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Fig. 3. Analog behaviors are constructed by using TFs that play multiple roles. Reconstitutable TFs 404 

have dose response properties that are conducive to analog signal processing. Simulated and 405 

experimentally observed responses are shown relating to (A–C) ultrasensitivity and (D–I) bandpass 406 

concentration filtering. Several designs were evaluated for the ability to meet these objectives. To 407 

implement ultrasensitivity, the Hill coefficient (n) was most effectively increased through a strategy of 408 

removing an inhibitor in the process of producing an activator (C). To implement bandpass concentration 409 

filtering, a tighter upper threshold was best achieved through a similar strategy that also included additional 410 

regulation: moderate levels of FKBP-ZF act primarily to reconstitute RaZFa, and high levels of FKBP-ZF 411 

act to inhibit the reporter and VP16-FRB (G). Simulations in A and D are fitted to data, and the other panels 412 

are predictions. The prediction plots present simulations for how output gene expression varies with dose 413 

of the component highlighted in yellow; each plot includes a set of responses varying the component 414 

highlighted in red-to-blue gradation. Doses for the x-axes and above the varied component in the diagrams 415 

are in plasmid ng. Each experimental plot corresponds to the simulated condition with the dark line (for the 416 

middle dose of the varied component). The ZF1/2x6-C promoter has six partially overlapping ZF1 and ZF2 417 

sites. DMSO is the vehicle for rapamycin, which is used here as an environmental species (not an input). 418 

The simulations with RaZFa correspond to conditions with rapamycin treatment. Experiment plots represent 419 

the mean and S.E.M. of EYFP reporter signal from three biological replicates (bar graphs in Fig. S3D–L).  420 
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Fig. 4. Sensors can be linked to genetic programs to make signaling cascades. MESA and COMET 422 

technologies can be combined to construct functional biosensors, and upstream biosensor output is well-423 

matched to the requirements for downstream promoter input. (A,B) ABA-ZF2a and Rapa-MESA-ZF6a each 424 

exhibit ligand-inducible signaling (p = 2×10–3 and p = 1×10–3, respectively, one-tailed Welch’s unpaired t-425 

test). EtOH is the vehicle for both ligands. For MESA, the TC contains an FRB ectodomain and intracellular 426 

COMET TF, and the PC contains an FKBP ectodomain and intracellular TEV protease (TEVp). Each 427 

receptor chain contains an FGFR4 transmembrane domain. (C–E) Validated sensors were applied to 428 

implement multi-input sensing. AND logic was selected as a design goal, and four synonymous 429 

topologies—those that are intended to achieve the same goal through different mechanisms—were 430 

proposed and evaluated. For each input type (two columns for upstream ZFa or ligand sensing) and 431 

topology (four rows), reporter signal with two inputs differed from that with either or no input (p < 2×10–16 in 432 

each case, three-factor ANOVA and Tukey’s HSD test), indicating successful AND gate outcomes. 433 

Topologies 2–4 displayed negligible background signal (comparable to the signal with only the reporter 434 

present, ~101–102 MEPTRs, Fig. S4H), despite involving multi-layer signaling which can be a potential 435 

source of leak. The (ZF2/ZF6)x3 promoter has three pairs of alternating ZF2 and ZF6 sites. Bar graphs 436 

represent the mean, S.E.M., and values of mKate2 reporter signal from three biological replicates (depicted 437 

as dots; near-zero values are below the log-scaled y-axis lower limit). The numbers above bar pairs are the 438 

fold difference, and a fold difference of ∞ indicates that the denominator signal is less than or equal to zero.  439 
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