
1 
 

Scene context impairs perception of 
semantically congruent objects 

 
Eelke Spaak, Marius V. Peelen*, & Floris P. de Lange* 

Donders Institute for Brain, Cognition and Behaviour 
Radboud University 
Nijmegen, The Netherlands 

*) These authors contributed equally. 

 

Abstract 

Visual scene context is well-known to facilitate the recognition of scene-congruent 
objects. Interestingly, however, according to the influential theory of predictive coding, 
scene congruency should lead to reduced (rather than enhanced) processing of congruent 
objects, compared to incongruent ones, since congruent objects elicit reduced prediction 
error responses. We tested this counterintuitive hypothesis in two online behavioural 
experiments with human participants (N = 300). We found clear evidence for impaired 
perception of congruent objects, both in a change detection task measuring response times 
as well as in a bias-free object discrimination task measuring accuracy. Congruency costs 
were related to independent subjective congruency ratings. Finally, we show that the 
reported effects cannot be explained by low-level stimulus confounds, response biases, 
or top-down strategy. These results provide convincing evidence for perceptual 
congruency costs during scene viewing, in line with predictive coding theory. 

 

Statement of Relevance 

The theory of the ‘Bayesian brain’, the idea that our brain is a hypothesis-testing machine, 
has become very influential over the past decades. A particularly influential formulation 
is the theory of predictive coding. This theory entails that stimuli that are expected, for 
instance because of the context in which they appear, generate a weaker neural response 
than unexpected stimuli. Scene context correctly ‘predicts’ congruent scene elements, 
resulting in lower prediction error. Our study tests this important, counterintuitive, and 
hitherto not fully tested, hypothesis. We find clear evidence in favour of it, and 
demonstrate that these ‘congruency costs’ are indeed evident in perception, and not 
limited to one particular task setting or stimulus set. Since perception in the real world is 
never of isolated objects, but always of entire scenes, these findings are important not just 
for the Bayesian brain hypothesis, but for our understanding of real-world visual 
perception in general. 
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Introduction 

Objects are typically encountered in particular contexts; e.g. a hair dryer is more 
commonly encountered in a barbershop than in a greengrocer’s. Semantic associations 
between real-world scene context and objects within such scenes are well-known to 
facilitate perception in many circumstances: objects are located and identified more 
rapidly and accurately within semantically congruent contexts than in incongruent ones 
(Bar, 2004; Biederman, 1972; Davenport & Potter, 2004; Kaiser et al., 2019; Oliva & 
Torralba, 2007). These congruency benefits are elegantly explained from the perspective 
of predictive coding, the idea that the brain is a hypothesis-testing machine (Clark, 2013; 
de Lange et al., 2018; Friston, 2005; Rao & Ballard, 1999): the gist of a (natural) scene 
induces a prior expectation over particular objects common to such a scene, and stimuli 
that are already likely under that prior require relatively little processing before a coherent 
representation is arrived at. 

Such an account explains benefits in cases where the scene-induced expectation is 
relevant to the task at hand: observers asked to locate a computer mouse in a scene of a 
desk will naturally look for it next to the keyboard, and will thus more quickly find it than 
if it were presented in a scene of a kitchen countertop. Similarly, in a brief or degraded 
presentation of such scenes, an oval blob next to a keyboard-shaped blob will more readily 
be identified as a computer mouse than such a blob in incongruent surroundings. 
However, according to predictive coding, it is precisely incongruent objects that warrant 
closest inspection, not congruent ones. That is, congruent objects are easily integrated 
with the prior induced by the scene gist, whereas incongruent objects elicit larger 
prediction errors, only to be integrated after more detailed processing. Therefore, the 
presence of congruent surroundings should lead to reduced processing of congruent 
objects, compared to incongruent ones. Since depth of processing influences the level of 
subjective awareness (Anzulewicz et al., 2015; Windey et al., 2013), objects in congruent 
surroundings should thus be perceived less strongly, less saliently, than those in 
incongruent surroundings. 

Researchers studying change detection have reported such context congruency costs: 
observers are slower to detect changes in objects when these objects are embedded within 
congruent contexts, compared to incongruent ones (Hollingworth & Henderson, 2000; 
LaPointe et al., 2013; Mack et al., 2017). Additionally, it has been reported that, during 
free viewing, observers tend to fixate earlier on incongruent than on congruent objects 
(Bonitz & Gordon, 2008; Loftus & Mackworth, 1978; Underwood et al., 2007), and other 
indices of attentional allocation point in the same direction (Gordon, 2004). 

However, this reported evidence for congruency costs (or, equivalently: incongruency 
benefits) is not clear-cut. First, several studies have failed to replicate the earlier fixation 
latencies for incongruent objects (De Graef et al., 1990; Henderson et al., 1999), while 
yet others have reported the effect only for visually non-salient objects (Underwood & 
Foulsham, 2006). In general, low-level visual saliency has been described as a potentially 
confounding factor in the research on attentional attraction by semantic incongruence 
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(Underwood & Foulsham, 2006; Võ & Henderson, 2009). A second issue that has 
received less attention (though see (Hollingworth & Henderson, 2000)), but may be 
equally grave, is that congruency costs might reflect a strategic effect: if an incongruent 
object is present, in many cases it will be task-relevant (e.g., the changing object in change 
detection, or something specifically memorable in a memory task), making it beneficial 
for participants in the experiment to search for incongruent objects in general (leading to 
an observed congruency cost). Finally, and perhaps most importantly, congruency costs 
have mainly been demonstrated through latency differences (e.g., change detection 
latency) rather than through unbiased measures of perception. Response latency is 
influenced by multiple factors, including decisional and response biases. Previously 
reported congruency costs may thus reflect such biases, rather than reduced perceptual 
encoding of congruent objects. 

