
 1 

 1 

 2 

 3 

 4 

Model-guided design of mammalian genetic programs 5 

 6 

 7 

Joseph J. Muldoon1,2, Viswajit Kandula3, Mihe Hong2, Patrick S. Donahue1,2,4, Jonathan D. Boucher1,2, 8 

Neda Bagheri1,2,5,6, Joshua N. Leonard1,2,5* 9 

 10 

 11 

1Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL 60208, USA. 12 

2Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA. 13 

3Honors Program in Medical Education, Northwestern University Feinberg School of Medicine, Chicago, IL 14 

60611, USA. 15 

4Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, IL 16 

60611, USA. 17 

5Center for Synthetic Biology, Chemistry of Life Processes Institute, and Robert H. Lurie Comprehensive 18 

Cancer Center, Northwestern University, Evanston, IL 60208, USA. 19 

6Departments of Biology and Chemical Engineering, University of Washington, Seattle, WA 98195, USA. 20 

*Corresponding author. Email: j-leonard@northwestern.edu  21 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 2, 2020. ; https://doi.org/10.1101/2020.09.30.320853doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.30.320853
http://creativecommons.org/licenses/by/4.0/


 2 

ABSTRACT 22 

 23 

Genetically engineering cells to perform customizable functions is an emerging frontier with numerous 24 

technological and translational applications. However, it remains challenging to systematically engineer 25 

mammalian cells to execute complex functions. To address this need, we developed a method enabling 26 

accurate genetic program design using high-performing genetic parts and predictive computational models. 27 

We built multi-functional proteins integrating both transcriptional and post-translational control, validated 28 

models for describing these mechanisms, implemented digital and analog processing, and effectively linked 29 

genetic circuits with sensors for multi-input evaluations. The functional modularity and compositional 30 

versatility of these parts enable one to satisfy a given design objective via multiple synonymous programs. 31 

Our approach empowers bioengineers to predictively design mammalian cellular functions that perform as 32 

expected even at high levels of biological complexity.  33 
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 3 

Early demonstrations of genetically engineering customized functions in mammalian cells indicate a vast 34 

potential to benefit applications including directed stem cell differentiation (1, 2) and cancer immunotherapy 35 

(3). In general, most applications require precise control of gene expression and the capability to sense and 36 

respond to external cues (4-8). Despite the growing availability of biological parts (such as libraries of 37 

promoters and regulatory proteins) that could be used to control cell states, assembling parts to compose 38 

customized genetic programs that function as intended remains a challenge, and it often requires iterative 39 

experimental tuning or down-selection to identify functional configurations. This highly empirical process 40 

limits both the scope of programs that one can feasibly compose and fine-tune and likely the performance 41 

of functional programs identified in this manner. Thus, the need for systematic and precise design 42 

processes represents a grand challenge in the field of mammalian synthetic biology. 43 

 44 

Model-guided predictive design has been demonstrated in the composition of some cellular functions, 45 

including transcriptional logic in bacteria (9) as well as logical (10) and analog behaviors in yeast (11); 46 

however, this type of approach is less developed in mammalian systems. To date, transcription factors 47 

(TFs) based on zinc fingers (ZFs) (12, 13), transcription activator-like effectors (TALEs) (14-17), dCas9 (18, 48 

19), and other proteins (20) have been used to implement transcriptional logic in mammalian cells. Some 49 

of these studies make use of protein splicing (12, 14, 18). Other studies have used RNA-binding proteins 50 

(21), proteases (22, 23), and synthetic protein-binding domains (17). Yet, none of these approaches 51 

currently enable the customized design of sophisticated mammalian cellular functions and prediction of 52 

circuit performance based only upon descriptions of the component parts. Associated challenges include 53 

the availability of appropriate parts (24), suitably descriptive models that support predictions using these 54 

parts (25), and computational and conceptual tools that facilitate the identification of designs that function 55 

robustly despite biological variability and crosstalk (26-28). In this study, we sought to address these 56 

challenges by developing a model-driven process that enables one to propose a tractable set of candidate 57 

circuits for construction and testing without needing empirical trial-and-error tuning. We validated this 58 

framework by employing it to implement a variety of functions including digital and analog information 59 

processing, and sense-and-respond behaviors. 60 

 61 
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 4 

Biological parts for integrating transcriptional and post-translational control of gene expression 62 

 63 

The strategy that we pursued for genetic program design was uniquely enabled by the COmposable 64 

