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Fig. 2 Effect of single amino acid substitutions on allosteric function. a-c Protein structures showing the 
locations of amino acid substitutions that affect each Hill equation parameter: G0 (a), G∞ (b), EC50 (c). For 
each, the DNA-binding configuration is shown on the left (DNA in light orange, PDB ID: 1LBG22) and the 
ligand-binding configuration is shown on the right (IPTG in cyan, PDB ID: 1LBH22). Both configurations are 
shown with the view oriented along the protein dimer interface, with one monomer in light gray and the 
other monomer in dark gray. Colored spheres highlight residues where substitutions cause a greater than 
5-fold change in the Hill equation parameter relative to wild-type LacI. Red spheres indicate residues 
where substitutions increase the parameter, and blue spheres indicate residues where substitutions 
decrease the parameter. At three residues (A82, I83, and F161), some substitutions decrease EC50, while 
other substitutions increase EC50 (violet spheres in c). d-f Scatter plots show the effect of each 
substitutions as a function of position. Substitutions that change the parameter by less than 5-fold are 
shown as gray points. Substitutions that change the parameter by more than 5-fold are shown as red or 
blue points with error bars. In a and d, gray-pink spheres and points indicate positions for substitutions 
that are completely missing from the landscape dataset and that have been shown by previous work to 
result in constitutively high G(L)18,19. Histograms to the right of each scatter plot show the overall 
distribution of single-substitution effects. G0 and G∞ are reported in molecules of equivalent fluorophore 
(MEF). Error bars indicate ± one standard deviation. 

  3 

 4 

 5 
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Fig. 3 The effects of amino acid substitutions on EC50 are log-additive. The predicted EC50 for double-
substitution LacI variants (i.e. two amino acid substitutions) was calculated assuming log-additivity of the 
effect of each single substitution on the EC50 relative to the wild-type: (EC50,AB – EC50,wt) = (EC50,A – EC50,wt) + 
(EC50,B – EC50,wt), where ‘wt’ indicates the wild-type, ‘A’ and ‘B’ indicate the single-substitution variants, 
and ‘AB’ indicates the double-substitution variant. The measured EC50 of double-substitution variants is 
from the large-scale landscape measurement. Orange points mark double-substitution variants in which 
one of the single substitutions causes a greater than 2.5-fold change in EC50. Dark red points mark double-
substitution variants in which both single substitutions cause a greater than 2.5-fold change in EC50. The 
EC50 of wild-type LacI is marked with a black ‘X’. For this analysis, only experimental data was used (no 
results from the DNN model). Also, only data from LacI variants with low EC50 uncertainty were used 
(std(log10(EC50)) < 0.35). 

 1 
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Fig. 4 Analysis of inverted and band-stop genotypes. a-b Location of amino acid substitutions associated 
with strongly inverted (a) and strong band-stop (b) phenotypes. For each plot, the DNA-binding 
configuration of LacI is shown on the left (PDB ID: 1LGB), with the DNA operator at the bottom in light 
orange; the ligand-binding configuration is shown on the right (PDB ID: 1LBH), with IPTG in cyan. Both 
configurations are shown with the view oriented along the protein dimer interface, with one monomer in 
light gray and the other monomer in dark gray. The locations of associated (i.e. high-frequency) amino 
acid substitutions are highlighted as red spheres, and secondary structures where inverted or band-stop 
variants have amino acid substitutions at a significantly higher frequency than the full library are shaded 
with different colors. For strongly inverted variants (a), helix 5 is shaded blue, helix 11 is shaded violet, 
and the residues near the ligand-binding pocket are shaded orange. For strong band-stop variants (b), 
helix 9 is shaded blue, and strand J is shaded violet. c-d Network diagrams showing relatedness among 
genotypes for strongly inverted (c) and strong band-stop (d) variants. Within each network diagram, LacI 
variants are represented by polygonal nodes, with a colormap indicating the G0/G∞ or G0/Gmin ratio (see 
Fig. 1e). The number of sides of the polygon indicates the number of amino acid substitutions relative to 
the wild-type, and bold outlines indicate variants that were verified with flow cytometry. Smaller circular 
nodes represent substitutions, with lines showing the substitutions for each variant. Bold red outlines on 
the substitution nodes indicate the associated substitutions shown as spheres in a-b, and the shading of 
substitution nodes matches the shading used to highlight secondary structures in a-b. 

 1 
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Fig. 5 The band-stop phenotype emerges from combinations of nearly silent amino acid substitutions. 
a Dose-response curves measured with flow cytometry for selected LacI variants: wild-type LacI (grey 
‘X’s), a strong band-stop variant identified from the library with only three amino acid substitutions 
(R195H/G265D/A337D; blue diamonds), LacI variants containing the single substitutions R195H (orange 
circles) and G265D (green circles), LacI variant with the double substitutions R195H/G265D (red 
diamonds). The single substitution R195H (orange) or G265D (green) results in sigmoidal dose-response 
curves similar to wild-type LacI, but the combination of the two, R195H/G265D (red), results in a band-
stop phenotype. The complete set of permutations of R195H, G265D, and A337D are shown in 
Supplementary Fig. 15. b-c Effects of individual amino acid substitutions associated with inverted and 
band-stop phenotypes. Each plot shows the joint effect of individual amino acid substitutions on two Hill 
equation parameters. The blue circles plotted with error bars show the effects of substitutions associated 
with the strongly inverted phenotype and the orange triangles plotted with error bars show the effects of 
substitutions associated with the strong band-stop phenotype. Most substitutions associated with the 
inverted phenotype cause a large shift in either EC50, G∞, or both, consistent with the biophysical 
requirements for inverting the dose-response curve. In contrast, most of the amino acid substitutions 
associated with the band-stop phenotype are nearly silent. Light blue circles and light orange triangles 
show the effects for all amino acid substitutions found in the sets of strongly inverted and strong band-
stop variants, respectively. Dashed gray lines mark the wild-type parameter values. Plotted data includes 
a combination of direct experimental measurements and DNN model predictions and is included in 
Supplementary Data 1. Error bars indicate ± one standard deviation. 

