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Abstract 20 

The Malaise trap has gained popularity for assessing diverse terrestrial arthropod communities  21 

because it collects large samples with modest effort. A number of factors that influence collection 22 

efficiency, placement being one of them. For instance, when designing larger biotic surveys using 23 

arrays of Malaise traps we need to know the optimal distance between individual traps that 24 

maximises observable species richness and community composition. We examined the influence 25 

of spacing between Malaise traps by metabarcoding samples from two field experiments at a site 26 

in Waterloo, Ontario, Canada. For one experiment, we used two trap pairs deployed at weekly 27 

increasing distance (3m increments from 3 to 27 m). The second experiment involved a total of 10 28 

traps set up in a row at 3m distance intervals for three consecutive weeks.  29 

Results show that community similarity of samples decreases over distance between traps. The 30 

amount of species shared between trap pairs shows drops considerably at about 15m trap-to-trap 31 

distance. This change can be observed across all major taxonomic groups and for two different 32 

habitat types (grassland and forest). Large numbers of OTUs found only once within samples cause 33 

rather large dissimilarity between distance pairs even at close proximity. This could be caused by 34 

a large number of transient species from adjacent habitat which arrive at the trap through passive 35 

transport, as well as capture of rare taxa, which end up in different traps by chance.  36 

 37 

Keywords 38 
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 40 

 41 

Introduction 42 

 43 

During my extensive travels I have repeatedly found that insects happened to enter my tent, and 44 

that they always accumulated at the ceiling-corners in vain efforts to escape at that place without 45 

paying any attention to the open tent-door. On one occasion one of the upper tent-corners 46 

happened to have a small hole torn in the fabric, and through this hole all the insects pressed their 47 

way and escaped. Later on the idea occurred to me, that, if insects could enter a tent and not find 48 

their, way out, and always persistently tried to reach the ceiling, a trap, made as invisible as 49 
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possible and put up at a place where insects are wont to patrol back and forth, might catch them 50 

much better than any tent and perhaps better than a man with a net… 51 

Rene Malaise 1937 52 

 53 

The inclusion of terrestrial invertebrates in biodiversity inventories and surveys has increased 54 

substantially over the past years (Dopheide et al. 2019, Drake et al. 2007) but sampling efficiency 55 

remains a key consideration when designing larger censuses (Telfer et al. 2015, Timms et al. 2012). 56 

Although no single sampling can be used to survey all taxa at a given site, the Malaise trap (Malaise 57 

1937) has gained popularity for assessing terrestrial arthropod communities (Karlsson et al. 2005) 58 

because it collects large and diverse samples with fairly little effort. Malaise’s (1937) invention is 59 

a tent-like flight-interception trap made from fine mesh netting with a central screen suspended 60 

below a sloping ridge-roof that leads to a collecting bottle at the upper end. Flying insects that hit 61 

the screen, subsequently fly or walk along this roof to the bottle which is usually filled with >90% 62 

ethanol as preservative. Traps are usually deployed in a way that the central mesh intercepts the 63 

flying path of insects. There are a number of different designs available although the most 64 

commonly used traps are so called Townes-Style traps (Townes 1972) and derived versions of it 65 

(e.g. ez-Malaise traps). The trap is particularly well suited for inventory because it catches a wide 66 

variety of flying insects and some ground active insects that climb up the trap fabric. Malaise 67 

trapping is easy, requires modest labour and as such represents one of the best mass-collecting 68 

methods available for terrestrial invertebrates (deWaard et al 2018).  69 

Initially Malaise traps were considered of limited use in conservation evaluation and bio-70 

surveillance because of the huge size of their catch (Drake et al. 2007) which made it difficult to 71 

characterize the community using traditional morphology-based methods (Cook et al. 2010). 72 

Consequently, larger surveys used total biomass rather than detailed identification of specimens. 73 

In fact one of the recent reports on the dramatic decline of terrestrial arthropod abundance was the 74 

result of a long-term study using Malaise traps and catch biomass (Hallmann et al. 2017). The 75 

recent advent of DNA barcoding (Hebert et al. 2003) and metabarcoding (Taberlet et al. 2012) 76 

opened the door to more comprehensive estimates of species richness and community composition 77 

(Braukmann et al. 2019, Yu et al. 2012, Steinke et al. 2020) and Malaise traps are poised to become 78 

a ubiquitous tool for biodiversity surveys (Geiger et al. 2016). It seems that large scale or global 79 
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high-resolution monitoring networks are within our reach (Hobern & Hebert 2019) but there are 80 

still a number of challenges in relation to the small scale variability of many terrestrial habitats. 81 