Mammalian Elements of Transcription (COMET): a toolkit of TFs and promoters with tunable properties 65 

enabling precise and orthogonal control of gene expression (13). These TFs comprise a ZF DNA-binding 66 

domain and a functional domain, e.g., VP16 and VP64 are activation domains (AD) that with a ZF form an 67 

activator (ZFa). A protein including a ZF domain but lacking an AD functions as a competitive inhibitor of 68 

the cognate ZFa. Promoters in this library contain ZF binding sites arranged in different configurations (e.g., 69 

ZF1x6-C has six compactly arranged ZF1 sites). Each combination of a promoter and a ZFa (and potentially 70 

an inhibitor) confers a characteristic level of transcriptional activity (Fig. S1A–D), and as part of this prior 71 

work, we developed mathematical models to characterize these relationships (13). Here, we investigate 72 

whether these biological parts and descriptive computational tools can be adapted and applied to achieve 73 

predictive genetic program design. 74 

 75 

Although COMET includes many parts for implementing transcriptional regulation, we hypothesized that 76 

complex genetic program design would be facilitated by introducing a mechanism for regulation at the post-77 

translational level (Fig. 1A,B). To investigate this strategy, we evaluated new parts based on split inteins: 78 

complementary domains that fold and trans-splice to covalently ligate flanking domains (exteins) (29). We 79 

selected the split intein gp41-1 for its rapid splicing kinetics (30). To test an application of this mechanism, 80 

we appended an AD to the gp41-1 N-terminal fragment (intN) and a ZF to the C-terminal fragment (intC). 81 

These parts were used to construct an AND gate in which a reporter gene was induced only when both 82 

fragments were present (Fig. 1C, Fig. S1E), demonstrating that COMET-mediated gene expression can 83 

be adapted with splicing. We next incorporated this mechanism into our modeling framework by modifying 84 

ordinary differential equations from the original study (13), which concisely represent transcriptional 85 

regulation (Materials and Methods), and fitting newly introduced parameters to the data (Fig. S1F,G). We 86 

extended the model to describe parts in which split inteins were fused onto two types of inhibitors (Fig. 87 

S1H): ZF, which competes with ZFa for binding site occupancy in the promoter; and ZF fused to DsRed-88 

Express2 (abbreviated as DsRed-ZF), which also reduces the cooperativity of ZFa-mediated RNA 89 
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polymerase II (RNAPII) recruitment at multi-site promoters (13). Additionally, we introduced an R95K 90 

mutation to ablate the DsRed chromophore (31), yielding a non-fluorescent inhibitor we termed DsDed-ZF 91 

(Fig. S1I). The extended model accurately recapitulated the component dose-dependent performance of 92 

the AND gate (Fig. 1C), providing verification that this extension can describe split intein-based circuits.  93 

 94 

Model-guided design of genetic programs 95 

 96 

As a first test of the predictive capacity of the revised model, we simulated a panel of circuits that we 97 

hypothesized could carry out various logic operations (Fig. S1J). Our objective was to identify promising 98 

designs for specific functions, so we opted not to include additional model complexity that might be required 99 

to predict all aspects of circuit behavior (e.g., potential cell burden effects). Throughout, simulations 100 

employed a statistical model for gene expression variation, which we have previously shown to be important 101 

in accounting for the effect of cellular variation on how an engineered function is carried out across a cell 102 

population (13, 32) (Materials and Methods, Fig. S1G). From the panel, we selected several designs to 103 

test. First, to make an IMPLY gate, the AND gate was modified by appending DsDed to intC-ZF1 and co-104 

expressing a VP64-ZF1 activator. Experimental outcomes (i.e., reporter readout across component doses) 105 

were consistent with the prediction that readout would be low only with DsDed-intC-ZF1 present in sufficient 106 

excess over its VP64-intN splicing partner to function as an inhibitor (Fig. 1D). To make a NAND gate, a 107 

DsDed-ZF1 inhibitor was split into DsDed-intN and intC-ZF1 and co-expressed with an activator. Outcomes 108 

were consistent with the prediction that readout would be low only with sufficient reconstitution of the 109 

inhibitor (Fig. 1E). These initial test cases demonstrate that model-guided design can identify effective 110 

topologies, as well as the precise relationship between input component levels and circuit output. 111 