 1 

 2 
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Methods 1 

Strain, plasmid, and library construction  2 

All reported measurements were completed using E. coli strain MG1655∆lac26. Briefly, strain 3 

MG1655∆lac was constructed by replacing the lactose operon of E. coli strain MG1655 (ATCC #47076) 4 

with the bleomycin resistance gene from Streptoalloteichus hindustanus (Shble). 5 

Two plasmids were used for this work: a library plasmid (pTY1, Supplementary Fig. 1a) used for the 6 

measurement of the genotype and phenotype of the entire LacI library, and a verification plasmid 7 

(pVER, Supplementary Fig. 1b) used to verify the function of over 100 LacI variants from the library 8 

chosen to test the accuracy of the library-scale dose-response curve measurement method. A step-by-9 

step description of the plasmid assembly protocol is available27. The sequences are available in GenBank 10 

(MT702633, MT702634, for pTY1 and pVER, respectively). 11 

Plasmid pTY1 contained the lacI coding DNA sequence (CDS) and the lactose operator (lacO) regulating 12 

the transcription of a tetracycline resistance gene, tetA, which, in the presence of tetracycline, confers a 13 

measurable change in fitness connected with the expression level of the regulated genes. Plasmid pTY1 14 

also encoded Enhanced Yellow Fluorescent Protein (YFP), which was used during library construction to 15 

select a library in which most of the LacI variants could function as allosteric repressors (see below). 16 

Plasmid pVER contained a similar system in which LacI and lacO regulate the transcription of only YFP. 17 

Plasmid pVER was used to measure dose-response curves of clonal LacI variants using flow cytometry. 18 

Each variant chosen from the library for verification was chemically synthesized (Twist Biosciences), 19 

inserted into pVER, and transformed into E. coli strain MG1655∆lac for flow cytometry measurements to 20 

confirm the dose-response curve inferred from the library-scale measurements. 21 

The LacI library was generated by error-prone PCR of the wild-type lacI. The library was inserted into 22 

pTY1 along with randomly synthesized DNA barcodes. Each barcode consisted of 54 random nucleotides 23 

introduced with PCR primers (Integrated DNA Technologies). Most of the variants in the initial library 24 

had high G(0), i.e. the I– phenotype18. To generate a library in which most of the LacI variants could 25 

function as allosteric repressors, we used fluorescence activated cell sorting (FACS) to select a portion of 26 

the library with low fluorescence in the absence of ligand (Sony SH800S Cell Sorter). To allow 27 

comprehensive long-read sequencing of the library (PacBio sequel II, see Long-read sequencing section, 28 

below), we further reduced the library size by dilution of the FACS-selected library to create a 29 

population bottleneck of the desired size. For the work reported here, we used a library of 30 

approximately 105 LacI variants (determined by serial plating and colony counting). 31 

A spike-in control strain was used to normalize the DNA barcode read counts for the sequencing-based 32 

fitness measurement (see Library-scale fitness measurement section, below). The spike-in control strain 33 

contained the Library Plasmid with a LacI variant that had a constant, high tetA expression level. The 34 

fitness of the spike-in control was determined from OD600 data acquired during growth of clonal cultures 35 

with the same automated growth protocol as used for the genotype-phenotype landscape 36 

measurement (see Growth protocol for landscape measurement section, below). The fitness of the 37 

spike-in control was measured in all 24 chemical environments and was independent of IPTG 38 

concentration but was slightly lower with tetracycline (0.75 hour-1) than without tetracycline 39 

(0.81 hour-1). 40 
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 1 

Culture conditions 2 

Unless otherwise noted, E. coli cultures were grown in a rich M9 media (3 g/L KH2PO4, 6.78 g/L 3 

Na2HPO4, 0.5 g/L NaCl, 1 g/L NH4Cl, 0.1 mmol/L CaCl2, 2 mmol/L MgSO4, 4% glycerol, and 4 

20 g/L casamino acids) supplemented with 50 µg/mL kanamycin. 5 

E. coli cultures were grown in a laboratory automation system that controlled preparation of 96-well 6 

culture plates with media and additives (i.e. IPTG and tetracycline). Cultures were grown in clear-bottom 7 

96-well plates with 1.1 mL square wells (4titude, 4ti-0255). The culture volume per well was 0.5 mL. 8 

Before incubation, an automated plate sealer (4titude, a4S) was used to seal each 96-well plate with a 9 

gas permeable membrane (4titude, 4ti-0598). Cultures were incubated in a multi-mode plate reader 10 

(BioTek, Neo2SM) at 37 °C with a 1 °C gradient applied from the bottom to the top of the incubation 11 

chamber to minimize condensation on the inside of the membrane. During incubation, the plate reader 12 

was set for double-orbital shaking at 807 cycles per minute. Optical density at 600 nm (OD600) was 13 

measured every 5 minutes during incubation, with continuous shaking applied between measurements. 14 

After incubation, an automated de-sealer (Brooks, XPeel) was used to remove the gas permeable 15 

membrane from each 96-well plate. 16 

Growth protocol for landscape measurement 17 

To measure the fitness and dose-response curve of every LacI variant in the library, a culture of E. coli 18 

containing the LacI library was mixed at a 99:1 ratio with a culture of the E. coli spike-in control. The 19 

culture was loaded into the automated microbial growth and measurement system where it was 20 

distributed across a 96-well plate and then grown to stationary phase (12 hours). Cultures were then 21 

diluted 50-fold into a new 96-well plate, Growth Plate 1, containing 11 rows with a 2-fold serial dilution 22 

gradient of IPTG with concentrations ranging from 2 µmol/L to 2048 µmol/L and one row without IPTG. 23 

Growth in IPTG allowed each variant to reach a steady state tetA expression level in each IPTG 24 

concentration. Growth Plate 1 was grown for 160 minutes, corresponding to approximately 25 

3.3 generations, and then diluted 10-fold into Growth Plate 2. Growth Plate 2 contained the same IPTG 26 

gradient as Growth Plate 1 with the addition of tetracycline (20 µg/mL) to alternating rows in the plate, 27 

resulting in 24 chemical environments, with 4 duplicate wells for each environment. Growth Plate 2 was 28 

grown for 160 minutes and then diluted 10-fold into Growth Plate 3, which contained the same 29 

24 chemical environments as Growth Plate 2. This process was repeated for Growth Plate 4, which also 30 

contained the same 24 chemical environments. The total growth time for the fitness measurements in 31 

the 24 chemical environments, 480 minutes across Growth Plates 2-4, corresponded to approximately 32 

10 generations for the fastest-growing cultures. The 50-fold dilution factor from stationary phase into 33 

Growth Plate 1 and the 160 minute growth time per plate were chosen to maintain the cultures in 34 

exponential growth for the entire 480 minutes. During each 160 minute incubation, the cultures without 35 

tetracycline increased approximately 10-fold in optical density, to a final OD600 of approximately 0.5 36 

(corresponding to an estimated cell density of 4 × 108 cells/mL). 37 

After each growth plate was used to seed the subsequent plate (or at the end of 160 minutes for 38 