An intriguing possible implication of the influential theory of predictive coding is the 
existence of congruency costs in purely perceptual (i.e., non-semantic) tasks, yet this 
hypothesis has not been tested directly. In the present study, we set out to perform this 
test, while taking care of all three concerns voiced above. Importantly, we examined 
semantic congruency costs in a discrimination task, probing object-level (i.e., exemplar) 
perception, free from stimulus, response, semantic, and task-strategic confounds, in 
addition to a classic change detection setting. In brief, across these two behavioural 
experiments, with a total of 300 participants, we found that congruency costs (1) are 
evident in change detection even with a fully balanced stimulus set; (2) generalize to a 
more directly perceptual identification task; (3) persist even when attending to 
incongruent objects is strategically disadvantageous; and (4) are explained by the 
subjective level of object-scene consistency. 

 

Methods 

Stimuli, task, and experimental design 

Experiment 1 – change detection 

This experiment was a version of the classical change detection “flicker” task (Rensink 
et al., 1997), and is depicted in Figure 1a. Participants were instructed to detect changes 
between successive displays of the same scene. Each trial started with a 500 ms empty 
screen, followed by a fixation button labelled ‘Go’ in the center of the screen that 
participants had to click in order to initiate visual stimulation. Requiring a mouse click in 
the center of the screen ensured that participants were always fixating the center at 
stimulus onset. Stimulation consisted of an object-present scene for 250 ms, followed by 
a 100 ms blank, followed by an object-absent scene. This sequence was repeated for a 
maximum of 13 times, or until the participant indicated they had detected the change by 
pressing the space bar. After the detection response, participants were presented with a 
grey rectangle of the same dimensions as the scene stimulus, and had to click where they 
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detected the changing object. This ensured task compliance, preventing blind, rapid, 
space bar pressing. 

Stimuli were taken from a recently published, fully balanced, stimulus database called 
‘SCEGRAM’ (Öhlschläger & Võ, 2017). All 62 scenes from this database were used, in 
the CON and SEM conditions (which we subsequently refer to as the ‘Congruent’ and 
‘Incongruent’ conditions), as well as the corresponding object-absent scenes. This 
database is comprised of pairwise balanced stimuli, matched in lower-level visual 
features. Each key object occurs in both a congruent and an incongruent context, and is 
matched with another key object, similar in shape and orientation, which has the 
complimentary congruency mapping (see Figure 1b). 

Each participant completed 62 trials. Half of these were congruent scenes, and half of 
these incongruent. This mapping was counterbalanced across participants. The main 
dependent variable (DV) was change detection reaction time, with localization error a 
secondary DV. Localization error was defined in % of the target object, e.g. a click located 
1 cm away from the center of a 1 cm × 1 cm object would be assigned an error of 100%. 

Experiment 2 – object identification 

For this experiment, instead of having to detect a change, participants were instructed to 
attentively look at each scene, and afterwards they had to make an identification 
judgement about an object in that scene. Each trial started with a fixation cross (800 – 
1000 ms, randomly drawn from a uniform distribution), followed by a scene display (2.5 
s), followed by another fixation cross (500 ms), followed by a two-alternative forced 
choice (2AFC) response prompt for a maximum of 2.5 s, or until one of the response keys 
was pressed (Figure 2a). The 2AFC prompt always consisted of the target item that was 
present in the scene (again taken from the SCEGRAM stimulus database), as well as a 
lure item, selected through an internet search. The lure was always from the same 
category as the target, and similar in shape, but a clearly different exemplar. 

As in Experiment 1, scenes could occur in a Congruent or Incongruent condition. 
Additionally, for Experiment 2, we added a ‘Probe-Key’ versus ‘Probe-Other’ factor, 
governing whether, on a given trial, the participant was probed about the key object (for 
which the consistency was manipulated), or about another object in the same scene. The 
probed object in Probe-Other trials was always congruent with the surrounding context 
(see Figure 2b). The rationale for including Probe-Other trials is twofold. First, this allows 
us to control for the strategic concern mentioned in the introduction; i.e. if an incongruent 
object is present, this is no longer necessarily the relevant object (Hollingworth & 
Henderson, 2000). Second, the presence of an irrelevant congruent/incongruent object 
might draw attention away from the probed target object; this effect should be detectable. 

Stimuli were again counterbalanced across participants, each of whom again completed 
62 trials. Trials were again 50% congruent, 50% incongruent. Probe × Congruency 
together form a 2×2 factorial design, but trial counts per cell were deliberately not fully 
equalized for all participants. Instead, we introduced a between-subjects factor, 
p(Incongruent = Relevant | Incongruent = Present), or p(IR|IP) for short, which governs 
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the proportion of Incongruent trials that are Probe-Key. This factor took on values of 
17/33/50/67/83%. For values of the between-subjects factor other than 50% (the fully 
across-subjects counterbalanced case), a randomly chosen subset (per participant) of 
Incongruent trials was switched from Probe-Key to Probe-Other, or vice versa. This factor 
allowed us to quantify the degree to which behavioural costs/benefits were a consequence 
of task strategy. 