 112 

A versatile design framework would enable one to achieve a given performance objective via multiple 113 

circuits. We speculated that the combined properties of COMET and splicing-based extensions developed 114 

here might provide a sufficient basis for this capability. To investigate this possibility, we compared four 115 

designs for a NIMPLY gate, each of which utilizes a different mechanism (i.e., topology and/or choice of 116 

parts). The first two designs used inhibition mediated by ZF1 (Fig. 1F) or DsDed-ZF1 (Fig. 1G). The third 117 
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 6 

design used splicing of an VP64-intC-ZF1 activator to a DsDed-ZF1 inhibitor, such that the readout would 118 

be high only with VP64-intC-ZF1 in sufficient excess of its splicing partner DsDed-intN (Fig. 1H). The fourth 119 

design used a double inversion cascade, in which an upstream inhibitor prevented a downstream inhibitor 120 

from acting on the reporter (Fig. 1I); this scenario represents a variation on a topology that was previously 121 

examined in bacteria (33) and later in mammalian cells with dCas9-TFs (34). All four designs produced 122 

NIMPLY as predicted. We next tested whether splicing could be combined with a cascade, and indeed we 123 

were able to build an AND gate by splitting the cascade's upstream inhibitor into DsDed-intN and intC-ZF10 124 

(Fig. 1J). Unlike standard ZFa-mediated activation, this activation via double inversion exhibited 125 

ultrasensitivity (Hill coefficient n = 2.8)—a signal transformation in which a small change in input yields a 126 

large change in output, and high output is produced only with sufficient input (Fig. 1K, Fig. S1K). 127 

Ultrasensitivity buffered the circuit against low inputs, such that the output remained low for input levels that 128 

in the standard activation case would have produced half-maximal activation. 129 

 130 

Across the panel, five of the eight gates exhibited a goodness of prediction metric (comparing all simulated 131 

and observed outcomes, Q2) of at least 90%, indicating a high capacity for predicting dose response 132 

landscapes that had not been used in model training (Fig. S1N,O). Even for the gate with the lowest Q2 133 

(IMPLY, Fig. 1D, Fig. S1N), the model correctly predicted the trend across most input dose combinations. 134 

Altogether, these results demonstrate the feasibility of model-guided design of logic gates in mammalian 135 

cells, and that the choice of parts and mechanism yields predictable performance characteristics. 136 

 137 

Compression of circuit design using functional modularity 138 

 139 

A putative advantage of orthogonal parts like COMET TFs and promoters is that these parts may be used 140 

together without disrupting their functions. However, simply appending modules can lead to inefficient and 141 

cumbersome designs, and thus, one focus of our approach was achieving genetic compactness as well as 142 

performance. Enhancing compactness could eliminate potential failure modes and reduce cargo size for 143 

gene delivery vehicles. Genetic compression—reducing the number of components for a given 144 

specification—has been investigated by using recombinase-mediated DNA rearrangement (35) and by 145 
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 7 

borrowing from a software engineering strategy to eliminate redundancy (36). Here, we sought to implement 146 

a previously unexplored form of topological compaction based on protein multi-tasking (Fig. 2A). We 147 

hypothesized that because our genetic parts operate through direct interactions without relying on long-148 

range mechanisms such as chromatin modification, they might exhibit functional modularity, i.e., domains 149 

could be concatenated and retain their functions. This property would be of great utility by enabling the use 150 

of multi-tasking proteins to act at multiple promoters or in both transcriptional and post-translational roles, 151 

to execute multiple functions in an efficient fashion. 152 

 153 

We investigated whether functional modularity could enable the design of compact multi-input multi-output 154 

(MIMO) systems. Ultimately, this capability could support the encoding of sophisticated decision-making 155 

strategies in which cells take different actions in different situations. As a base case, we simply appended 156 

a NIMPLY gate and a NOT gate in a non-compact manner, and the combination functioned as expected 157 

(Fig. 2B, Fig. S2A). This success demonstrates the potential for composite functions, but it brings no 158 

efficiency relative to the individual gates. To test topological compaction, first, an IF/NIMPLY gate was 159 

proposed in which VP64-ZF1-intC-ZF10 would act as a bispecific activator (on two promoters) and interact 160 

with an inert DsDed-intN to produce a VP64-ZF1-intC/intN activator and a DsDed-ZF10 inhibitor (Fig. 2C, 161 

Fig. S2B). The second gate, IF/AND, used an activator and an inhibitor to produce a bispecific activator 162 

and an inert protein, through essentially the inverse mechanism of that in the IF/NIMPLY gate (Fig. 2D, 163 

