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ABSTRACT 

Lymphangioleiomyomatosis (LAM) is a rare pulmonary disease affecting women of childbearing age that is 
characterized by the aberrant proliferation of smooth-muscle (SM)-like cells and emphysema-like lung remodeling. 
In LAM, mutations in TSC1 or TSC2 genes results in the activation of the mechanistic target of rapamycin complex 
1 (mTORC1) and thus sirolimus, an mTORC1 inhibitor, has been approved by FDA to treat LAM patients. Sirolimus 
stabilizes lung function and improves symptoms. However, the disease recurs with discontinuation of the drug, 
potentially because of the sirolimus-induced refractoriness of the LAM cells. Therefore, there is a critical need to 
identify remission inducing cytocidal treatments for LAM. Recently released Library of Integrated Network-based 
Cellular Signatures (LINCS) L1000 transcriptional signatures of chemical perturbations has opened new avenues to 
study cellular responses to existing drugs and new bioactive compounds. Connecting transcriptional signature of a 
disease to these chemical perturbation signatures to identify bioactive chemicals that can “revert” the disease 
signatures can lead to novel drug discovery. We developed methods for constructing disease transcriptional signatures 
and performing connectivity analysis using single cell RNA-seq data. The methods were applied in the analysis of 
scRNA-seq data of naïve and sirolimus-treated LAM cells. The single cell connectivity analyses implicated mTORC1 
inhibitors as capable of reverting the LAM transcriptional signatures while the corresponding standard bulk analysis 
did not. This indicates the importance of using single cell analysis in constructing disease signatures. The analysis 
also implicated other classes of drugs, CDK, MEK/MAPK and EGFR/JAK inhibitors, as potential therapeutic agents 
for LAM.  

Introduction 

Lymphangioleiomyomatosis (LAM) is a progressive interstitial lung disease predominantly affects young 
females of reproductive age carrying an inherited disorder called Tuberous Sclerosis Complex (TSC) or 
due to a sporadic form without any evidence of a genetic disease1–3. This uncommon complex disease is 
caused by activation of the mechanistic target of rapamycin complex 1 (mTORC1) through inactivating 
mutations in tumor suppressor genes TSC1 or TSC2 which is directly associated with unrestricted cell 
growth3,4. Besides smooth muscle (SM) cell proliferation and emphysema-like lung remodeling5, LAM also 
results from the infiltration of neoplastic cells containing both SM and melanocyte lineage cells6,7 leading 
to interstitial cystic lung destruction8.  
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Currently, mTORC1 inhibitor sirolimus is the only drug approved by the Food and Drug Administration 
(FDA) which improves pulmonary dysfunction and decelerates LAM progression in most patients9. 
However, sirolimus treatment does not lead to progression free survival and has a cytostatic rather than a 
cytocidal effect. Lung function decline resumes following drug discontinuation and thus uninterrupted drug 
exposure is required for prolonged benefit9,10. The drug cannot completely eliminate LAM cells potentially 
because chronic exposure to sirolimus induces refractoriness and resistant behavior of the mTORC1-
hyperactive LAM cells11. Therefore, it is urgent to identify remission-inducing and durably effective 
therapeutic agents for LAM.  

As an alternative to de novo drug discovery, identifying new therapeutic uses of the existing drugs by 
leveraging large compendia of biomedical data, also known as drug repositioning, has been used as a 
potential tool in drug discovery and development12–14. In the connectivity map (CMap) drug repositioning15, 
transcriptional signature of disease is constructed by differential gene expression analysis between the 
diseased tissue or cells and the control. The negative correlation between the transcriptional disease 
signature and the transcriptional signature of the drug treatment is used to identify drugs capable of 
“reversing” the disease process to be used as potential therapeutics. For example, histone deacetylase 
(HDAC) inhibitor vorinostat, which is known to treat cutaneous T-cell lymphoma, has been shown to be 
effective in treating gastric cancer16 or drug topiramate has been identified as a potential candidate to treat 
inflammatory bowel disease (IBD) by comparing gene expression signatures of IBD against drug 
perturbational signatures17. The most recent edition of the connectivity map library, generated by the 
integrated network-based cellular signatures (LINCS) project, catalogues transcriptional signatures of more 
than 20,000 drugs and uncharacterized small chemicals across 77 cell lines facilitating drug repositioning 
and identification of new therapeutic agents18,19.  