The main DV for this experiment was 2AFC accuracy, with reaction time of secondary 
interest. For reaction time analyses, we focused only on those trials with correct 
responses. 

 

Participants, data inclusion, and statistical power 

Experiments were performed online, using the Gorilla platform (Anwyl-Irvine et al., 
2020), and recruitment was done through the Prolific platform (https://www.prolific.co/). 
Note that demographic information for our specific sample is not available for privacy 
reasons, but the general demographic profile of Prolific participants is documented on 
their website. The study was approved by the local ethics committee  (CMO Arnhem-
Nijmegen, Radboud University Medical Center) under the general ethical approval for 
online studies for the Donders Centre for Cognitive Neuroimaging. 

To increase the signal-to-noise ratio of our data set, we decided a priori to remove 
outliers, which might be especially expected in an online setting. We defined outliers as 
those participants scoring > 2.5 s.d. away from the mean for either DV. Outlier detection 
was performed on overall scores, agnostic of condition. For Experiment 1, we recruited 
100 participants, of which 3 were classified as outliers and removed (see Figure S1). The 
recruitment target was chosen out of convenience, and the resulting sample of 97 
participants yields a post-hoc power of 99.8% for a paired contrast (two-tailed) assuming 
medium effect size (d = 0.5), or 49.6% power assuming a weak effect size (d = 0.2), based 
on an a priori type I error rate of α = 0.05. 

For Experiment 2, we recruited 200 participants, resulting in 40 participants for each level 
of the between-subjects factor. This sample size was chosen to ensure at least 80% power 
(two-tailed) to detect an effect of medium size (d ≥ 0.5) within each level, requiring 34 
participants per level, plus margin. 6 participants were classified as outliers and removed 
(see Figure S6). In addition to the a priori power considerations regarding the paired 
comparisons, the power to detect the effect of the between-subjects factor is relevant here. 
The resulting sample of 194 participants yielded a power of 87.8% to detect a weak 
correlation (r = 0.2). 

In addition to detecting outlying participants, we also screened for outlying experimental 
stimuli (i.e., scenes), again in a condition-agnostic fashion. There were two outlying items 
in Experiment 1 and zero outlying items in Experiment 2. These items were discarded 
from further analysis.  
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Data analysis 

All analyses were performed using custom-written scripts in Python (Van Rossum & 
Drake Jr, 1995), using the NumPy (van der Walt et al., 2011), SciPy (Virtanen et al., 
2020), Pingouin (Vallat, 2018), Pandas (McKinney, 2010), Matplotlib (Hunter, 2007), 
Seaborn (Michael Waskom et al., 2020), PyMC3 (Salvatier et al., 2016), ArviZ (Kumar 
et al., 2019), and Bambi (Yarkoni & Westfall, 2016) libraries. 

For all pairwise comparisons and correlations, in addition to frequentist statistics like t-
values, we report Bayes factors quantifying how much more likely the data are under the 
alternative hypothesis than under the null hypothesis (BF10). Bayes factors were estimated 
analytically using noninformative priors: a Cauchy prior on effect size and a Jeffreys prior 
on variance, using the default Cauchy scale parameter of r = 0.707, resulting in a quantity 
known in the literature as the “JZS Bayes factor” (Jeffreys, 1998; Rouder et al., 2009; 
Zellner & Siow, 1980). 

In addition to the simple paired comparisons and correlations, we report results from 
Bayesian hierarchical generalized linear models with full random effects structure. See 
Supplemental Note 1 for details on the models and sampling scheme. Results from these 
analyses are primarily summarized using 94% Highest Density Intervals (HDI94). 
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Before all statistical analyses, we log10-transformed bounded variables (reaction time, 
localization error) to improve normality and stabilize variance. All tests with a priori 
directional hypotheses report one-tailed p- and BF10-values; tests without a priori 
directional hypotheses are conducted using two-tailed values. 

 

Results 

Congruency costs in change detection with controlled stimuli 

A sample of 100 volunteers participated online in Experiment 1, which was a version of 
the classical “flicker” change detection paradigm (Rensink et al., 1997) (Figure 1a), with 
an added localization response. Importantly, scene changes could occur in either a 
congruent or an incongruent object, where low-level similarities between conditions were 
matched as much as possible (Öhlschläger & Võ, 2017) (Figure 1b), and stimuli were 
counterbalanced across participants. 

Change detection reaction times were well within the maximum of 7.8 s (M = 1,576 ms, 
SD = 234; Figure S1), indicating that participants were able to perform the task 
successfully. This was further corroborated by the localization error scores, which 

Figure 1: Design and key results for Experiment 1. (a) Structure and timeline of a single experimental trial. This 
was a typical “flicker” change detection task, followed by a localization response. (b) Examples of stimuli used in the 
two conditions (Öhlschläger & Võ, 2017). Note the matched key object (cup/toilet roll in dishwasher versus cup/toilet 
roll in toilet roll holder). Red outlines indicate the key object (not shown to participants). (c) Reaction times across all 
participants, for Congruent and Incongruent trials. Full distribution in scatterplot, mean ± 95% confidence interval of 
difference scores on the right. Responses are faster for incongruent than for congruent trials. 
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demonstrate that participants on average were able to locate the item correctly (M = 
26.8%, SD = 9.7, where values < 50% indicates a click inside the key object; Figure S1). 