Growth Plate 4), the remaining culture volumes for each chemical environment (approximately 39 

450 µL/well, four duplicates per plate) were combined and pelleted by centrifugation (3878 g for 40 

10 minutes at 23 °C). Plasmid DNA was then extracted from the 24 combined samples with a custom 41 

method using reagents from the QIAprep Miniprep Kit (Qiagen cat. #27104) on an automated liquid 42 
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handler equipped with a positive-pressure filter press (step-by-step protocol available28). After 1 

extraction, DNA was eluted into a final volume of approximately 50 µL and the concentration of DNA in 2 

each sample ranged from undetectable up to approximately 1.5 ng/µL. This corresponds to an estimated 3 

maximum of approximately 1010 plasmids per sample. 4 

Barcode sequencing 5 

After plasmid extraction, each set of 24 plasmid DNA samples was prepared for barcode sequencing 6 

using a custom sequencing sample preparation method on a second automated liquid handler (step-by-7 

step protocol is available29). Briefly, the plasmid DNA was linearized with ApaI restriction enzyme. Then, 8 

a 3-cycle PCR was performed to attach sample multiplexing tags to the resulting amplicons so the 9 

different samples could be distinguished when pooled and run on the same sequencing flow cell. Eight 10 

forward index primers and 12 reverse index primers were used to label the amplicons from each sample 11 

across the 24 chemical environments and the four time points. After a magnetic-bead-based cleanup 12 

step, a second, 15-cylce PCR was run to attach the standard Illumina paired-end adapter sequences and 13 

to amplify the resulting amplicons for sequencing. After a second magnetic-bead-based cleanup, the 14 

24 samples from each time point were pooled and stored at 4 °C until sequencing. For sequencing, DNA 15 

was diluted to a final concentration of approximately 5 nmol/L and combined with 20% phiX control 16 

DNA. DNA from each of the 4 time points was sequenced in a separate lane on an Illumina HiSeqX using 17 

paired-end mode with 150 bp in each direction.  18 

To count DNA barcodes and estimate the fitness associated with each LacI variant, the sequencing data 19 

was analyzed using custom software written in C# and Python, and the Bartender1.1 barcode clustering 20 

algorithm30 (https://github.com/djross22/nist_lacI_landscape_analysis). 21 

The sequence of the nominal Illumina compatible amplicon was (with Illumina adapters and flow cell 22 

binding sequences in gray): 23 

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTZZZZZZZZXXXXX24 
XXXXXCATCGGTGAGCCCGGGCTGTCGGCGTNNTNNNANNTNNNANNTNNNANNTNNNANNTNNNANNATA25 
TGCCAGCAGGCCGGCCACGCTNNTNNNANNTNNNANNANNNANNTNNNANNTNNNANNCGGTGGCCCGGGC26 
GGCCGCACGATGCGTCCGGCGTAGAGGXXXXXXXXXXZZZZZZZZAGATCGGAAGAGCGGTTCAGCAGGAA27 
TGCCGAGACCGATCTCGTATGCCGTCTTCTGCTTG 28 

The nominal forward and reverse reads from paired-end barcode sequencing were: 29 

ZZZZZZZZXXXXXXXXXXCATCGGTGAGCCCGGGCTGTCGGCGTNNTNNNANNTNNNANNTNNNANNTNNN30 
ANNTNNNANNATATG 31 

and 32 

ZZZZZZZZXXXXXXXXXXCCTCTACGCCGGACGCATCGTGCGGCCGCCCGGGCCACCGNNTNNNANNTNNN33 
ANNTNNNTNNTNNNANNTNNNANNAGCGT 34 

The Z’s at the beginning of each read are random nucleotides used as unique molecular identifiers 35 

(UMIs) to correct for PCR jackpotting31, the X’s are the sample multiplexing tag sequences, and the N’s 36 

are the random nucleotides of the DNA barcodes. To minimize the chances of barcode crosstalk, we 37 

used dual barcodes, with independent random barcode sequences on the forward and reverse reads 38 

and 27 random nucleotides in each of the forward and reverse barcodes. 39 
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The raw sequences were parsed, and sequences were kept for further analysis only if they passed the 1 

following quality criteria for both the forward and reverse reads: 2 

1. The four bases after the multiplexing tag (highlighted in yellow above) must match the nominal 3 

sequence with one allowed mismatch, and the multiplexing tag sequence (highlighted in pink 4 

above) must match the nominal sequence for one of the multiplexing tags used with up to three 5 

allowed mismatches. 6 

2. The five flanking bases before and after the barcodes (highlighted in cyan above) must match 7 

the nominal sequence with one allowed mismatch per set of five bases, and the number of 8 

bases in the barcode (highlighted in green above) must be between 35 and 41 (inclusive). 9 

3. The mean Illumina quality score for the barcode and the five flanking bases before and after the 10 

barcode must be greater than 30. 11 

For the four lanes of HiSeq data, there were 2,024,537,456 raw reads, of which 1,576,168,836 reads 12 

passed the quality criteria (78%). Note that 20% of the DNA sample loaded onto the HiSeq instrument 13 

was phiX DNA. 14 

True barcode sequences were identified using the Bartender1.1 clustering algorithm30 with the following 15 

parameter settings: maximum cluster distance = 4, cluster merging threshold = 8, cluster seed 16 

length = 5, cluster seed step = 1, frequency cutoff = 500. Barcodes from the forward and reverse reads 17 

were clustered independently. The Bartender1.1 clustering algorithm identified 43,259 distinguishable 18 

forward barcode clusters and 31,055 distinguishable reverse barcode clusters. 19 

To correct for insertion-deletion read errors, barcode clusters of different length were considered for 20 

merging. First, barcode clusters with sequences that were sub-strings of one another were automatically 21 

merged. Second, pairs of barcode clusters with a DNA sequence Levenshtein distance of 1 or 2 were 22 

merged if the ratio of the smaller cluster read count to the total read count of both clusters was less 23 

than 0.001 and 0.0001, respectively. Third, all barcode clusters with a Levenshtein distance less than 7 24 

from the barcode for the spike-in control were merged.  25 

After merging barcode clusters of different lengths, there were 43,169 distinguishable forward barcode 26 

clusters and 30,931 distinguishable reverse barcode clusters. The random positions within the forward 27 

and reverse barcodes had approximately equal probabilities for each nucleotide, with a mean entropy 28 

per position of 1.9799 bits ± 0.0066 bits. 29 

After barcode clustering and merging, the barcode sequencing reads were sorted based on the sample 30 

multiplexing tags and the barcode read counts were corrected for PCR jackpotting effects. Sets of 31 

multiple barcode reads were treated as PCR jackpot duplicates if they had the same UMI sequence, the 32 

same multiplexing tag, and the same barcode sequence for both forward and reverse barcode reads. In 33 

the corrected barcode count, each set of PCR jackpot duplicates was counted as a single read. 34 