With the recent progress of next generation sequencing technologies, single-cell RNA-seq (scRNA-seq) 
has emerged as a powerful tool to investigate inter-cellular heterogeneity at single cell level. The gene 
expression dynamics of individual cells provides means to study complex disease mechanisms at an 
unprecedented resolution. Although considerable research has been devoted to using bulk transcriptional 
signatures for computational drug repositioning, methodologies for connecting diseases, genes, and drugs 
using scRNA-seq data are lacking. In this paper we develop the complete protocol for performing 
connectivity analysis using scRNA-seq data, including signatures construction and connectivity analysis 
with individual drug signatures as well as the whole classes of drugs with the same mechanism of action. 
We use the new methods to perform connectivity analysis of LAM scRNA-seq signatures. Our analyses 
confirm therapeutic effect of currently used drugs and provides additional drug candidates. Importantly, we 
demonstrate that these results are contingent on use of scRNA-seq data and our methods for constructing 
single cell disease signature and would not be possible by connectivity analysis of standard bulk RNA-seq 
disease signatures. 

 

Results 

Overview of scRNA-seq connectivity analysis. 

Conventional transcriptome profiling methods such as bulk RNA-seq relies on averaging molecular 
signals across a large population of cells. This can lead to missing key expression features of a small 
subpopulation of cells that may be crucial for disease progression and response to target therapies. The goal 
of our analysis is to construct a transcriptional signature of disease-critical cells which may represent a 
small fraction of profiled cells. Our analysis identifies the disease-critical cell subpopulations and constructs 
the disease signature by comparing the expression profile of disease-critical cells to the matched cell type 
in the control non-diseased tissue. Our central hypothesis is that such a single cell disease signature will 
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factor out the cell-type to cell-type differences, and will facilitate identification of effective therapeutics 
when the standard connectivity analysis of bulk disease signatures fails.  

The analytical workflow of scRNA-seq signature construction and connectivity analysis proceeds as: (1) 
Cluster analysis of disease and controls samples; (2) Construct cluster annotating signature (CAS) for each 
cluster in the disease sample and identification of the disease-critical cell subpopulation using the panel of 
disease marker genes; (3) Identify matching control cell populations in the non-diseased sample; (4) 
Construct disease characterizing signature (DCS) by comparing the disease-critical cells with the matched 
control cells; (4) “Connect” DCS to LINCS-L1000 chemical perturbational signatures. Details of each step 
are provided in the Methods, outlined in Supplementary Figure 1, and illustrated through analysis of LAM 
samples. 

Signature construction and connectivity analysis of naïve LAM. 

scRNA-seq data were generated using 10x Chromium platform on dissociated lungs from one naïve LAM 
patient (LAM1), one sirolimus treated LAM patient (LAM2), and one normal patient (WT) respectively , 
and has been previously described and analyzed20. In total, 19,384 cells (7,244 cells from LAM1, 6,545 
cells from LAM2, and 5,595 cells from WT) were included in the downstream analyses after filtering out 
low quality cells from each sample separately (Methods), with an average number of detected genes 
(UMI>0) of 2,089, 2,466, and 1,564 per cell in LAM1, LAM2, and WT respectively (Supplementary Figure 
2). The analytical workflow outlined above were carried out for LAM1 and LAM2 samples separately.  

Cluster analysis of naïve LAM and wild-type samples. 

Single-cell clustering was performed for naïve LAM (LAM1) and wild-type (WT) sample individually. 
We employed graph-based clustering implemented in Seurat321, which identified 19 clusters in each of the 
samples that are visualized using t-Distributed Stochastic Neighbor Embedding (t-SNE) plots (Methods; 
Error! Reference source not found.A).  

Construction of cluster annotating signatures.  

To construct cluster annotating signatures (CAS), pairwise comparisons for each cluster was conducted 
and then combined into a single cluster specific signature (Methods; Supplementary Figure 1). The top 
most significantly (False discovery rate (FDR) <0.05) up-regulated genes, namely cluster annotating 
signature (CAS) were then used to annotate cell clusters by cell-types or tissues. This step was iterated for 
each cluster separately.  

To identify disease-critical cell sub-population, we utilized a set of 8 marker genes identified as the 
markers of LAM from the literature (Figure 1Error! Reference source not found.B; Supplementary Table 
1). All the markers were exclusively highly expressed in cluster 16 of LAM1 (Figure 1B), and this cluster 
was the only one whose signature was enriched for expression of the marker genes (Figure 1C; 
Supplementary Table 2) indicating that the cluster (herein denoted as LAM1cluster16) consists of LAM cells. 

