produce a new resultant281

sequence (Figure 7 A). These new datasets are representative of the commonly performed282

experiment of mutating key residues within a protein; for example, as in GB1-4.283

284

We tested sensitivity to sequence length for our chosen models against NK landscapes of285

increasing ruggedness (K = 0, 1, 2, 3, 4 for N = 5). Sequence lengths varying from 10-100 in286

increments of 10 were tested for all models ( Figure 7 B).287

288

Strikingly, most models show no length dependence (e.g. RF and GB), with only the deep289

learning architectures demonstrating sensitivity, although non-linearly. This reflects the290

fundamental architectural differences in these models: RF and GB models create decision291

trees based on input features, identifying changing sequence positions as important and292

relegating the remainder of the sequence as inconsequential. The deep learning models show293

variation in performance with sequence length, reflecting variability in their training, with294

longer sequences making this variability more noticeable.295

Discussion296

This work clearly demonstrates the capacity of the NK landscape framework to serve as a297

valid benchmark for a diverse array of ML architectures, with the predictive performance298

on simulated NK landscape data matching the observed performance on experimental data.299

In addition to this, four key metrics for predictions in protein space were articulated and300

combined into a holistic benchmark set that we hope will aid in standardisation and inter-301
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Figure 7: (A) Length transformation of NK landscape sequences. Arbitrary sequences
can be injected between positions (columns) of sequences generated from NK landscapes
(left) to create a sequence S of arbitrary length (right). The number of positions mutated
in sequence S (right) is n = N , where N is the length parameter of the NK landscape.
Note that while injected sequences are arbitrary, they must be consistent (i.e. the same)
within each landscape. (B) Sensitivity to sequence length for RF, GB, MLP, RNN, SVR
and Linear models. NK data was injected into sequence lengths of length 10 - 100 in
instances of 10. Heatmap shows model performance (R2) on test data for landscapes of
increasing ruggedness (K = 0, .., 4).
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pretation of results within this new field.302

303

The purpose of this work was not to provide a ranking of ML models for the sequence-fitness304

problem; nevertheless, a variety of insights into the advantages and limitations of various305

models were obtained. These were backed by both experimental and theoretical results. To306

summarise briefly, RF models are the best out-of-the-box performer, capable of predicting307

on highly rugged landscapes with strong extrapolation and interpolation. Additionally, it308

has strong resistance to ablation and shows no length dependency. Its key limitation is that309

its predictions are meaningless outside of the training input domain. As such, the problem310

must be carefully considered prior to their application. Deep learning methods showed the311

most capacity to improve, but their need for vast volumes of data was apparent in both312

the theoretical and experimental results. Additionally they show the greatest variability313

with training, presenting challenges if automating the process of model selection is desired.314

Finally, linear based models are best avoided if possible due to their poor predictive perfor-315

mance, and, in the case of SVR, enormous training time.316

317

Benchmarking with the NK landscapes has two limitations: sequence length must remain318

constant, which is a minor issue as length is typically held constant in protein engineering.319

More importantly, benchmarking using the NK landscape (or any theoretical landscape)320

lacks biophysical grounding; it is better viewed as a faithful reproduction of the fundamen-321

tal problem of predicting sequence-fitness relationships on protein landscapes. This means322

that NK-benchmarking should not be used with transfer learning models or with models323

that incorporate structural information. Because the NK model lacks physical grounding,324

transferred knowledge, when projected onto the non-physical NK-benchmark, will lead to325

meaningless results. However, due to the immense computational cost in applying transfer326

learning, this benchmark may serve as an ideal companion, enabling cheap and rapid bench-327

marking of potential predictors to couple with transfer learning.328

329

To our knowledge, this study is the first time that extrapolation has been explicitly broken330

down into sub-problems, i.e. regime and positional extrapolation. The enormous challenge331
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presented by positional extrapolation highlights the importance of transfer learning and332

structural information, and should draw focus onto recent work which has utilized transfer333

learning to perform predictions with very small amounts of data10,11.334

335

Critically, this work emphasizes the dependence of ML models on the underlying landscape,336

with all of the four metrics showing strong dependency on landscape ruggedness. This de-337

pendency demands that the underlying landscapes are considered when ML is applied, and338

directs the field towards better understanding and quantification of the properties, partic-339

ularly ruggedness, of experimental landscapes. We recommend that researched looking to340

apply ML to protein engineering carefully consider the nature of the experimental system341

and perform ruggedness estimations (which is fully supported in the provided codebase -342

see Code Availability), as well as consider the extent to which positional extrapolation is343

required with the given dataset. In estimating ruggedness, we recommend the r/s method344

due to its sensitivity to magnitude and rapid runtime. Soberingly, fundamental limits on345

statistical inference for rugged landscapes may mean that there are some proteins for which346

ML is not suitable; the frequency and nature of such protein fitness landscapes is an open347

and fundamental question, one which has important implications for the role of ML in the348

future of protein science and engineering.349

350

Methods351

The NK landscape. The NK landscape Kauffman and colleagues19 is a theoretical model352

of combinatorial fitness landscapes that captures the key characteristic of these landscapes:353

ruggedness, which results from epistasis. N gives the number of positions in the sequence354

(i.e. length of the sequence); K gives the number of positions that interact with a given355

position i; thus, K gives the order of epistasis in the landscape. For any position i, the set356

of positions that interact with it are vi = {vi,1, vi,1, ..., vi,K}. These are typically assigned357

uniformly and independently at random26. The fitness of some sequence X of length N is358
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given by:359

f(X) =
N∑
i=1

fi({xj}j∈vi) (1)