Fig. S2C). Third, a NIMPLY/AND gate used a VP64-intC-ZF1-DsDed activator and an intN-ZF10 inhibitor 164 

to invert their respective activities (Fig. 2E, Fig. S2D). We hypothesized that the former protein would act 165 

as an activator, in that DsDed would not preclude VP64 from conferring activation. Lastly, a 166 

NIMPLY/NIMPLY gate used two activators to produce a bifunctional inhibitor and an inert protein (Fig. 2F, 167 

Fig. S2E). We note that if this circuit had used the same readout for both reporters it would be a XOR gate. 168 

Overall, the model predictions explained most of the variance in experimental outcomes, and several cases 169 

were in close agreement (≥90% Q2) (Fig. S2F,G). Minor deviations are potentially attributable to effects 170 

such as differences in stability for different proteins; however, we chose not to incorporate such effects into 171 

the model because increasing model complexity could lead to overfitting. Moreover, the choice to simplify 172 

the description of protein stability did not preclude model-guided identification of high-performing designs. 173 
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 174 

Notably, when we examined performance at the single-cell level, some population-level outcomes were 175 

driven by subpopulations of cells. In some circuits, subpopulations induced one reporter or the other, but 176 

not both, and thus population outcomes were driven by shifts in subpopulation frequencies (Fig. S2A,D,E). 177 

In other circuits, this task distribution was not apparent (Fig. S2B,C). Although neither behavior was an 178 

explicitly designed feature, both types of behavior were predicted by simulations. Altogether, the gates 179 

described in Figs. 1,2 span a wide range of logical complexity (the number and the layers of implicit gates 180 

depicted in the electronic diagrams) and genetic complexity (the number of genes, regulatory connections, 181 

and regulatory proteins) (Fig. 2G). The successful development of these circuits without the need for 182 

additional tuning demonstrates that this framework may be well-suited to overcoming complexity-183 

associated barriers with mammalian genetic program design. 184 

 185 

Implementation of analog signal processing 186 

 187 

Although digital logic has many uses, biology also processes analog signals for many purposes, and we 188 

next examined whether our tools could be employed in this way. The first property that we sought to 189 

implement was ultrasensitivity, which is desirable in engineering sharp activation (37, 38) and is observed 190 

in the natural control of processes including cell growth, division, and apoptosis (39). The second property 191 

was bandpass concentration filtering, in which an output is produced only when the input falls within a 192 

certain range of magnitudes (22, 40). Bandpass concentration filtering is salient for both natural and 193 

synthetic spatial patterning (41). To develop a strategy for implementing these properties, we made use of 194 

existing mechanistic insights. Previously, we determined that ZFa-mediated activation is cooperative at the 195 

level of transcription initiation, and in comparing promoter architectures, maximal transcription increased 196 

with the number and compactness of binding sites (13). This COMET promoter feature confers high 197 

inducibility as well as a high sensitivity to inhibition by proteins that compete for DNA binding. We also 198 

deduced that TF binding to promoter is generally non-cooperative, and transcriptional output from such 199 

promoters is not inherently ultrasensitive to ZFa dose (n = 1). To construct systems that do exhibit 200 

ultrasensitivity (n > 1), we examined several strategies in which the output is inhibited only at low activator 201 
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doses (Fig. S3A–C). The first design made use of the inhibition conferred by intC-ZF1 prior to splicing with 202 

a VP16-intN input (Fig. S3B). We reasoned that at low VP16-intN doses, intC-ZF-mediated inhibition would 203 

dominate, and at high doses, transactivation by reconstituted VP16-ZF would dominate. We also tested 204 

this concept with the addition of a DsDed-ZF to threshold the response by promoting relatively more 205 

inhibition at low input doses (Fig. S3C). However, the increase in ultrasensitivity was modest for these 206 

cases, apparently from insufficient inhibition at low activator doses due to decreased protein stability caused 207 

by appending the intC domain to the inhibitory ZF (Fig. S1F).  208 

 209 

Compared to a ZFa base case (n = 1.0) (Fig. 3A, Fig. S3D), however, DsDed-ZF thresholding of ZFa-210 

mediated activation did lead to an increase in the Hill coefficient (n = 1.9) (Fig. 3B, Fig. S3E). This outcome 211 

led us to consider a vehicular analogy: the circuits with DsDed-ZF are akin to applying the brake (inhibition) 212 

while applying the accelerator (activation), but a more effective approach might be to release the brake as 213 

the accelerator is applied. To realize this concept and circumvent choices that modulate protein stability, 214 

we used a chemically responsive COMET TF (RaZFa) in which rapamycin-induced heterodimerization 215 

domains FRB and FKBP are fused to an AD and a ZF, respectively. In the presence of rapamycin (which 216 

in this scenario is not an input, but rather an environmental species), heterodimerization of VP16-FRB and 217 