Approximately 15% of the total barcode sequencing reads were found to be PCR jackpot duplicates. 35 

The forward and reverse barcodes were then combined to give the DNA barcodes used to measure the 36 

relative abundance of each LacI variant in the library. An additional barcode count threshold was 37 

applied, keeping only DNA barcodes with a total read count (across all 24 environments and 4 time 38 

points) greater than 2000. A small number (139) of DNA barcodes were identified as likely chimeras with 39 
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forward and reverse barcodes combined from different plasmid templates32–34. The likely chimera 1 

barcodes were not used in further analysis. 2 

Finally, 14 pairs of DNA barcodes were found with DNA sequence Hamming distance of one (across both 3 

forward and reverse barcodes). Only one DNA barcode from each pair was also found in the long-read 4 

sequencing data (see Long-read sequencing section, below). In addition, the fitness curves (vs. IPTG 5 

concentration) were very similar for both barcodes in each pair. Based on this, the read counts 6 

associated with each of those 14 pairs of dual barcodes were merged, and each pair was treated as a 7 

single DNA barcode. 8 

The final set of 67,730 DNA barcodes was used for all subsequent analysis to extract estimates of the 9 

fitness and dose-response curve associated with each barcode. 10 

Long-read sequencing 11 

The full sequence of the Library Plasmid for every LacI variant in the library was measured using PacBio 12 

circular consensus HiFi sequencing. The HiFi sequencing data was used to determine the consensus lacI 13 

sequence for each variant and the corresponding DNA barcode. Of the 67,731 distinct DNA barcodes 14 

(see Barcode sequencing section, above), the HiFi sequencing data was used to determine the lacI 15 

sequences for 63,064 (93%), 3,878 with a single HiFi lacI read, and 59,186 with multiple HiFi lacI reads. 16 

In addition, the full plasmid sequence was used to detect unintended mutations in the plasmid, i.e. 17 

mutations to plasmid regions other than the lacI CDS. For analysis of the HiFi read data, the full plasmid 18 

sequence was divided into 11 non-overlapping regions that roughly correspond to different functional 19 

elements of the plasmid (Supplementary Table 1), and the sequences for each region were extracted 20 

from the HiFi reads using a custom bioinformatic pipeline 21 

(https://github.com/djross22/nist_lacI_landscape_analysis). The number of unintended mutations to 22 

plasmid regions other than the lacI CDS was relatively low (Supplementary Table 1), so it was not 23 

possible to examine mutational effects with base-pair- or residue-level resolution. However, by pooling 24 

the mutational information for each region, significant region-specific effects could be detected. To 25 

determine if mutations in a region of the plasmid had a significant effect, the estimated Hill equation 26 

parameters were compared for all variants with one or more mutations in a given plasmid region vs. all 27 

variants with zero mutations in that region. Significant differences in the geometric mean of one or 28 

more Hill equation parameters were found for variants with mutations in the following regions: tetA (p-29 

value for log10(G∞): 2 × 10-56), KAN (p-value for log10(G∞): 4 × 10-11), origin of replication (p-value for 30 

log10(G∞): 6 × 10-14), and YFP (p-value for log10(G0): 4 × 10-109; p-value for log10(G∞): 5 × 10-10; p-value for 31 

log10(EC50): 2 × 10-74), where the p-values given are for Welch’s unequal-variances t-test.  32 

In addition, 43 of the 535 variants with the wild-type LacI amino acid sequence had mutations in the 33 

regulatory region (containing the PlacI and PtacI promoters, the lacO operator, the riboJ insulator, and the 34 

RBS sites for both lacI and tetA). Of those 43 variants, 3 had EC50 values that differed by approximately 35 

2-fold or more from the geometric mean value for the wild-type EC50. The Kolmogorov-Smirnov test was 36 

used to compare the distributions of EC50 values between the wild-type variants with and without 37 

mutations in the regulatory region; the results indicated a significant difference (p-value: 0.024).  38 

To avoid biasing the results of the machine learning and other quantitative phenotypic analyses, variants 39 

were excluded from those analyses if they had one or more mutations in the non-lacI regions that show 40 

significant mutational effects: tetA, YFP, KAN, the origin of replication, and the regulatory region. After 41 
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applying this data quality filter in addition to those described above, there were 54,162 variants that we 1 

used for further quantitative analysis. 2 

Library-scale fitness measurement 3 

The experimental approach for this work was designed to maintain bacterial cultures in exponential 4 

growth phase for the full duration of the measurements. So, in all analysis, the Malthusian definition of 5 

fitness was used, i.e. fitness is the exponential growth rate35. 6 

The fitness of cells containing each LacI variant was calculated from the change in the relative 7 

abundance of DNA barcodes over time. The spike-in control was used to normalize the DNA barcode 8 

count data to enable the determination of the absolute fitness for each LacI variant in the library. 9 

Briefly, for each LacI variant in each of the 24 chemical environments, the ratio of the barcode read 10 

count to the spike-in read count was fit to a function assuming exponential growth and a lag in the onset 11 

of the fitness impact of tetracycline. The fitness associated with each variant in each of the 24 chemical 12 

environments was determined as a parameter in the corresponding least-squares fit as detailed below. 13 

The barcode sequencing data was analyzed with a model based on the assumption that the number of 14 

cells containing each LacI variant grows with an exponential expansion rate that is independent of all 15 

other variants. So, for each sample, at the end of the incubation cycle for Growth Plate j, the number of 16 

cells with LacI variant i is: 17 

Ni,j = 
Ni,j-1

d
exp (μi,j∆t) (1) 

where, d (= 10) is the dilution factor used in transferring the cell culture from Growth Plate j – 1 to 18 

Growth Plate j, Δt (≈ 165 minutes) is the total incubation time for each growth plate (including time 19 

required for automated cell passaging), and μi,j is the fitness (ie mean exponential growth rate) of cells 20 

with LacI variant i in Growth Plate j. 21 

For samples without tetracycline, the chemical composition of the media was the same for all growth 22 

plates, so the fitness is assumed to be constant, μi,j = μi
0, where μi

0 is the fitness associated with LacI 23 

variant i in the absence of tetracycline. Consequently, the number of cells in each Growth Plate for 24 

samples grown without tetracycline is: 25 

log(Ni,j
0 ) = log(Ni,0

0 ) + j (μi
0∆t – log(d)) (2) 

where Ni,j
0  is the number of cells with LacI variant i at the end of Growth Plate j for samples grown 26 

without tetracycline. 27 

For samples grown with tetracycline, the tetracycline was only added to the culture media for Growth 28 