To further characterize cells in different clusters, we performed enrichment analysis of the top 200 most 
significantly up-regulated genes from each cluster for cell type marker from three databases: Human cell 
landscape (HCL)22, cellMarker (CM)23, and PanglaoDB (PDB)24, and the tissue markers derived from the 
gene atlas dataset25. Top 3 most significantly (FDR<0.05) enriched tissue and cell-type categories with log 
odds ratio above 1.5 from each cluster were selected for each cluster and associations between the clusters 
and cell and tissue type are summarized in the Supplementary Figure 3. The analysis implicated clusters of 
different kinds of epithelial, endothelial, and immune cells. The cells implicated by the CAS of LAM1cluster16 
cells was enriched for markers of mesenchymal cells and uterus, uterus-corpus and appendix tissue 
signatures (Supplementary Figure 3).  
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Construction of disease characterizing signature. 

Disease characterizing signature of LAM1 was constructed by comparing LAM1cluster16 with the 
transcriptionally analogous WT clusters. Comparing LAM1cluster16, which is a cluster of smooth-muscle like 
cells, to any WT cluster such as, B cells, T cells, or endothelial cells, would increase noise and might not 
show the signal pertinent to transcriptional changes in LAM cells. Therefore, selecting only the WT clusters 
that were most similar to LAM1cluster16 detected relevant transcriptional changes in LAM cells compared to 
the equivalent non-diseased cells. 

The analysis of overlaps between the LAM1cluster16 CAS and CASes of all WT clusters identified cells in 
WT clusters 9 and 12 (Figure 2A; Figure 2B) as being the most similar to the LAM cells in LAM1cluster16. 
Single cell disease characterizing signature (DCS) of LAM was then constructed by differential gene 
expression analysis between cells in LAM1cluster16 and cells in WT clusters 9 and 12. To illustrate the 
advantages of the single cell DCS, we also constructed pseudo-bulk signature of LAM1 by differential 
expression between all LAM1 cells and all WT cells (Methods). This signature mimics the signature that 
would be obtained by the bulk RNA-seq analysis.  

 

Figure 1. Cluster analysis of scRNA-seq samples. A) Unsupervised clustering of 7,244 cells from 
LAM1 (top panel) and 5,595 cells from wild-type (WT) sample (bottom panel) are represented in two-
dimensional t-SNE plots with perplexity 30. A total of 19 clusters were identified in each sample using 
Seurat’s graph-based clustering initialized with top principal components with largest variances. 
Clusters are colored and labeled distinctively and the number of cells in each cluster is noted inside the 
parenthesis in the legends. B) Expression of known LAM markers was used to identify the cluster of 
LAM cells, with the size of the dot representing the percentage of cells expressed and color is 
proportional to the average expression of the genes. All the 8 markers show moderate to high expression 
in at least 30% cells in cluster 16 of LAM1. C) Marker enrichment was conducted using Fisher’s exact 
test based on the significantly (FDR<0.05) differentially expressed (DE) genes from each of the cluster 
annotating signatures of LAM1. All the markers were significantly DE only in cluster 16, whereas none 
of the markers were significant in any other cluster.  
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The pathway analysis of the LAM single cell DCS against GO26, KEGG27, and MSigDB (Hallmark)28 
gene sets via  clusterProfiler29, implicated MTORC1 signaling hallmark gene sets as being enriched in the 

DCS (Figure C), along with gene sets pathways associated with cell proliferation, invasion, and metastasis. 
Although, most of these signaling pathways are known features of LAM, identifying their activity within 
the LAM cell populations based on a transcriptional signature is not a trivial task. The analysis of the 
pseudo-bulk LAM signature does not reveal increased MTOR signaling (Supplementary Figure 4A), 
demonstrating the increasing precision of our DCS in comparisons to a typical signature constructed from 
bulk tissue profiling.  

Connectivity analysis. 