FKBP-ZF converts FKBP-ZF (brake) into RaZFa (accelerator), which induces the reporter. With rapamycin, 218 

the response of this circuit to VP16-FRB input indeed exhibited greater ultrasensitivity (n = 3.3), consistent 219 

with the prediction (Fig. 3C, Fig. S3F). Thus, in this system, ultrasensitivity can arise through cascades 220 

(Fig. 1) or reconstitution (Fig. 3), and neither mechanism requires the cooperativity in TF-DNA binding that 221 

is often associated with ultrasensitive responses. 222 

 223 

We next investigated circuits to implement bandpass concentration filtering. Our strategy was to use 224 

mechanisms that inhibit reporter output only at high doses of activator input, and the predictions were based 225 

on a fitted ZFa base case (Fig. 3D, Fig. S3G). We hypothesized that although FKBP-ZF is necessary for 226 

RaZFa-mediated activation, excess FKBP-ZF would be inhibitory. We confirmed that FKBP-ZF acted as an 227 

inhibitor (Fig. 3E, Fig. S3H), and we implemented an RaZFa test circuit; the response to FKBP-ZF input 228 

showed a peak in output, but no sharp upper threshold, as predicted (Fig. 3F, Fig. S3I). Based on these 229 
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results, we designed a new topology to achieve a sharper bandpass. Of the regulation within this design, 230 

the two paths of negative regulation from FKBP-ZF (and not the positive feedback from RaZFa) appeared 231 

to be most important for sharpening the bandpass (Fig. S3M). For the primary input to the bandpass, FKBP-232 

ZF, we expected that at zero dose, there would be no activation; at moderate doses, there would be 233 

activation; and at high doses, excess FKBP-ZF would both decrease reconstitution (by inhibiting induction 234 

of VP16-FRB) and inhibit the reporter. The experimental outcomes closely matched the prediction of a 235 

bandpass with a sharp upper threshold (Fig. 3G, Fig. S3J). Furthermore, when VP16-ZF or VP16-FRB 236 

doses were varied, the responses were activating as predicted (Fig. 3H–I, Fig. S3K–L), demonstrating a 237 

predictive capacity across multiple inputs for the system. These results demonstrate that our parts and 238 

approach are suitable for designing analog behaviors, as well as digital logic gates. 239 

 240 

Integration of genetic circuits with sensors to build sense-and-respond functions 241 

 242 

While the predictive design of genetic programs is a substantial technical advance, employing this capability 243 

to enable many potential applications will require integrating genetic circuits with native or synthetic parts 244 

that sense and modulate the state of the cell or its environment. A recurring challenge associated with this 245 

goal is level-matching the output of a sensor to the input requirements of a downstream circuit (32, 42). We 246 

investigated whether our designed circuits could overcome this challenge and be effectively linked to 247 

sensors without requiring laborious trial-and-error tuning. Simulations suggested that adding an upstream 248 

layer of signal processing (i.e., for sensing) should be feasible, since in the model, ZFa can be arranged in 249 

series without prohibitively driving up background or dampening induced signal (Fig. S4A).  250 

 251 

We considered two classes of synthetic sensors (intracellular and transmembrane) for which we 252 

hypothesized that signaling (i.e., sensor output) could be coupled to COMET-based circuits. For the 253 

intracellular sensor, we built a new TF—ABA-ZFa, which is analogous to RaZFa—by fusing the abscisic 254 

acid (ABA)-binding domains PYL1 and ABI1 (43) to an AD and a ZF, respectively. For transmembrane 255 

sensing, we selected the modular extracellular sensor architecture (MESA)—a self-contained receptor and 256 

signal transduction system that transduces ligand binding into orthogonal regulation of target genes (44, 257 
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45). In this mechanism, ligand-mediated dimerization of two transmembrane proteins called the target chain 258 

(TC) and protease chain (PC) promotes PC-mediated proteolytic trans-cleavage of a TC-bound TF. We 259 

explored several strategies for building COMET-compatible MESA based on a recently reported improved 260 