The key hypothesis that this experiment was designed to test is that objects in congruent 
contexts incur a cost in change detection performance, compared to incongruent contexts. 
Specifically, as operationalized here, reaction times for congruent trials should be longer 
than for incongruent trials. This is exactly what we found (t(96) = 4.34, p < .001, d = 0.44, 
BF10

 = 986.15; difference M = 0.046 log10(RT/s), CI95 = [0.028, 0.063]; Mcongruent = 1.63 
s, Mincongruent = 1.52 s; Figure 1c). Additionally, we found that localization errors were 
larger on congruent than on incongruent trials (t(96) = 2.44, p = .008, d = 0.25; difference 
M = 0.020 log10, CI95 = [0.0064, 0.033]; Figure S2), though the evidence for this effect 
was only moderate (BF10 = 3.76). 

Although the stimulus set we used is highly controlled, stimuli are still instances of natural 
scenes. This improves the ecological validity of the experiment, but it also means that 
stimuli are necessarily a sample of all possible scenes that could have been used. This 
leads to variation in the effect across experimental items (see Figure S3). In addition to 
the null-hypothesis test (NHT) described above, we therefore conducted a fully Bayesian 
hierarchical analysis to account for this, in this case analogous to a paired contrast with 
random intercepts and slopes across both subjects and stimulus items. The results of this 
analysis corroborate the conclusions of the NHT: reaction times are slower for congruent 
than for incongruent trials (coefficient posterior M = −0.054 log10(RT/s), HDI94 = 
[−0.098, −0.0061]; see Figure S4). Furthermore, the Bayesian analysis allows us to 
generalize our conclusion further: across both the population from which our participants 
were drawn, and the population from which our stimuli were drawn, we can be 98.68% 
certain that this effect holds. The Bayesian analysis of localization error also yields a 
corroboration of the analogous NHT, albeit a weaker one (M = −0.021 log10, HDI94 = 
[−0.046, 0.0061]; see Figure S5), with 92.77% probability that the effect is lower than 
zero. 

In summary, Experiment 1 provided strong evidence that change detection is impaired 
when the changing object is surrounded by semantically congruent, rather than 
incongruent, contexts. We extend the existing literature by showing that this effect 
persists even for controlled, matched, stimuli. 
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Congruency costs extend to perceptual identification 

A key motivation for the present research was to investigate whether congruent 
surroundings have consequences for the perception of the congruent or incongruent key 
object itself. We therefore conducted a second experiment, using the same stimuli as in 
Experiment 1, but with a different, more directly perceptual, task. 200 volunteers 
participated in Experiment 2, in which they had to identify one of two similar objects as 
having been present in a previously presented scene (Figure 2a). Context was again 
included as a factor (Congruent/Incongruent), and we additionally included the factor 
Probe (Key/Other), resulting in the addition of trials where an incongruent object was 
present, but was not the target item (Figure 2b). 

Overall two-alternative forced choice (2AFC) accuracy was clearly above chance level 
(M = 61.44%, SD = 7.72), and reaction times were well within the maximum of 2.5 s (M 
= 1,226 ms; SD = 216; Figure S6), indicating that participants were able to perform the 
task successfully. 

We found that 2AFC accuracy was significantly lower for Congruent trials than for 
Incongruent ones, when focusing on Probe-Key (t(193) = −4.49, p < .001, d = 0.32, BF10

 = 
2013.77; difference M = −6.18%, CI95 = [−8.46, −3.90]; Figure 3). There was no 
difference for Probe-Other (t(193) = −0.23, p = .591, d = 0.02; difference M = −0.30%, CI95 
= [−2.45, 1.85]; Figure 3), with the data about six times more likely under the null 
hypothesis of no difference (BF10 = 0.17). Reaction time data showed a very similar 

Figure 2: Design for Experiment 2. (a) Structure and timeline of a single experimental trial. Participants were 
presented with a natural (indoor) scene, and were tasked to make a two-alternative forced choice (2AFC) exemplar 
discrimination afterwards. (b) Illustration of the two within-subjects manipulations. Scenes could either be Congruent  
(left) or Incongruent (right), and the probed objects could either be the Key object (top) or an Other object (bottom). 
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pattern: responses were slower for Congruent than for Incongruent trials within Probe-
Key (t(193) = 4.21, p < .001, d = 0.30, BF10

 = 677.40; difference M = 0.053 log10(RT/s), 
CI95 = [0.032, 0.074]; Mcongruent = 1.13 s, Mincongruent = 1.07 s; Figure S7), with no 
difference in Probe-Other (t(193) = −1.03, p = 0.152, d = 0.07, BF10

 = 0.27; difference M = 
−0.013 log10(RT/s), CI95 = [−0.035, 0.0080]; Mcongruent = 1.20 s, Mincongruent = 1.23 s; Figure 
S7). 

Since Experiment 2 constitutes a 2×2 design, it is important to formally test the interaction 
between the two factors. Additionally, as in Experiment 1, we sought to test the 
generalization of the observed effects to the population not just of participants, but of 
experimental items as well (see Figure S8 for effect spread over items). To accomplish 
these goals, we again conducted a hierarchical Bayesian (logistic) regression analysis of 
2AFC accuracy, with the key experimental effect captured by the interaction parameter. 
We found clear evidence for an interaction effect (M = 0.39, HDI94 = [0.12, 0.65]; see 
Figure S9), with a 99.66% probability that the parameter exceeds zero, indicating that 
participants indeed were more accurate for incongruent trials specifically when probed 
about the (incongruent) key object, and not when probed about another. 