We developed a protocol to perform the connectivity analysis of a DCS against 143,374 LINCS signatures 
(Methods) in response to treatment with 15,349 chemical perturbagens (CP), and identify potential drug or 
small molecule candidates for treatment of LAM. We developed an analytical framework to connect LAM 

 

Figure 2. Construction and functional enrichment of disease characterizing signature. A) WT 
clusters were matched with the LAM cluster in terms of top 200 most significantly (FDR<0.05) up-
regulated genes from each of the CAS. Unsupervised hierarchical clustering revealed sub-clusters of 
LAM and WT clusters, where LAM1cluster16 was clustered with WT clusters 9 and 12. B) Significance 
of the overlaps between LAM and WT cell clusters based on the significantly (FDR<0.05) up-regulated 
genes were assessed via Fisher’s exact test. Cluster similarity were measured using log10 odds ratio 
and hierarchical clustering of LAM1cluster16 vs. WT is visualized via dendrograms. Log!" odds ratio (OR) 
of 1 or more is indicated by the yellow color. C) Disease characterizing signatures of LAM were 
constructed by comparing LAM1cluster16 with the WT cluster 9 and 12. Functional enrichment of top 200 
most significantly (FDR<0.05) up-regulated genes was carried out in terms of KEGG/MSigDB 
(Hallmark)/GO (Biological processes) categories. Selected functional classes based on the cutoff of 
FDR adjusted P-values<0.1 are represented by different edge colors and size of the node is proportional 
to negative logarithm of FDR adjusted P-value. 
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signature to LINCS CP signatures and identify MOA of the drugs/small molecules with connected 
signatures (Methods). Briefly, single cell DCS is correlated with individual LINCS CP signatures (Figure 
3A). The enrichment of signature with high negative correlations among CPs with a specific MOA was 
assessed using small-sample bias corrected logistic regression. We identified several cell proliferation and 
pro-survival pathway targets in LAM1. Most enriched MOA categories included both MTOR inhibitors, 
dual inhibition of PI3K/MTOR, and CDK inhibitors (Figure 3B).  

Given the known etiology of LAM, and the use of the sirolimus MTOR inhibitor in the treatment of LAM, 
ability of MTOR inhibitors to reverse the LAM is expected and also in line with the functional analysis 
results from the previous section. However, the same connectivity analysis repeated on the pseudo-bulk 
LAM signature fails to identify MTOR inhibitors as putative therapeutics (Supplementary Table 5). This 
again demonstrates the importance of the carefully constructed single cell DCS for the successful 
connectivity analysis. We found sirolimus, AZD-8055, OSI-027, and WYE-125132 showing consistently 
strong negative correlation across all the dosages with LAM1 DCS (Supplementary Figure 5A). 

Cyclin-dependent kinase inhibitors (CKI) play a vital role in controlling cell cycle progression and cell 
proliferation by inhibiting specific cyclin/cyclin-dependent kinase complexes30,31. CDK1/2 inhibitors CGP-
60474, PHA-793887, and alvocidib and CDK4/6 inhibitor palbociclib shows strong negative correlation 
with LAM1 single cell DCS across different concentrations and cell lines (Supplementary Figure 5A). 
Functional enrichment of  the LAM DCS identified biological processes and pathways related to MAP 
kinase signaling (Figure 2C) which was also supported by our connectivity analysis with MEK/MAP 
kinase/protein kinase inhibitors being implicated as putative therapeutic agents. Estrogen-induced 

 

Figure 3. Connectivity analysis of naïve LAM signature. A) Top 250 most up/down regulated genes 
from LAM characterizing signature was selected and matched with 978 LINCS-L1000 landmark genes. 
Pearson’s correlation were computed between each of the LINCS-CP and LAM signature. Top 50 
LINCS-CP signatures most negatively correlated with the LAM signature (columns) with the 
corresponding matched genes (rows) are presented via heatmap. B) Odds ratios of the top most enriched 
MOA categories are shown via dot plot where the size of the dots represent the significance of the MOA 
categories with a bigger dot indicating lower FDR adjusted P-value. MOA categories were selected 
based on odds ratio>2, –log10(FDR)>7, and at least 100 signatures in any MOA category. C) 
Distribution of the overall signature correlations associated with each of the MOA categories are 
demonstrated via box-and-whisker plots. Each dot represents a LINCS-CP signature and negative 
correlations indicate the potential of the drug mechanisms to revert the LAM signature. 
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activation of MAPK signaling is associated with enhanced cell proliferation32 and survival of LAM cells33. 
Estrogen-increased the expression of oncogene c-MYC, which plays a critical role in cell cycle progression 
by suppressing p21Cip1 expression34, in LAM cells (Figure 2C) and might induce MAPK signal transduction 
pathways32,35. Moreover, inhibition of mTORC1 is known to activate MAPK signaling cascade36 which 
may implicate that combined inhibition of mTORC1 and MAPK can serve as an alternative treatment 
strategy possibly with better prognosis than sirolimus based monotherapy37. Furthermore, signatures from 
breast cancer cell lines were strongly negatively correlated with LAM1 DCS (Supplementary Figure 5B). 
Several other pathway inhibitors related to cell proliferation and survival such as HSP, EGFR/JAK, AKT, 
VEGFR, IGF-1, and HDAC were also associated with LAM1 DCS (Supplementary Table 3). 