MESA design (46) and the parts developed in the current study (Fig. S4B–G). The best performance was 261 

observed using rapalog-inducible COMET-MESA that release either ZFa for activating signaling or DsDed-262 

ZF for inhibitory signaling (the latter represents a new function for MESA receptors) (Fig. S4G); the ZFa-263 

releasing COMET-MESA receptor was carried forward. We observed that both sensors displayed excellent 264 

performance in terms of reporter induction upon ligand treatment (Fig. 4A,B). For ABA-ZF2a (ZF2a was 265 

selected for its potency stemming from cooperative transcriptional activation (13)), ligand-independent 266 

signal was unobservable, and induced signal was high, yielding perfect performance (Fig. 4A). For Rapa-267 

MESA-ZF6a (ZF6a was also selected for its potency), the ligand-inducible fold difference in signal was 268 

~200x (Fig. 4B), which is several fold higher than was observed for recently reported receptors based on 269 

tTA (46), and also higher than the fold difference observed for a high-performing MESA that employs a 270 

distinct mechanism (47). Thus, Rapa-MESA-ZF6a is the highest performing MESA reported to date. Both 271 

sensors have a low off state and a high on state, apparently benefitting from the advantageous property of 272 

COMET promoter-based cooperativity. 273 

 274 

We carried forward the two validated sensors and examined whether downstream circuits comprising 275 

genetic parts and designed topologies from this study could be seamlessly linked with the new input layer. 276 

To this end, we designed a panel of four synonymous topologies that implement AND logic through different 277 

mechanisms (Fig. 4C): 1) a hybrid promoter with alternating TF sites (based on a similar architecture from 278 

the original COMET study (13)), 2) splicing (as in Fig. 1C), 3) splicing with DsDed (as in Figs. 1D, 2D for 279 

tighter inhibition), and 4) and splicing with feedback (as in Fig. 3G–I). All four topologies exhibited AND 280 

behavior when tested using ZFa as inputs (Fig. 4D), demonstrating the versatility for attaining a given 281 

objective in multiple ways. Moreover, when coupled to ligand-activated sensors, these circuits still conferred 282 

AND behavior, and performance was maintained (i.e., fold induction with two ligands remained much 283 

greater than with each ligand individually) in carrying out this more complex sensing function (Fig. 4E). A 284 

comparison across the designs provides some insights. The hybrid promoter in topology 1 was high-285 
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performing, and the splicing topologies in 2–4 generally yielded improvement over 1, despite the additional 286 

regulatory layer, by reducing the output generated from either single input alone to near reporter-only 287 

background (Fig. S4H, shown with linear scaling). Of the topologies examined, 2 and 3 were the most 288 

effective at producing a high output when both inputs were present and low output when either input was 289 

present alone. These results demonstrate that genetic programs can be designed by a predictive model-290 

driven process, and then these programs can be readily linked to different classes of sensors to implement 291 

high-performing sensing and processing functions. 292 

 293 

Discussion 294 

 295 

We developed an approach for accurate genetic program design by engineering new parts that combine 296 

transcriptional and post-translational control and validating a computational modeling framework. The 297 

experimental observations closely matched simulations, even in scenarios employing new proteins 298 

(including those with many domains) and new topologies (including those with many interacting parts), 299 

demonstrating a high predictive capacity across a range of complexity (Fig. 2G). Since the mechanisms 300 

employed for binding, splicing, activation, and inhibition can be described by concise formalisms (Materials 301 

and Methods), no fundamental revamping (i.e., changing the underlying representation or granularity) of 302 

our original descriptive model was needed to enable predictions. Furthermore, no trial-and-error (e.g., 303 

empirical tuning of designs or substitution of parts) was needed to arrive at the specified design goals, 304 

which streamlined the design-build-test-learn cycle. We understand this to be possible because once the 305 

base case parts were characterized, no additional parameterization was needed to simulate how the parts 306 

would function when combined in new designs. Lastly, even though a relatively small set of protein domains 307 

was utilized, we were able to combine the domains in many ways; a concise library was sufficient to produce 308 

the wide variety of behaviors observed. 309 

 310 

This study benefited from insights that could facilitate future genetic circuit design efforts. Key strategies 311 

that enabled sophisticated design included the use of antagonistic bifunctionality (48), in which a component 312 

can exert opposing effects on a target gene depending on the other components in the circuit (Fig. S4I), 313 
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and functional modularity, which enabled multiple activities to be combined in individual proteins (Fig. S4J). 314 