The reaction time data showed a very similar pattern: participants were faster on 
incongruent trials, specifically for Probe-Key (interaction parameter M = −0.064 
log10(RT/s), HDI94 = [−0.11, −0.014]; see Figure S10), with a probability of 99.24%. 
Reaction time analysis additionally revealed a main effect of Probe (M = −0.060 
log10(RT/s), HDI94 = [−0.097, −0.024]), indicating that participants were faster to respond 
on Probe-Key than on Probe-Other trials (probability 99.88%). It is possible that the probe 
stimuli in the Other condition were more difficult than those in the Key condition, but 
given the convincing absence of a main Probe effect in 2AFC accuracy (HDI94 = [−0.19, 
0.30]), we cannot conclude this with certainty. 

Figure 3: 2AFC accuracy results for Experiment 2: responses are more accurate for incongruent scenes. 
Scatterplots show accuracy in Congruent and Incongruent trials, separately for Probe-Key (orange, left) and Probe-
Other (blue, right). Dots are individual participants. Right panel shows mean ± 95% confidence interval of difference 
scores for both Probe conditions. 
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Taken together, we can conclude with considerable confidence that congruency costs are 
not limited to perceptually indirect measures like change detection or spatial attention 
allocation, but extend to object exemplar identification, and thus have genuine perceptual 
consequences. (See Supplemental Note 2 for an additional result regarding the possible 
attentional locus of this effect.) 

 

Congruency costs are not explained by task strategy 

In Experiment 1, as in the majority of previous research on object congruence, if an 
incongruent item was present in a scene, this was always the task-relevant item. Any 
congruency costs (or: incongruency benefits) might therefore be explained by participants 
adopting the strategy of always searching for an incongruent object and paying full 
attention to it. This strategy is only available on incongruent trials, and not on congruent 
ones, hence potentially causing a general congruency cost. In Experiment 2, we included 
the Probe-Key/Probe-Other factor specifically to ensure that incongruent items, when  
present, were not automatically task-relevant (Figure 2b). This factor by itself, in a 2×2 
balanced design, already ensures that p(Incongruent = Relevant | Incongruent = Present), 
or p(IR|IP) for short, is reduced to 50% (from the typical 100%). For the above analysis, 

Figure 4. No modulation of congruency effect by relevance manipulation in Experiment 2. Congruent – 
Incongruent difference scores are shown per level of p(IR|IP), mean ± 95% confidence interval. Values are shown for 
the two main dependent variables, 2AFC accuracy and reaction time, as well as for a combined metric, Inverse 
Efficiency Score (IES). Shading reflects the 95% confidence interval of the effect across the entire sample. 
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p(IR|IP) indeed was 50% on the aggregate, yet we observe that congruency costs persist. 
Therefore, based on the above, we can already conclude that congruency costs are not 
exclusively observed in settings where  p(IR|IP) = 100%. 

It is possible that congruency costs, although not abolished, are still attenuated for lower 
values of p(IR|IP). If this were the case, then the strategic concern described above might 
still be an issue. For Experiment 2, we manipulated p(IR|IP) across participants to test to 
what extent the potential confound of task strategy might explain observed congruency 
costs. We found no effect of p(IR|IP) on task effects in either 2AFC accuracy (r(192) = .11, 
p = .11, CI95 = [−.028, .25]; Figure 4) or reaction time (r(192) = −.027, p = .71, CI95 = [−.16, 
.11]), with the data about three times more likely under the null hypothesis of no 
correlation for accuracy (BF10 = 0.31), and about ten times more likely under the null 
hypothesis for reaction time (BF10 = 0.096). Visual inspection (Figure 4) showed that 
fluctuations in accuracy across p(IR|IP) were accompanied by opposite fluctuations in 
reaction time, perhaps suggesting variations in speed/accuracy tradeoff. To account for 
this, we additionally computed Inverse Efficiency Score (IES) (Vandierendonck, 2017), 
which also did not show an effect of p(IR|IP) (r(192) = .13, p = .057, CI95 = [−.0042, .27]), 
though we note that the data here were only about twice as likely under the null hypothesis 
(BF10 = 0.54). We finally note that the cell p(IR|IP) = 17% contains relatively few 
Incongruent/Probe-Key trials per participant, thus the effect of congruency is estimated 
less reliably for these participants (also evident in the increased error bars in Figure 4 for 
this level of the independent variable). 
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In summary, the persistence of congruency costs in the presence of Probe-Other trials, 
and in particular the absence of a modulation of congruency costs by increasing task-
relevance of incongruent objects, is clear evidence that the congruency cost phenomenon 
cannot be explained by task-strategic considerations. 

 

Change detection and exemplar identification tap into overlapping effects 

Both experiments used the same stimulus set, so it is natural to ask whether the 
congruency cost effects identified in both experiments are related. This is indeed what we 
found. For the main dependent variables of change detection reaction time (Experiment 
1) and 2AFC identification accuracy (Experiment 2), we find clear evidence for a negative 
correlation across items for congruency difference scores (r(58) = −.34, p = .004, CI95 = 
[−.55, −.09], BF10 = 9.93; Figure 5; note that the negative direction of the effect is 
explained by positive (Δ-) accuracy values indicating better performance, while positive 
(Δ-) reaction time values indicate worse performance). Correlations between the other 
dependent variables corroborated this finding: change detection localization performance 
was highly correlated with identification reaction time (r(58) = .40, p < .001, CI95 = [.16, 
.59], BF10 = 43.24), while the other pairwise correlations tended nonsignificantly in the 
compatible direction (Exp. 1 RT × Exp. 2 RT: r(58) = .11, p = .206, CI95 = [−.15, .35], 
BF10 = 0.35; Exp. 1 localization error × Exp. 2 2AFC accuracy r(58) = −.21, p = .056, CI95 
= [−.44, .05], BF10 = 1.05; Figure 5). 