There are various factors that influence the efficiency of Malaise traps. Temperature, 82 

precipitation, and wind are considered important as largest catches generally occur on hot, dry, 83 

and still days (Matthews & Matthews 1971). It has also been noted (Townes 1962) that insects 84 

often fly closer to the ground in spring because of the warmer air there, thereby increasing the 85 

number of individuals caught during this season. As a Malaise trap samples only those arthropods 86 

that happen to fly through a relatively small area, trap placement becomes an important 87 

consideration. Height of surrounding vegetation and location in shade or sun can alter trap 88 

performance and efficiency (Matthews & Matthews 1971, Ssymank et al. 2018). Another relevant 89 

but not systematically studied variable is the distance between traps in a sampling area. This is a 90 

particular important consideration when designing larger biotic surveys using arrays of traps. For 91 

instance, it is not known how many traps at what distance are needed to maximise observable 92 

species richness and community composition for a given location. 93 

The main objective of this study was to examine the effects of spacing between traps on species 94 

richness and composition of Malaise trap samples. Bulk samples from two field experiments at a 95 

site in Waterloo, Ontario, Canada were assessed using metabarcoding to determine if (1) there is 96 

a critical distance between traps at which species overlap drops significantly and if (2) structural 97 

composition of habitats has an influence on such a distance.  98 

 99 

Materials & Methods 100 

 101 

Site and sampling 102 

Arthropod bulk samples were collected using ez-Malaise traps (Bugdorm, Taiwan). Traps for 103 

the first experiments (Figure 1a) were deployed in both a grassland and a forested pond area near 104 

Waterloo, Ontario, Canada. Traps for experiment 2 (Figure 1b,c) were positioned only in the 105 

grassland area. For the first experiment we used two trap pairs that were deployed next to each 106 

other (3m distance between both collecting bottles) respectively. Each week trap spacing for each 107 

pair was increased by three meters to a maximum distance of 27m (Figure 1a). Samples were 108 

collected every week before moving one trap further away. Each time we cleaned trap heads 109 

(collecting area with bottles) using bleach and ethanol to minimize cross-contamination between 110 
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sampling events. The second experiment involved a total of 10 traps set up in 3m distance intervals 111 

for three consecutive weeks (Figure 1b,c). Samples were also collected each week sample bottles 112 

were stored at -20 °C for further analysis. 113 

  114 

Molecular analysis 115 

All samples were dried at room temperature for three days in a disposable grinding chamber. 116 

Each sample was ground to fine powder using an IKA Tube Mill control (IKA, Breisgau, 117 

Germany) at 25,000 rpm for 2 × 3 min. DNA was extracted from approximately 20 mg of ground 118 

tissue using the DNeasy Blood & Tissue kit (Qiagen, Venlo, Netherlands) following manufacturer 119 

protocols. 120 

Metabarcoding was carried out using a two-step fusion primer PCR protocol (Elbrecht & 121 

Steinke 2019). During the first PCR step, a 421 bp region of the Cytochrome c oxidase subunit I 122 

(COI) was amplified using the BF2 + BR2 primer set (Elbrecht & Leese 2017, Elbrecht et al. 123 

2019). PCR reactions were carried out in a 25 µL reaction volume, with 0.5 µL DNA, 0.2 µM of 124 

each primer, 12.5 µL PCR Multiplex Plus buffer (Qiagen, Hilden, Germany). The PCR was carried 125 

out in a Veriti thermocycler (Thermo Fisher Scientific, MA, USA) using the following cycling 126 

conditions: initial denaturation at 95 °C for 5 min; 25 cycles of: 30 sec at 95 °C, 30 sec at 50 °C 127 

and 50 sec at 72 °C; and a final extension of 5 min at 72 °C. PCR success was checked on a 1% 128 

agarose gel. One µL of PCR product was used as template for the second PCR, where Illumina 129 

sequencing adapters were added using individually tagged fusion primers (Elbrecht & Steinke 130 

2019). Tagging combinations are available in Table S1. We mainly used the same thermocycler 131 

conditions as in the first PCR but the reaction volume was increased to 35 µL, the cycle number 132 

reduced to 20 and extension time increased to 2 minutes per cycle. PCR success was again checked 133 

on a 1% Agarose gel. PCR products were purified and normalized using SequalPrep Normalization 134 

Plates (Thermo Fisher Scientific, MA, USA, Harris et al., 2010) according to manufacturer 135 

protocols. Ten µL of each normalised sample were pooled, and the final library cleaned using left 136 

sided size selection with 0.76x SPRIselect (Beckman Coulter, CA, USA. Sequencing was carried 137 

out by the Advances Analysis Facility at the University of Guelph using the 600 cycle Illumina 138 

MiSeq Reagent Kit v3 and 5% PhiX spike in. The read length of read one was increased to 316 139 

bp, while keeping read 2 to 300 bp. As we only used inline barcodes for sample tagging, both 140 

Illumina indexing read steps were skipped. 141 
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 142 