Sophisticated design was also enabled through the use of split genetic parts, including those that splice or 315 

dimerize. Split parts are conducive to encoding both digital (Figs. 1,2) and analog (Fig. 3) functions. Split 316 

parts also shift some of the regulation from the transcriptional level to the post-translational level (i.e., 317 

protein-protein interactions), which could increase the speed of signal processing. Another benefit of split 318 

parts relates to circumventing cargo limitations of gene delivery vehicles, in that a large program that does 319 

not fit in one vector could be distributed across multiple vectors (49), in such a way that the parts interact 320 

to reconstitute the program only in cells receiving all of the vectors. Finally, we found that seamless level-321 

matching could be achieved with multi-layer circuits due to the potency of COMET TFs at cognate 322 

promoters, and in particular, the fusion of such a TF onto MESA resulted in the highest-performing version 323 

of this receptor to date (Fig. 4B,E). 324 

 325 

Altogether, these attributes and insights, in combination with the many ways in which components can be 326 

arranged to regulate each other, greatly expand the mammalian genetic program design space. In our 327 

current system, one can propose and formulate models for candidate designs based on principles for how 328 

the functionally modular parts operate (Materials and Methods) and then evaluate in silico outcomes. In 329 

the future, it should be possible to further automate this process by using software to sweep large 330 

combinatorial spaces and identify candidates that satisfy specified performance objectives. Such advances 331 

could further speed up the design process and broaden the scope of possible circuits and behaviors beyond 332 

those accessible solely by intuition. The new components and quantitative approaches developed here 333 

should enable bioengineers to build customized cellular functions for applications ranging from fundamental 334 

research to biotechnology and medicine.  335 
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Fig. 1. Logical evaluation is enabled by transcriptional and post-translational regulation. (A,B) 364 

Cartoons depict (A) the genetic components and (B) their arrangement and use in simulations to produce 365 

intended functions. Transcription is mediated by COMET TFs, which here are modified with split inteins to 366 

incorporate post-translational regulation via splicing. Genetic parts that carry out specified activities and 367 

that can be described mathematically should enable the predictive customization of cellular functions. In 368 

the schematics, circles are protein domains, arrows indicate splicing or regulation, yellow highlighting 369 

denotes the inputs, and the red node is the output. (C–J) A panel of logic gates was designed, simulated, 370 

and experimentally evaluated. Synthetic digital logic in cells is inherently analog, and component doses 371 

were selected to examine this behavior and underscore particular features (e.g., in C, reporter signal 372 

decreases at a high intC-ZF1 dose because  intC-ZF1 inhibits ZFa-mediated transcription). In the electronic 373 

diagrams (teal background), lines denote splicing or regulation. Processes that have a modest effect within 374 

the dose range examined, and that because of fundamentally analog behavior do not carry out a fully digital 375 

function, are denoted by dotted lines. In the mechanistic diagrams (blue background), purple bent arrows 376 

are promoters, and black arrows indicate splicing and regulation. Yellow highlighting denotes the 377 

components for which dose is varied (in gene copies). Simulation and experimental results are presented 378 

in heatmaps that indicate how the two inputs affect reporter output (mKate2 signal in MEPTRs); color-379 

coding denotes the mean reporter signal from three biological replicates (bar graphs in Fig. S1L, histograms 380 

in Fig. S1M), scaled by the maximum value in each heatmap. Simulations in C are from a fit to the data, 381 

and subsequent panels (D–J) are predictions. (K) Some of the motifs that were used in the gate designs 382 

confer sharp transitions in reporter output. For example, a standard activation dose response was not 383 

ultrasensitive, but layering two inhibitors in a cascade did produce ultrasensitivity (Hill coefficient n > 1). 384 

The downstream inhibitor is tagged with a PEST degron.  385 
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Fig. 2. Compact multi-output logic is attained through functional modularity. (A) A strategy for multi-387 

output logic is proposed by using multi-tasking proteins that retain the functions of their constituent domains. 388 

The cartoons depict the use of multiple DNA-binding domains on a TF to regulate multiple genes, the 389 

embedding of a split intein fragment within a functioning TF to enzymatically alter its activity, and the 390 

merging of features from multiple genetic programs to enable their compact simultaneous implementation. 391 