Plates 2-4. Because of the mode of action of tetracycline (inhibition of translation), there was a lag in its 29 

effect on cell fitness. Accordingly, the analysis assumes fitness varies as a function of time: 30 

μi,j = μi
0 + (μi

tet – μi
0)e–αj (3) 

where μi
tet is the steady-state fitness with tetracycline, and α is a transition rate. Based on test 31 

measurements with a small-scale library, the transition rate was kept fixed at α = log(5). From Eq. (3), 32 

the number of cells in each Growth Plate for samples grown with tetracycline is: 33 
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log(Ni,j
tet) = log(Ni,0

tet) + j (μi
tet∆t – log(d)) +

∆t

α
(μi

0 – μi
tet+(μi

tet – μi
0)e–αj) (4) 

The barcode read count for variant i in Growth Plate j was assumed to be proportional to the cell 1 

number: 2 

Ri,j = aibjNi,j (5) 

where ai is a proportionality constant associated with variant i, and bj is a proportionality constant 3 

associated with Growth Plate j. The proportionality constant ai can be different for each variant i due to 4 

differences in PCR amplification efficiency resulting from variations in the barcode sequences on each 5 

amplicon. Similarly, the proportionality constant bj can be different for each Growth Plate because of 6 

sample-to-sample variations in the DNA extraction efficiency or differences in PCR efficiency associated 7 

with different sample multiplexing tag sequences.  8 

The logarithm of the read count normalized by the spike-in read count was used to estimate the fitness 9 

of each variant from its associated barcode read count: 10 

log(ri,j) ≡ log (
Ri,j

Rspike,j
) (6) 

For samples without tetracycline, μi
0 was estimated for each variant using a weighted linear least-11 

squares fit to the log-count ratio vs. j: 12 

log(ri,j
0 ) = log(ri,0

0 ) + j∆μi
0∆t (7) 

where ri,j
0  ≡ 

ai

aspike

Ni,0
0

Nspike,0
0 , and ∆μi

0 ≡ μi
0 – μspike

0  is the difference between the fitness of variant i and the 13 

spike-in fitness without tetracycline.  14 

For samples grown with tetracycline, μi
tet was estimated for each variant with a weighted least-squares 15 

fit to the non-linear form for the log-count ratio: 16 

log(ri,j
tet) = log(ri,0

tet) + j∆μi
tet∆t + 

∆t

α
(∆μi

0 – ∆μi
tet + (∆μi

tet – ∆μi
0)e–αj) (8) 

where ri,j
tet ≡ 

ai

aspike

Ni,0
tet

Nspike,0
tet , and ∆μi

tet ≡ μi
tet – μspike

tet  is the difference between the fitness of variant i and the 17 

spike-in fitness with tetracycline. 18 

For the least-squares fits to determine both μi
0 and μi

tet, the fits were weighted based on the propagated 19 

uncertainties of ri,j
0  and ri,j

tet calculated assuming that the uncertainty of each read count was dominated 20 

by Poisson sampling.  21 

For the fitness landscape measurement, there were a large number of outliers for the read count 22 

measurements from three of the samples: Growth Plate 3, without tetracycline, [IPTG] = 8 µmol/L; 23 

Growth Plate 4, without tetracycline, [IPTG] = 64 µmol/L and [IPTG] = 2048 µmol/L. These three samples 24 

were excluded from the analysis. 25 
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Dose-response curve measurements 1 

Plasmids pTY1 and pVER were engineered to provide two independent measurements of the dose-2 

response curve for LacI variants. First, in pTY1, LacI regulates the expression of a tetracycline resistance 3 

gene (tetA) that enables determination of the dose-response from barcode sequencing data by 4 

comparing the fitness measured with tetracycline to the fitness measured without tetracycline. Second, 5 

in pVER, the LacI regulates the expression of a fluorescent protein (YFP) that enables direct 6 

measurement of the dose-response curve with flow cytometry.  7 

A set of nine randomly selected LacI variants were used to calibrate the estimation of regulated gene 8 

expression output from the barcode-sequencing fitness measurements (Supplementary Fig. 16). The 9 

calibration data consisted of the fitness data for each calibration variant from the library barcode 10 

sequencing measurement (using the library plasmid, pTY1) and flow cytometry data for each calibration 11 

variant prepared as a clonal culture (using the verification plasmid, pVER). This data was fit to a Hill 12 

equation model for the fitness impact of tetracycline as a function of the regulated gene expression 13 

level, G: 14 

μtet

μ0
 – 1 = ∆f (

Gnf

G50

nf  + Gnf
 – 1) (9) 

where µtet is the fitness with tetracycline, µ0 is the fitness without tetracycline, Δf is the maximal fitness 15 

impact of tetracycline (when G = 0), G50 is the gene expression level that produces a 50% recovery in 16 

fitness, and nf characterizes the steepness of the fitness calibration curve. Because the fitness calibration 17 

curve, Eq. (9), is nonlinear, it cannot be directly inverted to give the regulated gene expression level for 18 

all possible fitness measurements. So, two Bayesian inference models were used to estimate the dose-19 

response curves for every LacI variant in the library using the barcode sequencing fitness measurements. 20 

Source code for both models is included in the software archive at 21 

https://github.com/djross22/nist_lacI_landscape_analysis. Both inference models used Eq. (9) to 22 

represent the relationship between fitness and regulated gene expression. The parameters Δf, G50, and 23 

nf were included in both inference models as parameters with informative priors. Priors for G50 and nf 24 

were based on the results of the fit to the fitness calibration data (Supplementary Fig. 16: 25 

G50 ~ normal(mean=13,330, std=500), nf ~ normal(mean=3.24, std=0.29). We chose the prior for Δf 26 

based on an examination of 𝜇𝑡𝑒𝑡 𝜇0⁄ − 1 measured with zero IPTG: Δf ~ exponentially-modified-27 

normal(mean=0.720, std=0.015, rate=14). The use of a prior for Δf with a broad right-side tail was 28 

important to accommodate variants in the library for which 𝜇𝑡𝑒𝑡 𝜇0⁄ − 1 was systematically less 29 

than -0.722. 30 

The first Bayesian inference model assumed that the dose-response curve for each LacI variant was 31 

described by the Hill equation. The Hill equation parameters for each variant, G∞, G0, EC50, and n and 32 

their associated uncertainties were determined using Bayesian parameter estimation by Markov Chain 33 