Signature construction and connectivity analysis of sirolimus treated LAM. 

 

Figure 4. Cluster analysis of LAM2. A) Unsupervised clustering of 6,545 cells from LAM2 are 
represented in two-dimensional t-SNE plots (top panel) with perplexity 30. A total of 19 clusters were 
identified in each sample using Seurat’s graph-based clustering initialized with top principal 
components with largest variances. Expression of known LAM markers was used to identify the cluster 
of LAM cells (bottom panel), with the size of the dot representing the percentage of cells expressed and 
color is proportional to the average expression of the genes. B) Integrated clustering of 13,789 cells 
from both LAM1 (7,244 cells from LAM1) and LAM2 (6,545 cells from LAM2) identified 18 clusters 
where each cluster consists of both LAM1 and LAM2 cells (top panel). Seurat’s implementation of 
integrated clustering was used to identify common cell clusters between LAM1 and LAM2. Clusters 
are colored and labeled uniquely and the number of cells in each cluster is noted inside the parenthesis 
in the legends. 6 out of 8 LAM markers show moderate to high expression in at least 25% cells in both 
LAM1 (63 cells) and LAM2 (12 cells) of cluster 16 (bottom panel). 
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 Similar to naïve LAM, we repeated the analytical workflow for sirolimus treated LAM sample (LAM2). 
The clustering algorithm identified 19 clusters in LAM2 (Figure 4A) and we used LAM marker genes to 
identify LAM cells in LAM2. However, unlike LAM1, the expression of LAM markers was not localized 
in any particular cluster, and cells expression were dispersed in all clusters (Figure 4A) making it impossible 
to identify a single LAM cluster. Marker enrichment in LAM2 cluster further showed no statistical 
significance in any LAM2 cluster (Supplementary Table 2). As an alternative strategy, we integrated LAM1 
and LAM2 cells and re-clustered them. A total of 13,789 cells from LAM1 and LAM2 were combined 
using Seurat’s21 implementation of multiple dataset integration and 18 clusters were detected (Figure 4B). 
Majority of the markers were comparatively highly expressed in both LAM1 and LAM2 part of cluster 16 
(Figure 4B) which was further supported by the enrichment of LAM markers in the joint clusters 
(Supplementary Table 2). Contractile proteins such as, α-smooth-muscle actin (ACTA2) and desmin (DES), 
protease cathepsin-K (CTSK), melanocyte protein (PMEL), and alpha-crystallin B chain (CRYAB) were 
highly expressed in majority of the cells in joint cluster 16. All the 57 cells from LAM1cluster16 were also 
present in the joint cluster 16. The 12 LAM2 cells in the joint cluster 16 were assumed to represent LAM 
cells in the LAM2 samples and were denoted as LAM2joint-cluster16.  

 
Figure 5. Construction and functional enrichment of disease characterizing signature from 
LAM2. A) WT clusters were matched with the LAM2joint-cluster16 cluster in terms of top 200 most 
significantly (FDR<0.05) up-regulated genes from each of the CAS. Unsupervised hierarchical 
clustering revealed sub-clusters of LAM and WT clusters, where LAM2joint-cluster16 was clustered with 
WT clusters 9 and 12. B) Significance of the overlaps between LAM and WT cell clusters based on the 
significantly (FDR<0.05) up-regulated genes were assessed via Fisher’s exact test. Cluster similarity 
were measured using log10 odds ratio and hierarchical clustering of LAM1cluster16 vs. WT is visualized 
via dendrograms. Log!" odds ratio (OR) of 1 or more is indicated by the yellow color. C) Disease 
characterizing signatures of LAM were constructed by comparing LAM2joint-cluster16 with the WT cluster 
9 and 12. Functional enrichment of top 200 most significantly (FDR<0.05) up-regulated genes was 
carried out in terms of KEGG/MSigDB (Hallmark)/GO (Biological processes) categories. Selected 
functional classes based on the cutoff of FDR adjusted P-values<0.05 and odds ratio>2 are represented 
by different edge colors and size of the node is proportional to negative logarithm of FDR adjusted P-
value. 
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 Cluster annotating signatures of the joint clusters showed similar cell and tissue types as in LAM1 
analysis (Supplementary Figure 6). Cluster annotating signatures were further used to find the WT clusters 
akin to LAM2joint-cluster16. Similar to LAM1cluster16, WT cluster 9 and 12 had maximum number of overlapping 
genes with LAM2joint-cluster16 (Figure 5A; Figure 5B). The single cell DCS of LAM2 cells was constructed 
by differential gene expression analysis between cells in LAM2joint-cluster16 and the WT clusters 9 and 12. 
The pathway analysis of the LAM2 DCS  identified gene sets associated with the regulation of cell-cell 
adhesion, response to interferon gamma and tumor necrosis factor, but not MTOR signaling (Figure 5C). 