Figure 5. Contextual costs are related between the two experiments. Change detection reaction time and localization 
error (x-axes) versus exemplar 2AFC identification accuracy and reaction time (y-axes) for the different items. Lines 
indicate best-fitting regression line of 2AFC effect onto change detection effect, shading indicates 95% confidence 
interval of regression line. 
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We can thus conclude that the two perceptual tasks, change detection in Experiment 1, 
and exemplar identification in Experiment 2, tap into overlapping effects. 

 

Subjective congruency ratings partly explain behavioural performance 

Within the incongruent scenes, there is variation in the extent to which an object might 
be considered incongruent. This variation has previously been established by the authors 
of the original publication on the stimulus set we used: a separate sample of observers 
independently rated each of the scene stimuli (Öhlschläger & Võ, 2017). As a final, 
exploratory, analysis, we asked whether this variation in subjective (in)congruency 
ratings might explain (part of) the congruency effects we observed. Specifically, we 
looked at the correlation between subjective inconsistency ratings (where higher means 
more inconsistent) and behavioural performance across the incongruent scenes. 

Change detection reaction times in Experiment 1 were not correlated with inconsistency 
rating (r(58) = .05, p = .358, CI95 = [−.21, .30], BF10 = 0.12; Figure 6). However, exemplar 
identification 2AFC accuracy scores in Experiment 2 were significantly correlated with 
inconsistency ratings, with higher subjective inconsistency corresponding to better 
performance (r(60) = .32, p = .005, CI95 = [.08, .53], BF10 = 7.67; Figure 6). Neither of the 
secondary dependent variables in the two experiments was significantly correlated with 
inconsistency ratings (both |r| < .15; p > .1; BF10 < 0.3; Figure S11). 

Figure 6. Subjective inconsistency ratings partly explain behavioural performance. Subjective inconsistency 
ratings for the different experimental items, provided by an independent sample of observers, are shown on the x-axis, 
with higher scores indicating stronger inconsistency (i.e., lower object/scene consistency). Although these ratings 
appear unrelated to change detection performance in Experiment 1, they are significantly correlated with 2AFC 
identification performance in Experiment 2. Crosses are individual items (incongruent scenes only). Lines indicate best-
fitting regression, shading indicates 95% confidence interval of regression line. 
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We can conclude that objects within scenes that are rated as subjectively more 
incongruent by independent observers are easier to identify (Experiment 2), but changes 
in those objects are not detected faster (Experiment 1). 

 

Discussion 

Using two large-sample behavioural experiments, we tested a counterintuitive 
consequence of the theory of predictive coding: that scene-induced priors lead to reduced 
processing of scene-congruent objects. This hypothesis entails congruency costs in 
perceptual tasks. In Experiment 1, we replicated the established congruency cost effect 
from the change detection literature, while crucially controlling for potential stimulus 
confounds previously uncontrolled for. More importantly, in Experiment 2, using a task 
requiring object exemplar identification, we demonstrated that congruent surroundings 
impair perception of key objects themselves. By manipulating the proportion of 
incongruent objects that were relevant, we were able to show that congruency costs are 
not due to participant strategy, but rather reflect an automatic perceptual phenomenon. 

Previous studies have reported slower change detection responses for changes in 
congruent objects than for changes in incongruent ones (Hollingworth & Henderson, 
2000; LaPointe et al., 2013; Mack et al., 2017). Eye tracking studies have additionally 
reported that scene-incongruent objects are fixated earlier than congruent ones (Bonitz & 
Gordon, 2008; Loftus & Mackworth, 1978; Underwood et al., 2007). It has been debated 
to what extent these effects are truly due to semantic congruence, or might instead be 
better explained by low-level visual features (e.g., local contrast) differing between 
conditions (Underwood & Foulsham, 2006; Võ & Henderson, 2009). In the present study, 
we used a stimulus database designed to be highly balanced between the semantically 
(in)congruent conditions (Öhlschläger & Võ, 2017). A further advantage of these stimuli 
is that they were all actual photographs, with no reliance on digital image editing 
techniques to ‘transplant’ objects from one context to another. Such digital editing, even 
when used carefully, might introduce local inconsistencies (e.g. in lighting) that are not 
exclusively semantic. The results for Experiment 1 demonstrate that congruency costs are 
evident in change detection even for such controlled stimuli, ruling out worries that this 
semantic effect might not truly be semantic at all. 