Monte Carlo (MCMC) sampling with PyStan36. Broad, flat priors were used for log10(G0), log10(G∞), and 34 

log10(EC50), with error function boundaries to constrain those parameter estimates to within the 35 

measurable range (100 MEF ≤ G0, G∞ ≤ 50,000 MEF; 0.1 µmol/L ≤ EC50,i ≤ 40,000 µmol/L). The prior for ni 36 

was a gamma distribution with shape parameter of 4.0 and inverse scale parameter of 3.33. The 37 

inference model was run individually for each LacI variant, with four independent chains, 1000 iterations 38 

per chain (500 warmup iterations), and the adapt_delta parameter set to 0.9. Testing with data from a 39 

set of randomly selected variants indicated that these settings for the Stan sampling algorithm typically 40 
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produced a Gelman-Rubin �̂� diagnostic less than 1.05 and number of effective iterations greater than 1 

100. 2 

The second Bayesian inference model was a non-parametric Gaussian process (GP) model37 that 3 

assumed only that the dose-response curve for each LacI variant was a smooth function of IPTG 4 

concentration. The GP model was used to determine which variants had band-pass or band-stop 5 

phenotypes. The GP model was also implemented using MCMC sampling with PyStan36. The GP 6 

inference model was run individually for each variant, with four independent chains, 1000 iterations per 7 

chain (500 warmup iterations), and the adapt_delta parameter set to 0.9. Testing with data from a set of 8 

randomly selected variants indicated that these settings for the Stan sampling algorithm of the GP 9 

model typically produced a Gelman-Rubin �̂� diagnostic less than 1.02 and number of effective iterations 10 

greater than 200. 11 

Flow cytometry measurements 12 

Over 100 LacI variants from the library were chosen for flow cytometry verification of the dose-response 13 

curves. The CDSs of these variants were chemically synthesized (Twist Bioscience), cloned into the 14 

verification plasmid, pVER, and then transformed into MG1655Δlac. Transformants were plated in LB 15 

supplemented with kanamycin and 0.2% glucose. LacI variant sequences were verified with Sanger 16 

sequencing (Psomagen USA). For flow cytometry measurements of dose-response curves, a culture of 17 

E. coli containing pVER with a chosen variant sequence was distributed across 12 wells of a 96-well plate 18 

and grown to stationary phase using the automated microbial growth system. After growth to stationary 19 

phase, cultures were diluted 50-fold into a plate containing the same 12 IPTG concentrations used 20 

during the fitness landscape measurement (0 µmol/L to 2048 µmol/L). In some cases, higher IPTG 21 

concentrations were used to capture the full dose-response curves of selected variants (e.g. 22 

Supplementary Figs. 4-5). Cultures were then grown for 160 minutes (~3.3 generations) before being 23 

diluted 10-fold into the same IPTG gradient and grown for another 160 minutes. Then, 5 µL of each 24 

culture was diluted into 195 µL of PBS supplemented with 170 µg/mL chloramphenicol and incubated at 25 

room temperature for 30-60 minutes to halt the translation of YFP and allow extant YFP to mature in the 26 

cells.  27 

Samples were measured on an Attune NxT flow cytometry with autosampler using a 488 nm excitation 28 

laser and a 530 nm ± 15 nm bandpass emission filter. Blank samples were measured with each batch of 29 

cell measurements, and an automated gating algorithm was used to discriminate cell events from non-30 

cell events (Supplementary Fig. 17a-b). With the Attune cytometer, the area and height parameters for 31 

each detection channel are calibrated to give the same value for singlet events. So, to identify singlet 32 

cell events and exclude multiplet cell events, a second automated gating algorithm was applied to select 33 

only cells with side scatter area ≅ side scatter height (Supplementary Fig. 17c-d). All subsequent analysis 34 

was performed using the singlet cell event data. Fluorescence data was calibrated to molecules of 35 

equivalent fluorophore (MEF) using fluorescent calibration beads (Spherotech, part no. RCP-30-20A). 36 

The cytometer was programmed to measure a 25 µL portion of each cell sample, and the 40-fold 37 

dilution used in the cytometry sample preparation resulted in approximately 20,000 singlet cell 38 

measurements per sample. The geometric mean of the YFP fluorescence was used as a summary 39 

statistic to represent the regulated gene expression level as a function of the input ligand concentration, 40 

[IPTG] for each LacI variant. 41 
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Calculation of abundance for LacI phenotypes 1 

The relative abundance of the various LacI phenotypes (Supplementary Fig. 2) was estimated using the 2 

results of both Bayesian inference models (Hill equation and GP). Variants were labeled as “flat 3 

response” if the Hill equation model and the GP model agreed (i.e. if the median estimate for the Hill 4 

equation dose-response curve was within the central 90% credible interval from the GP model at all 12 5 

IPTG concentrations) and if the posterior probability for G0 > G∞ was between 0.05 and 0.95 (from the 6 

Hill equation model inference). Variants were labeled as having a negative response if the slope, ∂G/∂L, 7 

was negative at one or more IPTG concentrations with 0.95 or higher posterior probability (from the GP 8 

model inference). To avoid false positives from end effects, this negative slope criteria was only applied 9 

for IPTG concentrations between 2 µmol/L IPTG and 1024 µmol/L. Variants were labeled as “always on” 10 

(the I– phenotype from reference18) if they were flat-response and if G(0) was greater than 0.25 times 11 

the wild-type G∞ value with 0.95 or higher posterior probability (from the GP model inference). Variants 12 

were labeled as “always off” (the IS phenotype from reference18) if they were flat-response but not 13 

always on. Variants were labeled as band-stop or band-pass if the slope, ∂G/∂L, was negative at some 14 