Connectivity analysis of LAM2 DCS (Figure 6A) revealed several MOA categories including single-
agent proteasome inhibitors, dual inhibition of NF-κB pathway/proteasome inhibitors and HSP inhibitors. 
(Figure 6B). Mutation of TSC2 and its leading activation of MTORC1 upregulates the proteasome38 which 
may facilitate estrogen enhanced survival of tumor cells39,40. MTOR also activates NF-κB41, a major 
regulator of cell survival, pro-inflammatory cytokines such as TNF-α, and cell adhesion molecules which 
may allow LAM cells to survive4,42. We also found response to interferon gamma and cell adhesion 
molecules in the functional enrichment of LAM2 DCS (Figure 5C) which might activate NF-κB and 
supports the anti-apoptotic behavior of the LAM cells. Proteasome inhibitor, which inhibits NF-κB 
activation, has been found to reduce estrogen mediated survival of TSC2-null cells in LAM40 and was one 
of the top hits in our connectivity analysis with LAM2 DCS. Signatures of tyrosine kinase and 
cyclooxygenase inhibitor drugs were also implicated (Figure 6B and Figure 6C). Interestingly, several drugs 
related to this MOA, such as multi-kinase inhibitor imatinib, Src inhibitor Saracatinib, and Cyclooxygenase 
inhibitor Celecoxib are being currently tested in clinical trials as LAM therapeutics confirming the 

 
Figure 6. Connectivity analysis of sirolimus treated LAM signature. A) Top 250 most up/down 
regulated genes from LAM2 DCS signature was selected and matched with 978 LINCS-L1000 
landmark genes. Pearson’s correlation was computed between each of the LINCS-CP and LAM 
signature. Top 50 LINCS-CP signatures most negatively correlated with the LAM signature (columns) 
with the corresponding matched genes (rows) are presented via heatmap. B) Odds ratios of the top most 
enriched MOA categories are shown via dot plot where the size of the dots represents the significance 
of the MOA categories with a bigger dot indicating lower FDR adjusted P-value. MOA categories were 
selected based on odds ratio>1.75, –log10(FDR)>4, and at least 150 signatures in any MOA category. 
C) Distribution of the overall signature correlations associated with each of the MOA categories are 
demonstrated via box-and-whisker plots. Each dot represents a LINCS-CP signature and negative 
correlations indicate the potential of the drug mechanisms to revert the LAM signature. 
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relevance of the connectivity analysis results. We also found MTOR inhibitors as one of the top enriched 
MOA categories although with relatively low strength of association (odds ratios) (Figure 6B). 

 
Discussion 

The connectivity analysis leveraging large databases of transcriptional perturbation signatures such as 
LINCS-L1000 along with the open accessibility to processed transcriptomics data43,44 and signatures45,46, 
enables in silico discovery of novel therapeutics. However, disease-related biological processes and 
resulting transcriptional dysregulation are not uniform across all cell types within the diseased tissues. 
Furthermore, the differences in expression profiles between cells of different types usually dwarf the 
differences between diseased and non-diseased cells of the same type. Therefore, the cell-averaging in the 
traditional bulk assays can produce disease transcriptional signatures of no relevance for finding putative 
therapeutics via connectivity analysis. This has been clearly demonstrated in our analysis of LAM data.  

The scRNA-seq data used in our analysis was previously described and analyzed by Guo et al.20, and our  
pathway analysis results of naïve LAM signatures are consistent with results presented in that paper. Unlike 
Guo et al., we were also able to identify a small set of cells expressing known LAM markers in the sirolimus 
treated LAM sample. However, the most important contribution of our study is the connectivity analysis of 
the LAM signatures.  