Here {xj}j∈vi is the set of positions position i interacts with (i.e. the interaction set). If any360

of the positions in the interaction set for some position i are mutated, a new fitness fi is361

randomly assigned from a continuous uniform distribution on the interval [0, 1); else, fi stays362

the same. It then follows that as the interaction set of i increases (with increasing K), the363

probability that a mutation anywhere in the sequence will affect the fitness contribution fi364

of position i also increases (i.e. the likelihood of fi being re-assigned increases). This means365

that a single mutation affects the sequence fitness f(X) more drastically, thereby increasing366

the ruggedness of the fitness landscape.367

368

All NK landscapes were generated using custom code that was adapted from Obolski and369

colleagues29. For each ruggedness value, five landscapes were generated from randomized370

initial conditions. Each of these landscapes contained all sequences of length five (N = 5),371

using the first 10 canonical amino acids of the single letter amino acid alphabet. Limiting the372

amino acid pool was necessary to restrict the population size to a number that is tractable373

for many ML architectures, while also maintaining a sequence length that enables a wide374

variety of ruggedness values375

376

Experimental datasets. In order to validate the NK landscape as a sound benchmark for377

ML sequence-fitness prediction performance, we compared ML model performance qualita-378

tive rankings against a number of published empirical datasets from deep sequencing. These379

included 2 datasets of the B1 domain of immunoglobin-G (IgG) binding protein G (hereafter380

referred to as protein GB1), and one VIM-2 lactamase dataset.381

Protein GB1 double-mutation scan dataset. Protein GB1 is a well-characterised prokaryotic382

protein extensively used as a model system in protein science, along with use in biotechnology383

applications like antibody purification. We used the deep mutational scan dataset from384
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Olson and colleagues17 that exhaustively characterised all possible pairwise mutations in the385

domain. The dataset consists of 536962 variants and both their input and selection counts386

which were transformed into fitness values using equation 2, with input and selection count387

are used as defined by17. We refer to this dataset as protein GB1-2 (the number after the388

hyphen denotes the mutational regimes spanned by the dataset). Within our framework,389

this dataset spans the first 2 mutational regimes (M1−M2) in the sequence space of protein390

GB1.391

fitness(X) = log

(
selection count(X)

input count(X) + 1

)
(2)

Protein GB1 quadruple-mutation dataset. We used a second deep sequencing dataset of pro-392

tein GB1 of Wu and colleagues18. This dataset exhaustively samples the sequence space of of393

4 positions (positions V39, D40, G41 and V54) near the C-terminus of the domain, consist-394

ing of 149361 variants. Fitness was calculated according to equation 2. In our framework,395

this dataset spans the first 4 mutational regimes (M1 −M4) in the sequence space of these396

4 positions (i.e. it spans the entire sequence space of these 4 positions). We refer to this397

dataset as protein GB1-4. Fitnesses on this dataset were calculated in the same way as398

GB1-2 (Equation 2).399

Beta-lactamase dataset. We used a recently published deep mutational scan of the VIM-400

2 lactamase from Chen and colleagues25. This dataset iteratively mutates the entire 267401

position sequence of the VIM-2 lactamase, mutating to each position to each of the 20402

canonical amino acids. In our framework, this dataset spans the first mutational regime M1403

in the sequence space of the VIM-2 lactamase. We refer to this dataset as VIM2-1. Fitnesses404

in this dataset are the log2(EC50) values provided in the dataset.405

ML architectures. To demonstrate broad validity of this approach, we tested the bench-406

mark against a wide variety of established ML architectures, including all outlined in Yang,407

Wu, and Arnold’s review1 (with the exception of Gaussian Process Regression due its in-408

ability to scale to large datasets). The models fell broadly into three categories: (1) the409

decision-tree based architectures random forest21 (RF) and gradient boosted22 (GB) deci-410
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sion tree regression); (2) deep learning architectures including a multilayer perceptron (MLP)411

and recurrent neural network23 (RNN); and (3) linear regression methods multivariate linear412

regression, referred to simply as Linear and support vector regression30 (SVR). We classified413

SVR as a linear method because while it uses a non-linear kernel to project data into higher414

dimensional space, it is a linear model model that is then fitted. All models were imple-415

mented in scikit-learn24 except the RNN, which was implemented in PyTorch31 and trained416

in scikit-learn by wrapping it within the skorch package32.417

418

The purpose of this work is not to demonstrate the best possible performance, and in each419

architecture, but instead to benchmark the performance of each model on the NK land-420

scape with the metrics posited, and then show that this corresponds to their performance on421

experimental datasets. Therefore, careful hyperparameter optimisation was not performed,422

and models were used largely out-of-the-box with some simple parameter modification to423

increase performance. Better performance could be extracted from these models with more424

intensive hyperparameter tuning. Performance of each model was determined as the R2 cor-425

relation between the predicted values and the ground truths. Because negative correlations426

can be arbitrarily large with our chosen package, negative values were set to zero for ease of427

visualisation.428

429

Open source benchmarking package430

Our key goal is to stimulate progress in the field with clear objectives and benchmarks.431

Therefore, we seek not only to demonstrate the validity of our benchmarks, but also to pro-432

vide robust and user-friendly software to the community. Our open-source benchmarking433

package (Python 3.7) is available on Github (https://github.com/acmater/NK_Benchmarking)434

and includes all code used to generate landscapes, models, and perform the tests conducted in435

this paper. Importantly, we contribute a protein landscape class that can be used to handle436

both simulated and empirical protein landscapes, including methods for running ruggedness437

tests, segregating sequences into mutational regimes, and more complex indexing operations,438

enabling rapid stratification of the data and therefore more robust benchmarking of models439
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on novel landscapes.440
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