IPTG concentrations and positive at other IPTG concentrations, both with 0.95 or higher posterior 15 

probability (from the GP model inference). Band-stop and band-pass variants were distinguished by the 16 

ordering of the negative-slope and positive-slope portions of the dose-response curves. Variants that 17 

had a negative response but that were not band-pass or band-stop, were labeled as inverted. False-18 

positive rates were estimated for each phenotypic category by manually examining the fitness vs. IPTG 19 

data for LacI variants with less than three substitutions. Typical causes of false-positive phenotypic 20 

labeling included unusually high noise in the fitness measurement and biased fit results due to outlier 21 

fitness data points. Estimated false-positive rates ranged between 0.001 and 0.005. The relative 22 

abundance values shown in Supplementary Fig. 2a were corrected for false positives using the estimated 23 

rates.  24 

Comparison of synonymous mutations 25 

The library contained a set of 39 variants with the wild-type lacI CDS (but different DNA barcodes), and a 26 

set of 310 variants with only synonymous nucleotide changes (i.e. no amino acid substitutions). Both 27 

sets had long-read sequencing coverage for the entire plasmid and were screened to retain only variants 28 

with zero unintended mutations in the plasmid (i.e. no mutations in regions of the plasmid other than 29 

the lacI CDS). The Hill equation fit results for those two sets were compared to determine whether 30 

synonymous nucleotide changes significantly affected the phenotype. The Kolmogorov-Smirnov test was 31 

used to compare the distributions of Hill equation parameters between these two sets. The resulting p-32 

values (0.71, 0.40, 0.28, and 0.17 for G0, G∞, EC50, and n respectively) indicate that there were no 33 

significant differences between them. Additionally, the library contained 40 sets of variants, each with 34 

four or more synonymous CDSs (including the set of synonymous wild-type sequences and 39 non-wild-35 

type sequences). A hierarchical model was used to compare the Hill equation parameters within each 36 

set of synonymous CDSs. Within each set, the uncertainty associated with individual variants was 37 

typically larger than the variant-to-variant variability estimated by the hierarchical model. Overall, these 38 

results indicate that synonymous SNPs did not measurably impact the LacI phenotype, so only the amino 39 

acid sequences were considered for any subsequent quantitative genotype-to-phenotype analysis. 40 
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Analysis of single-substitution data 1 

The single amino acid substitution results presented in Fig. 2, Fig. 5b-c, Supplementary Fig. 13, and 2 

included in Supplementary Data 1 are a combination of direct experimental observations, DNN model 3 

results, and estimates of G0 for missing substitutions.  4 

For direct experimental observations, multiple LacI variants were often present in the library with the 5 

same single substitution. To ensure that the highest quality data was used for the single-substitution 6 

analysis, only data for variants with more than 5000 total barcode reads were used (see Barcode 7 

sequencing section, above). For each single substitution, if there was only one LacI variant with more 8 

than 5000 barcode reads, the median and standard deviation for each parameter were used directly 9 

from the Bayesian inference using the Hill equation model. If there was more than one LacI variant with 10 

a given single substitution and more than 5000 barcode reads, the consensus Hill equation parameter 11 

values and standard deviations for that substitution were calculated using a hierarchical model based on 12 

the eight schools model38,39. The hierarchical model was applied separately for each Hill equation 13 

parameter. The logarithm of the parameter values was used as input to the hierarchical model, and the 14 

input data were centered and normalized by 1.15 × the minimum measurement uncertainty. The 15 

standard normal distribution was used as a loosely informative prior for the consensus mean effect, and 16 

a half-normal prior (mean = 0.5, std = 1) was used for the normalized consensus standard deviation (i.e. 17 

hierarchical standard deviation). These priors and normalization were chosen so that the model gave 18 

intuitively reasonable results for the consensus of two LacI variants (i.e. close to the results for the LacI 19 

variant with the lowest measurement uncertainty). Results for the hierarchical model were determined 20 

using Bayesian parameter estimation by Markov Chain Monte Carlo (MCMC) sampling with PyStan36. 21 

MCMC sampling was run with 4 independent chains, 10,000 iterations per chain (5,000 warmup 22 

iterations), and the adapt_delta parameter set to 0.975. 23 

For G0, the direct experimental results were used for the 1047 substitutions plotted as gray points or red 24 

points and error bars in Fig. 2d and Supplementary Fig. 13. In addition, estimated values were used for 25 

the 83 missing substitutions that have been previously shown to result in an “always on” LacI phenotype 26 

(i.e., the I– phenotype 18,19). For these substitutions, plotted as pink-gray points and error bars in Fig. 2d, 27 

the median value was estimated to be equal to the wild-type value for G∞ (24,000 MEF), and the 28 

geometric standard deviation was estimated to be 4-fold, both based on information from previous 29 

publications18,19. Note that these 83 substitutions are completely missing from the experimental 30 

landscape dataset, i.e. they are not found in any LacI variant, as single substitutions or in combination 31 

with other substitutions. 32 

For G∞ and EC50, the direct experimental results were used for the 964 substitutions that are found as 33 

single substitutions in the library and that have a consensus standard deviation for log10(EC50) less than 34 

0.35. An additional 74 substitutions are found as single substitutions in the library, but with higher EC50 35 

uncertainty. For these substitutions, either EC50 is comparable to or higher than the maximum ligand 36 

concentration used for the measurement (2048 µmol/L IPTG), or G∞ is comparable to G0 (or both). 37 

Consequently, the dose-response curve is flat or nearly flat across the range of concentrations used, and 38 

the Bayesian inference used to estimate the Hill equation parameters results in EC50 and G∞ estimates 39 

with large uncertainties. The DNN model can provide a better parameter estimate for these flat-40 

response variants because it uses data and relationships from the full library (e.g. the log-additivity 41 

of EC50) to predict parameter values for each single substitution. So, the DNN model results were used 42 
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for these 74 substitutions. Finally, the DNN model results were used for an additional 953 substitutions 1 

that are found in the library, but only in combination with other substitutions (i.e. not as single 2 

substitutions).  3 

Identification of high-frequency substitutions and structural features associated with 4 

inverted and band-stop phenotypes 5 

The set of 43 strongly inverted LacI variants discussed in the main text and used for the plots in Fig. 4a,c 6 

were identified by the following criteria: G0/G∞ ≥ 2, G0 > G∞,wt/2, G∞ < G∞,wt/2, and EC50 between 7 

3 µmol/L and 1000 µmol/L. The set of 31 strong band-stop variants discussed in the main text and used 8 

for the plots in Fig. 4b,d were identified by the following criteria: G0 > G∞,wt/2, Gmin < G∞,wt/2, and the 9 

slope, ∂log(G)/∂log(L), of less than -0.07 at low IPTG concentrations and greater than zero at higher IPTG 10 

concentrations, both with 0.95 or higher posterior probability (from the GP model inference). In 11 

addition, the sets of strongly inverted and strong band-stop variants were manually screened for likely 12 

false positives due to outlier fitness data points. 13 

A hypergeometric test was used to determine the amino acid substitutions that occur more frequently 14 

in the set of strongly inverted or strong band-stop variants than in the full library. For each possible 15 

substitution, the cumulative hypergeometric distribution was used to calculate the probability of the 16 

observed number of occurrences of that substitution in the set of inverted or band-stop variants under a 17 

null model of no association. This probability was used as a p-value for the null hypothesis that the 18 

observed number of inverted or band-stop variants with that substitution resulted from an unbiased 19 

random selection of variants from the full library. Substitutions were considered to occur at significantly 20 

higher frequency if they had a p-value less than 0.005 and if they occurred more than once in the set of 21 

inverted or band-stop variants. In the set of strongly inverted variants, ten associated (higher frequency) 22 

amino acid substitutions were identified: S70I, K84N, D88Y, V96E, A135T, V192A, G200S, Q248H, Y273H, 23 

and A343G. In the set of strong band-stop variants, eight associated substitutions were identified: V4A, 24 