An additional potential concern is that of task strategy. In a typical experimental design 
with congruent and incongruent trials, if an incongruent object is present in a scene, then 
this is very likely task-relevant (e.g., the locus of change in change detection, or 
specifically memorable in a memory task). Participants might therefore decide to always 
look for an incongruent object, as this will be beneficial in half the trials (and thus in 
general). This strategy is only available on incongruent trials, thereby leading to a 
behavioural benefit in that condition. We quantified this potential strategic effect in 
Experiment 2, by including trials on which an incongruent object was present, but not 
task-relevant. Importantly, we manipulated the proportion of trials on which a presented 
incongruent object was relevant across participants, and found no modulation of 
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congruency costs by this proportion. We can therefore conclude that these congruency 
costs arise automatically, independent from (deliberate or unconscious) strategic choices. 
This conclusion is in line with Hollingworth & Henderson’s (2000) work, which included 
a similar manipulation to our Probe-Key/Other factor, and crucially extends it with the 
manipulation of relevance probability. 

As described, previous work has identified congruency costs (or, equivalently: 
incongruency benefits) before in perceptually indirect, attentional measures. Perhaps the 
most important advance made by Experiment 2 over earlier work is that it probed the 
consequences of scene congruency for object perception itself, through a different task 
than previously used, namely exemplar identification. We used accuracy in a bias-free 
discrimination task as dependent variable, thereby enabling us to test whether scene 
congruency affects perceptual encoding, independently of decisional and response biases. 
Also here we found clear evidence for congruency costs, which was furthermore related 
to the effect observed during change detection. Congruency costs thus not only reflect 
non-specific biases or some peculiarity of change detection, but indeed appear generally 
during the process of perceiving objects within scenes. 

It is possible that the effects we observed in Experiment 2 were, at least partly, mediated 
by observers directing their attention (overtly or covertly) to incongruent objects more 
frequently than to congruent ones. This would be in line with some interpretations of 
predictive coding theory, upon which prediction errors elicited by incongruent objects 
increase the salience of these objects and thus attract attention (Den Ouden et al., 2012; 
Feldman & Friston, 2010). Since we did not measure eye movements, our results do not 
speak directly for or against this interpretation. The absence of a congruency effect when 
the key object was irrelevant (Probe-Other trials; see also Supplemental Note 2) provides 
some circumstantial evidence against spatial attention being the only factor at play here, 
but further research is needed to understand whether congruency costs, as observed in 
Experiment 2, are the cause or the consequence of attentional orienting. 

An implication of the predictive coding scheme is that newly incoming data that are 
unlikely under some prior expectation elicit larger prediction error responses, requiring 
more processing, than those stimuli for which prior probability is already high. An 
important source of prior information in natural visual perception is the gist of a scene 
(Bar, 2004), with which incongruent objects are less easily integrated than congruent 
ones, therefore necessitating closer inspection before a coherent posterior is arrived at. 
This difference in level of processing should have consequences for subjective awareness 
(Anzulewicz et al., 2015; Windey et al., 2013). The main motivation for the present study 
was to test the key hypothesis that gist-induced priors lead to reduced processing of 
conguent items. Our results strongly corroborate this hypothesis. 

The Bayesian brain hypothesis is often invoked to explain congruency benefits in 
perception (de Lange et al., 2018), for which ample empirical evidence exists. 
Nevertheless, we report robust congruency costs. These seemingly contradictory claims 
are reconciled by noting that congruency benefits are reported for tasks where the gist-
induced prior is, by itself, already helpful for behaviour. Once the gist of a scene is 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 2, 2020. ; https://doi.org/10.1101/2020.09.30.320168doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.30.320168
http://creativecommons.org/licenses/by/4.0/


17 
 

recognized as corresponding to a barbershop, observers will more likely identify objects 
inside that scene as hairdryers, even independently from the associated sensory input. 
Similarly, observers can use gist-based knowledge to efficiently guide a search for a 
hairdryer; knowledge that is unavailable when searching for a hammer in the same scene. 
In contrast to category identification or visual search, change detection is a non-semantic 
task, where scene gist cannot inform the judgement to be made. We deliberately designed 
Experiment 2 to similarly involve a judgement orthogonal to any scene-induced prior, 
and, as predicted, this revealed congruency costs, rather than benefits. 

We finally would like to emphasize that, in addition to presenting frequentist null 
hypothesis tests, we consistently tested our key hypotheses using Bayesian hierarchical 
models with full random effects. This allows us to formally generalize our conclusions 
not just to the population from which our participants were drawn, but also to the 
population from which our stimuli were drawn (Arnqvist, 2020; Yarkoni, 2019), lending 
further support to the generality of our findings. 

In summary, we tested an important and seemingly counterintuitive hypothesis of the 
influential theory of predictive coding: that prior information due to real-world scene gist 
leads to reduced processing of objects congruent within such scenes. Across two 
experiments, with distinct experimental tasks, we found clear evidence in favour of this 
hypothesis, lending support to the theory of the Bayesian brain, and furthering our 
understanding of how prior knowledge interacts with sensory input to yield real-world 
percepts and guide behaviour. 
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Supplemental Information 

Supplemental Note 1 – Bayesian data analysis 

We constructed Bayesian hierarchical generalized linear models (GLMs) for both 
experiments and for both DVs per experiment. For log-reaction time (log-RT) and log-
localization error, we used a Gaussian family and identity link function, whereas for 
accuracy, we used a Bernoulli family and logit link. All experimental factors of interest 
included the full random effects structure (both intercepts and slopes) for subjects as well 
as for items. For Experiment 1, this yields the following GLM equation: 

DV ~ 1 + Congruency + (1 + Congruency | Subject) + (1 + Congruency | Item) 

For Experiment 2, this yields the following: 