Data processing 143 

Initial quality control of raw sequence data was done using FastQC v0.11.8. Subsequently, 144 

sequence data were processed using the JAMP pipeline v0.69 (github.com/VascoElbrecht/JAMP) 145 

starting with demultiplexing, followed by paired-end merging using Usearch v11.0.667 with 146 

fastq_pctid=75 (Edgar 2010). Primer sequences were trimmed from each sequence using Cutadapt 147 

v1.18 with default settings (Martin 2011), retaining only sequences where primers were 148 

successfully trimmed at both ends. Cutadapt was also used to remove sequences shorter than 411 149 

bp and longer than 431 bp. Sequences with poor quality were removed using an expected error 150 

value of 1 (Edgar & Flyvbjerg 2015) as implemented in Usearch. Filtered reads of each sample 151 

were dereplicated and singletons removed, before pooling all reads for OTU clustering with 152 

Usearch cluster_otus at a 97% similarity threshold. Duplicated reads from each sample including 153 

singletons were mapped back against generated OTUs using Usearch usearch_global, to generate 154 

a OTU table. The maximum read count for each OTU across all 12 negative controls was 155 

multiplied by two, and subtracted from corresponding OTU read counts in all samples. Taxonomy 156 

was assigned by using OTUs as queries for the BOLD reference database (www.boldsystems.org 157 

Ratnasingham & Hebert 2007) utilizing the JAMP Bold_web_hack script with default settings. 158 

Only OTUs with a minimum match of 98% were retained for further analysis. For most analysis 159 

carried out in R v3.5.1, relative read counts were used, and only reads above 0.01% abundance 160 

were considered. 161 

 162 

Statistical analysis 163 

OTU tables (Table S2) were used to calculate both the number of OTUs shared as well as the 164 

Bray-Curtis dissimilarity between all trap pairs for both experiments. In order to determine OTU 165 

sampling effort we calculated accumulation curves for both experiments using the function 166 

specaccum and extrapolated species richness for each week using specpool, both part of the vegan 167 

package (Oksanen et al. 2018). Pairwise OTU overlap among trap distance pairs was evaluated 168 

using the nonparametric multiple comparison function implemented in the R package dunn.test 169 

1.2.4 (Dinno 2016) which is equivalent to the Kruskall-Wallis test.   170 

 171 

 172 
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 173 

Results 174 

We were able to extract high quality DNA from most samples, and obtained strong bands for 175 

all 74 samples after the second PCR step (Suppl Figure). Illumina sequencing generated 176 

13,910,614 reads (partial run shared with other projects), with the raw data being available on 177 

NCBI SRA with the accession number SRP200574. About 27% of the reads were filtered during 178 

data processing, leaving an average of about 137,181 sequences per sample. In total, 10,151,381 179 

post-filtering reads could be used for clustering with Usearch. 180 

Our analysis shows a total of 2,315 OTUs for the grassland site and 2,804 OTUs for the forest 181 

pond site in experiment 1 (Figure 2a). On average about half of those (49%) were only detected 182 

once over the entire experiment. The Chao 1 (Magurran, 2003) species estimates for the total 183 

number of OTUs possible with complete sampling were 3,847+119 and 4,550+129 respectively. 184 

Both sites had a total of 860 OTUs in common. Bray-Curtis dissimilarity between samples of 185 

distance pairs was generally high (>0.67) for both sites and all distances, however dissimilarity at 186 

both sites increased significantly (Kruskal-Wallis and Dunn’s posthoc p < 0.0001) at 18m distance 187 

(Figure 2b).  Overall, the proportion of OTUs shared between trap pairs ranged from 26-27%. 188 

The total OTU count for the grassland site comprised 21 orders with six orders (Coleoptera, 189 

Diptera, Hemiptera, Hymenoptera, Lepidoptera, Orthoptera) representing 97% of all specimens 190 

(Table S1). We found 20 orders at the forest pond site with five orders (Coleoptera, Diptera, 191 

Hemiptera, Hymenoptera, Lepidoptera) representing 96% of all specimens (Table S3). About 1/3 192 

of OTUs was shared between both sites. We observed a distinct drop in the number of species 193 

shared between traps at a distance of 15m for both the grassland (Figure 2c) and the forest pond 194 

site (Figure 2d). 195 

For experiment 2 we found totals of 1,017, 662, and 738 OTUs for weeks 1-3 (Figure 3a, Figure 196 

S1). The total number of OTUs found over the three weeks was 1,610. Chao estimates for the 197 

expected amount of total OTUs were 2,007+117, 1,211+80, 1,479+102 for weeks one to three, 198 

respectively. Dissimilarity values for experiment 2 were generally higher with weekly averages 199 

ranging from 0.75 (week 2) to 0.92 (week 3) (Figure 3b). The values gradually increased with 200 

increasing distance between two traps. In addition more than half of the OTUs obtained in in three 201 

weeks of experiment 2 (811) were only detected in a single trap following a common hollow curve 202 

species abundance pattern (Figure S2).  203 
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OTUs found during experiment 2 comprised 15-18 orders with the five orders Coleoptera, 204 