Identification of remission-inducing therapeutic agents that can eliminate LAM cells has been 
challenging. Our connectivity analyses identified several known and novel repurposable therapeutic agents 
for LAM treatment including mTORC1 inhibitors as potential therapeutics to revert the LAM signature. 
However, mTORC1 inhibitors were not enriched among the connected MOAs indicating that the bulk 
transcriptional signatures cannot capture the key driving molecular mechanism of LAM. This was further 
supported by the pathway enrichments where genes up-regulated through activation of mTORC1 complex 
were enriched in the single cell DCS of naïve LAM, but not in the bulk signature. This demonstrates the 
importance of single cell profiling and effectiveness of our proposed workflow for scRNA-seq based 
connectivity analysis. To the best of our knowledge, this is the first analysis that describes and clearly 
demonstrates the importance of single cell transcriptional signature based connectivity analysis. 

In addition to mTORC1 inhibitors, our analysis also identified additional classes of drugs, as well as 
specific drugs, capable of reverting the LAM signature such as, antiproliferative CDK inhibitors, and 
MEK/MAPK inhibitors, which might induce cytotoxicity against the LAM cells. The analysis of sirolimus 
treated LAM, implicated NF-κB pathway and proteasome inhibitors which have already been considered 
as therapeutic strategy in TSC. Functional enrichments of sirolimus treated LAM signature identified 
interferon gamma response which might lead to the activation of pro-survival pathways such as NF-κB. 
Furthermore, other cellular processes such as response to oxidative stress and antigen processing and 
presentation were induced in LAM2 signature implicating strong connectivity of NF-κB pathway and 
proteasome inhibitors. Additionally, several ongoing trials are testing the efficacy of multi-kinase inhibitor, 
Src inhibitor, and Cyclooxygenase inhibitors in LAM have also been strongly implicated in our connectivity 
analysis confirming again relevancy of the analysis results. 
 

Methods 

Single-cell RNA-seq and LINCS-L1000 data 
Single-cell RNA-seq (scRNA-seq) was performed on dissociated lung tissue samples that were collected 

from three different sources including an untreated LAM patient (LAM1), patient treated with sirolimus 
(LAM2), and a brain dead, beating-heart, organ donor control patient (WT). Both LAM patients were 
undergoing lung transplantation. Single-cell suspensions of the two explanted LAM lungs and the normal 
lung were subjected to 10x Chromium scRNA-seq. CellRanger pipeline was used for read alignment and 
quantification. Raw gene counts data used in this analysis have been previously described and submitted to 
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GEO20 (GSE135851). LAM1 data corresponds to the sample GSM4035465, LAM2 data corresponds to 
sample GSM4035466 and WT sample corresponds to sample GSM4035472. 

For connectivity analysis, we utilized LINCS-L1000 database which is comprised of an extensive library 
of over a million gene expression profiles19. L1000 assay, a low-cost high-throughput technology developed 
by the Broad Institute, measures the expression of 978 landmark genes. The gene expression profiles were 
generated in response to a wide range of perturbing agents including ~20,000 small molecule compounds 
in more than 100 human cell lines and cell types for a total of 473,647 signatures18. We considered 143,374 
chemical perturbation signatures available via iLINCS45 which were constructed by merging level-4 L1000 
signature replicates into level-5 moderated Z-scores and only the reproducible signatures were retained. 

Single-cell RNA-seq data pre-processing and clustering 
For scRNA-seq data, we filtered low-quality cells that were expressed (unique molecular identifies 

(UMI)>0) in less than 500 genes and had more than 10% mitochondrial UMI counts. Initial data pre-
processing, normalization, and clustering was performed using Seurat321 for LAM1, LAM2, and WT 
samples individually. Data were normalized by the global-scaling normalization method (“LogNormalize”) 
and top 2000 genes with highest standardized variance (method=“vst”) were selected for principle 
component (PC) analysis. For clustering, shared nearest-neighbor (SNN) graph was constructed with top 
30 PCs with highest variances and Louvain algorithm for community detection47 with resolution parameter 
of 0.8 was used for clustering of cells within each sample. For integrated clustering of LAM1 and LAM2, 
both samples were merged using “IntegrateData” based on the anchors from “FindIntegrationAnchors” 
object with default parameters in Seurat3. Resolution parameter was set to 0.4 for cell clustering in the 
integrated LAM. 