A92V, H179Q, R195H, G178D, G265D, D292G, and R351G. To estimate the number of false-positives, 25 

random sets of LacI variants were chosen with the same sample size as the strongly inverted (43) or the 26 

strong band-stop (31) variants and the same significance criteria was applied. From 300 independent 27 

iterations of the random selection, the estimated mean number of false-positive substitutions was 2.1 28 

and 2.3 for the inverted and band-stop phenotypes, respectively. 29 

A similar procedure was used to determine which structural features within the protein are mutated 30 

with higher frequency in the inverted or band-stop LacI variants. The structural features considered 31 

were the secondary structures from the complete crystal structure of LacI22, as well as larger structural 32 

features (N-terminal core domain, C-terminal core domain, DNA-binding domain, dimer interface) and 33 

functional domains (ligand-binding, core-pivot). The p-value threshold used for significance was 0.025. 34 

For the strongly inverted variants, six domains were identified with a higher frequency of amino acid 35 

substitutions: the dimer interface, residues within 7 Å of the ligand-binding pocket, helix 5, helix 11, 36 

strand I, and the N-terminal core. For the strong band-stop variants, three features were identified: the 37 

C-terminal core, strand J, and helix 9. From 300 independent random selections of variants from the full 38 

library, the estimated mean number of false-positive features was 0.39 and 0.50 for the inverted and 39 

band-stop phenotypes, respectively. 40 
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Deep neural network (DNN) modeling 1 

The dataset was pruned to a set of high-quality sequences for DNN modeling. Specifically, data for a LacI 2 

variant was only used for modeling if it satisfied the following criteria:  3 

1. No mutations were found in the long-read sequencing results for the regions of the plasmid 4 

encoding kanamycin resistance, the origin of replication, the tetA and YFP genes, and the 5 

regulatory region containing the promoters and ribosomal binding sites for lacI and tetA 6 

(Supplementary Table 1).  7 

2. The total number of barcode read counts for a LacI variant was greater than 3000.  8 

3. The number of amino acid substitutions was less than 14.  9 

4. The measurement uncertainty for log10(G∞) was less than 0.7.  10 

5. The results of the Hill equation model and the GP model agreed at all 12 IPTG concentrations. 11 

More specifically, data were only used if the median estimate for the dose-response curve from 12 

the Hill equation model was within the central 90% credible interval from the GP model at all 13 

12 IPTG concentrations. 14 

After applying the quality criteria listed above, 47,462 LacI variants remained for DNN modeling. The 15 

data were used to train the DNN model to predict the Hill equation parameters G0, G∞, and EC50 as 16 

detailed below.  17 

Amino acid sequences were represented as one-hot encoded vectors of length L = 2536, and with 18 

mutational paths represented as K × L tensors for a sequence with K substitutions. The logarithm of the 19 

Hill equation parameter values were normalized to a standard deviation of 1, and then shifted by the 20 

corresponding value of the wild-type sequence in order to correctly represent the prediction goal of the 21 

change in each parameter relative to wild-type LacI. A long-term, short-term recurrent neural network 22 

was selected for the underlying model17, with 16 hidden units, a single hidden layer, and hyperbolic 23 

tangent (tanh) non-linearities. Inference was performed in pytorch40 using the Adam optimizer41. For 24 

EC50 and G0, the contribution of individual data points to the regression loss were weighted inversely 25 

proportional to their experimental uncertainty. Model selection was performed with 10-fold cross-26 

validation on the training set (80% of all available data). Approximate Bayesian inference was performed 27 

with the Bayes-by-backprop approach42. Briefly, this substitutes the point-estimate parameters of the 28 

neural network with variational approximations to a Bayesian model, represented as a mean and 29 

variance of a normal random variable. Effectively, this only doubles the number of parameters in the 30 

model. A mixture of two normal distributions was used as a prior for each parameter weight, with the 31 

two mixture components having high and low variance respectively. This prior emulates a sparsifying 32 

spike-slab prior while remaining tractable for inference based on back-propagation. Posterior means of 33 

each weight were used to calculate posterior predictive means, while Monte-Carlo draws from the 34 

variational posterior were used to calculate the model prediction uncertainty (Supplementary Fig. 10).  35 

Variational approximations typically underestimate uncertainty. So, to correct the uncertainty 36 

estimates, the model prediction uncertainty obtained from the variational approximation was compared 37 

to the model root-mean-square error (RMSE) (i.e. the root-mean-square difference between the model 38 

prediction and the experimental measurement). For all three Hill equation parameters (G0, G∞, and 39 

EC50), both the prediction uncertainty and the RMSE increase with the number of amino acid 40 
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substitutions relative to wild-type sequence (Supplementary Fig. 10a-b), and the RMSE at each 1 

substitutional distance is an approximately linear function of the median model uncertainty 2 

(Supplementary Fig. 10c). So, for the single-substitution analysis (Fig. 2, Fig. 5b-c, Supplementary Fig. 13, 3 

Supplementary Data 1), the uncertainties from the variational approximation were multiplied by a factor 4 

of 3.8. This rescaled the uncertainties so that the median uncertainty was approximately equal to the 5 

RMSE for each substitutional distance. 6 

Data Availability 7 

The raw sequence data for long-read and short-read DNA sequencing have been deposited in the NCBI 8 

Sequence Read Archive and are available under the project accession number PRJNA643436. Plasmid 9 

sequences have been deposited in the NCBI Genbank under accession codes MT702633, and MT702634, 10 

for pTY1 and pVER, respectively.  11 

The processed data table containing information for each LacI variant in the library is publicly available 12 

via the NIST Science Data Portal, with the identifier ark:/88434/mds2-2259 13 

(https://data.nist.gov/od/id/mds2-2259 or https://doi.org/10.18434/M32259).  14 

Code Availability 15 

All custom data analysis code is available at https://github.com/djross22/nist_lacI_landscape_analysis.  16 
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