(B–F) A panel of multi-input-multi-output gates was designed, simulated, and experimentally evaluated. As 392 

an example, C is deconstructed to show how separate topologies containing proteins that have some 393 

domains in common and are amenable to the appending of additional domains can be compressed. In the 394 

plots, color-coding denotes the mean mKate2 and EYFP reporter signal from three biological replicates 395 

(bar graphs in Fig. S2F), scaled by the maximum value in each heatmap. (G) These plots summarize the 396 

complexity of the gates that were designed and validated in Fig. 1 (red) and Fig. 2 (purple), with complexity 397 

defined based on the size and depth of the circuits in the electronic diagrams (upper) or based on the 398 

numbers of genes, regulatory connections, and regulatory proteins employed (lower). The expanded toolkit 399 

of genetic parts and model-guided approach were successful for building circuits spanning a range of 400 

attributes, which suggests that this design process could be executed reliably for many future objectives.  401 
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Fig. 3. Analog behaviors are constructed by using TFs that play multiple roles. Reconstitutable TFs 404 

have dose response properties that are conducive to analog signal processing. Simulated and 405 

experimentally observed responses are shown relating to (A–C) ultrasensitivity and (D–I) bandpass 406 

concentration filtering. Several designs were evaluated for the ability to meet these objectives. To 407 

implement ultrasensitivity, the Hill coefficient (n) was most effectively increased through a strategy of 408 

removing an inhibitor in the process of producing an activator (C). To implement bandpass concentration 409 

filtering, a tighter upper threshold was best achieved through a similar strategy that also included additional 410 

regulation: moderate levels of FKBP-ZF act primarily to reconstitute RaZFa, and high levels of FKBP-ZF 411 

act to inhibit the reporter and VP16-FRB (G). Simulations in A and D are fitted to data, and the other panels 412 

are predictions. The prediction plots present simulations for how output gene expression varies with dose 413 

of the component highlighted in yellow; each plot includes a set of responses varying the component 414 

highlighted in red-to-blue gradation. Doses for the x-axes and above the varied component in the diagrams 415 

are in plasmid ng. Each experimental plot corresponds to the simulated condition with the dark line (for the 416 

middle dose of the varied component). The ZF1/2x6-C promoter has six partially overlapping ZF1 and ZF2 417 

sites. DMSO is the vehicle for rapamycin, which is used here as an environmental species (not an input). 418 

The simulations with RaZFa correspond to conditions with rapamycin treatment. Experiment plots represent 419 

the mean and S.E.M. of EYFP reporter signal from three biological replicates (bar graphs in Fig. S3D–L).  420 
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Fig. 4. Sensors can be linked to genetic programs to make signaling cascades. MESA and COMET 422 

technologies can be combined to construct functional biosensors, and upstream biosensor output is well-423 

matched to the requirements for downstream promoter input. (A,B) ABA-ZF2a and Rapa-MESA-ZF6a each 424 

exhibit ligand-inducible signaling (p = 2×10–3 and p = 1×10–3, respectively, one-tailed Welch’s unpaired t-425 

test). EtOH is the vehicle for both ligands. For MESA, the TC contains an FRB ectodomain and intracellular 426 

COMET TF, and the PC contains an FKBP ectodomain and intracellular TEV protease (TEVp). Each 427 

receptor chain contains an FGFR4 transmembrane domain. (C–E) Validated sensors were applied to 428 

implement multi-input sensing. AND logic was selected as a design goal, and four synonymous 429 

topologies—those that are intended to achieve the same goal through different mechanisms—were 430 

proposed and evaluated. For each input type (two columns for upstream ZFa or ligand sensing) and 431 

topology (four rows), reporter signal with two inputs differed from that with either or no input (p < 2×10–16 in 432 

each case, three-factor ANOVA and Tukey’s HSD test), indicating successful AND gate outcomes. 433 

Topologies 2–4 displayed negligible background signal (comparable to the signal with only the reporter 434 

present, ~101–102 MEPTRs, Fig. S4H), despite involving multi-layer signaling which can be a potential 435 

source of leak. The (ZF2/ZF6)x3 promoter has three pairs of alternating ZF2 and ZF6 sites. Bar graphs 436 

represent the mean, S.E.M., and values of mKate2 reporter signal from three biological replicates (depicted 437 

as dots; near-zero values are below the log-scaled y-axis lower limit). The numbers above bar pairs are the 438 

fold difference, and a fold difference of ∞ indicates that the denominator signal is less than or equal to zero.  439 
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