DV ~ 1 + Congruency * Probe + (1 + Congruency * Probe | Subject) + (1 + 
Congruency * Probe | Item) 

Models were constructed using Bambi, which was also responsible for setting appropriate 
weakly informative priors. Posterior probability distributions were obtained using 
Markov Chain Monte Carlo (MCMC) based on the No U-Turn Sampler (NUTS), as 
implemented in PyMC3. Four chains were sampled for each model, with 3,000 samples 
per chain, after a 6,000-sample tuning period, using a target acceptance ratio of 90%. 
Starting values were determined using Automatic Differentiation Variational Inference 
(ADVI; option init = ‘advi+adapt_diag’), run for 35,000 time steps or until plateau. We 
checked chain convergence through visual inspection, as well as through the Gelman-
Rubin statistic r̂. Posterior results are primarily summarized using 94% Highest Density 
Intervals (HDI94), based on the combined samples of all chains. Probability of parameters 
lying above/below a critical value is summarized by the proportion of combined samples 
above/below that value. 

 

Supplemental Note 2 – Congruency costs might not always depend on spatial 
attention 

In Experiment 2, if the congruency cost in the Probe-Key condition is due to an 
incongruent item ‘grabbing attention’ (either through foveation or covertly) more strongly 
than a congruent item, then we would expect a congruency benefit in the Probe-Other 
condition. Also in that condition, a by definition irrelevant incongruent item (present only 
in the incongruent condition) would grab attention, thereby impairing performance on 
discriminating the (always congruent) Probe-Other target item in the scene. As described 
in Results, our data suggest that the existence of such an effect in Probe-Other trials is 
unlikely. 

As a further test of the attentional locus of this effect, we might ask whether stimulus 
items that yield a strong Probe-Key congruency effect, also yield a strong Probe-Other 
congruency effect. Such a correlation might exist even in the absence of a Probe-Other 
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congruency effect in the average. However, also here we find evidence to the contrary, 
both for 2AFC accuracy (r(60) = −.094, p = .235, CI95 = [−0.34, 0.16], BF10 = 0.31) and 
for reaction times (r(60) = .13, p = .154, CI95 = [−0.12, 0.37], BF10 = 0.083). 

Taken together, the absence of a Congruency effect in Probe-Other, as well as the absence 
of a relationship between Probe-Key and Probe-Other effects, raise the interesting 
possibility that identified congruency costs in the exemplar identification task are not 
entirely mediated by attentional factors. However, given the large body of literature 
interpreting congruency costs as attentional in other tasks (see Introduction), we do not 
wish to make strong conclusions here; particularly since we did not record eye 
movements. 
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Figure S1. Overall reaction time and localization error distributions for Experiment 1. 
Dots are participants; hollow circles are outliers (removed from all analyses). 
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Figure S2. Localization errors across all participants in Experiment 1, for Congruent and 
Incongruent trials (analogous to Figure 1c). Full distribution in scatterplot, mean ± 95% 
confidence interval of difference scores on the right. 
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Figure S3. Reaction times and localization errors across experimental items (averaged 
over participants) for Experiment 1. Crosses are individual items. Full distributions in 
scatterplot, mean ± 95% confidence interval of difference scores on the right. 
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Figure S4. Posterior distribution after MCMC sampling of Bayesian regression model 
for reaction time in Experiment 1. Top row shows parameter estimates for fixed effects 
coefficients, middle row corresponds to subject-level random effects (i.e. standard 
deviation of effect over subjects), bottom row corresponds to item-level random effects. 
Intercepts and slopes for individual items/subjects are not shown (as these are very many), 
only the parameters related to their spread are included. Shading reflects a kernel density 
estimate of the marginal full posterior for one parameter; black horizontal bars indicate 
94% HDI; dashed vertical lines, if present, correspond to a reference value (i.e., 0 for a 
fixed effect). 
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Figure S5. Posterior distribution after MCMC sampling of Bayesian regression model 
for localization error in Experiment 1. All panels and conventions as in Figure S4. 
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Figure S6. Overall accuracy and reaction time distributions for Experiment 2. Dots are 
participants; hollow circles are outliers (removed from all analyses). 
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Figure S7. 2AFC reaction times in Congruent and Incongruent trials, separately for 
Probe-Key (orange, left) and Probe-Other (blue, right). Dots are individual participants. 
Right panel shows mean ± 95% confidence interval of difference scores for both Probe 
conditions. (Presentation analogous to Figure 3.) 
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Figure S8. 2AFC accuracy (top) and reaction times (bottom) for Experiment 2, across 
experimental items (averaged over participants), for the Incongruent/Congruent and 
Probe-Key/Probe-Other conditions. Crosses are individual items. Full distributions in 
scatterplots, mean ± 95% confidence interval of difference scores in right panels. 
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Figure S9. Posterior distribution after MCMC sampling of Bayesian logistic regression 
model for accuracy in Experiment 2. All panels and conventions as in Figure S4. 
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Figure S10. Posterior distribution after MCMC sampling of Bayesian regression model 
for reaction times in Experiment 2. All panels and conventions as in Figure S4. 
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Figure S11. Correlations of secondary dependent variables with subjective inconsistency 
ratings across all incongruent items. Lines indicate best-fitting regression, shading 
indicates 95% confidence interval of regression line. 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 2, 2020. ; https://doi.org/10.1101/2020.09.30.320168doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.30.320168
http://creativecommons.org/licenses/by/4.0/