 

Construction of cluster annotating and disease characterizing signatures 
We employed a two-step strategy to annotate cell clusters and construct disease characterizing signature. 

In step 1, pairwise differential expression (DE) of each cluster was computed using MAST48 Bioconductor 
package which generated 𝑛# − 1 DE for each cluster (Supplementary Figure 1A), where 𝑛# is the number 
of clusters in sample t. For each pairwise comparison, we calculated π-score49 by multiplying log2 fold 
change (LFC) and negative logarithm of P-values (corrected for multiple testing using Benjamini-Hochberg 
(BH) method50). This can be written as: 

𝜋$%& = 𝜑$%& ∙ (−𝑙𝑜𝑔!"𝑃$%&) 
Where 𝜑$%& and 𝑃$%& are LFC and P-values for 𝑖#' gene, 𝑟#' comparison, and 𝑐#' cluster respectively. A 

positive 𝜋 score indicates an up-regulation of a gene, whereas a negative score means down-regulation. A 
one-sided one sample Student’s t-test was carried out to combine the 𝑛# − 1 DEs into a cluster specific 
signature under the following hypotheses: 

𝐻": 𝜇$&( = 𝜇"	𝑣𝑠. 𝐻!: 𝜇$&( > 𝜇", where 𝜇$&(  is the mean π score for gene i and cluster c. 
The null value was considered as 2 based on the cutoff of a gene being called differentially upregulated 

with pre-specified LFC of 1 and P-value of 0.01. P-values from t-test were further corrected for multiple 
testing using Benjamini-Hochberg method50. Top 200 most significantly (FDR<0.05) up-regulated genes 
were considered for cell-type/tissue enrichment via CLEAN51. The cluster of disease-critical LAM cells 
was identified as the one most enriched for 8 LAM marker genes.  

In step 2, LAM specific cell cluster (LAMcluster16) was matched with WT clusters in terms of top 200 
differentially upregulated (DU) genes (Supplementary Figure 1A). Similarities between LAM and WT 
clusters based on the number of overlapping genes were determined using complete linkage based 
hierarchical clustering with Euclidean distance measure. Significance of the overlaps among LAM and WT 
clusters were assessed via Fisher’s exact test. Finally, disease characterizing signature of both LAM1 and 
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LAM2 were constructed by comparing LAM1 cells and LAM2 cells from LAMcluster16 with the matched 
WT clusters separately. Pseudo-bulk signatures for LAM1 and LAM2 were constructed by comparing all 
the LAM1 cells with WT cells and LAM2 cells with the WT cells respectively using MAST48 Bioconductor 
package.  

Connectivity analysis 
LINCS-L1000 chemical perturbational (CP) signatures were considered for connectivity analysis. We 

selected 250 most significantly (FDR<0.05) differentially expressed (125 up-regulated and 125 down-
regulated) genes from the LAM characterizing signature and matched them with the 978 L1000 landmark 
genes. Let, 𝑄$ be the LAM signature and 𝐿$) be the LINCS-CP signatures, where i is the set of matched 
genes and j is the set of LINCS CP signatures. Pearson correlation 𝐶𝑜𝑟)(𝑄, 𝐿)) was computed between LAM 
and each of the LINCS CP signatures (Supplementary Figure 1B) to assess the strength of relationship 
between the signatures. Negative correlation P-values were calculated for each signature correlation and 
corrected for multiple testing using BH method. A total of 86,538 LINCS CP signatures associated with 
1005 unique mechanism of action (MOA) categories corresponding to the small molecules/drugs were 
considered for further MOA enrichment.  

Let 𝑀 be a binary variable where, 

𝑚* = B1, 𝑓𝑜𝑟	𝑡ℎ𝑒	𝑘
#'	𝑀𝑂𝐴	𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦

0, 𝑓𝑜𝑟	𝑎𝑙𝑙	𝑜𝑡ℎ𝑒𝑟	𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠  

Here, 𝑘 = 1,2, …… ,1005. Inspired by the LRpath method52, we then fitted a small sample bias corrected 
binary logistic regression model53 for	𝑀, 

𝑙𝑜𝑔𝑖𝑡(Pr(𝑀* = 1)) = 𝑋*+𝛽 

Where, negative logarithm of down-regulated P-values of correlation between LAM and LINCS-CP 
signatures is the predictor variable (Supplementary Figure 1B). 𝛽 > 0 indicates that the signatures of the 
drugs for a specific MOA are “connected” with the disease signatures. 
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