Diptera, Hemiptera, Hymenoptera, and Lepidoptera representing between 85-95% of all specimens 205 

(Table S3). In contrast to experiment 1, each week we observed a constant decline of the number 206 

of species shared between traps with increased distance between them (Figure 3c). 207 

 208 

 209 

Discussion 210 

Malaise traps as sampling method for terrestrial arthropod communities represent a rather 211 

efficient and economical means for obtaining comprehensive samples with minimal effort 212 

(Karlsson et al. 2005). They can be operated continuously in any weather with only occasional 213 

attendance and deliver large sample sizes. In conjunction with modern DNA-based methods to 214 

assign taxonomy (e.g. metabarcoding) they probably represent the best mass-collecting method 215 

available for terrestrial arthropods and are well suited for large scale biotic surveys using arrays of 216 

traps (Yu et al 2012, deWaard et al. 2018, Steinke et al 2020). However, so far it was not known 217 

how many traps at what distance are needed to maximise observable species richness and 218 

community composition for a given location (Noyes 1989). Various strategies have been applied 219 

but trap spacing varied considerably (Fraser et al. 2008, Santos et al. 2014). Results from our first 220 

experiment (Figure 1a, 2) suggest that deploying traps at about 15m distance from each other 221 

would significantly increase overall species richness and reduce overlap between traps. This is true 222 

for all major taxonomic groups collected (Figure 2 c, d). Interestingly, overall general habitat 223 

structure seems to have no effect on the distance observed as both, the grassland and the forest 224 

pond sites exhibit the same cut-off value. On the other hand, experiment 2 does not show such a 225 

clear drop in overlap between adjacent traps (Figure 3 c, d, e). For each week we were able to 226 

observe a more gradual decline in the number of OTUs overall and per taxonomic group 227 

respectively. This could be the result of the experimental set up we chose. A row of ten traps 228 

represents a continuous structure along which some animals have the ability to move before being 229 

caught. Along the row of traps the amount of observed OTUs varies which is likely the result of 230 

variation in microhabitat structure (Figure S1). The grassland chosen for the experiment was not 231 

entirely uniform and characterized by sporadic patches of golden rod (Solidago canadensis). 232 

The large dissimilarity values observed in both our experiments (Figure 2b, 3b) are influenced 233 

by a large proportion of singleton OTUs. We are confident that these are mostly true specimens 234 
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rather than OTUs derived from sequencing or PCR errors, because we removed OTUs that did not 235 

match the BOLD database to at least 98%. Large numbers of OTUs found only once over a 236 

sampling period or between traps have been observed several times in other studies using Malaise 237 

traps (e.g. Geiger et al. 2016, deWaard et al. 2018, Steinke et al. 2020). This phenomenon has been 238 

discussed as an indicator for the presence of transient species (D’Souza & Hebert 2018, Steinke et 239 

al. 2020). Transient species have been defined as species that show up only occasionally as a result 240 

of dispersal from adjacent habitat (Snell Taylor et al. 2018). Specifically, many smaller species 241 

caught are not necessarily living in the sampled habitat but are rather passively transported there 242 

e.g. by wind. Additionally, sampling might be stochastic when it comes to rare or low abundant 243 

taxa. 244 

Malaise trapping with only a few traps at a single site over a short timescale always provides 245 

an incomplete species list. That is no different for our study which suggests that additional trapping 246 

efforts by increasing the number of traps or by enlarging the trapping surface (e.g. Gressitt & 247 

Gressitt 1962) are needed to approach asymptotic species richness at both experimental sites. The 248 

trap results for experiment 1 suggest that it needs a 1.6-fold increase of the full sampling effort for 249 

a complete inventory (over the entire 10 weeks of the experiment) based on Chao-1. For 250 

experiment 2 sampling efforts would need to be doubled to obtain maximum species richness for 251 

the site in any given week. This could perhaps be accomplished by deploying a second row of ten 252 

traps at 15 m distance following the findings of experiment 1. The alternative would be to increase 253 

the sampling duration (Fraser et al. 2008) or the sampling surface of the traps (Gressitt & Gressitt 254 

1962).  255 

In conclusion, our results suggest the following recommendations for sampling and monitoring 256 

terrestrial invertebrate communities with Malaise traps: (a) within a temperate and uniform habitat 257 

a number of traps equally spaced at >15m will sample more of the local diversity while at the same 258 

time reduce the extend of repetitive sampling, (b) longer trapping duration can help to reach 259 

asymptotic species richness and lead to more complete species lists, and (c) future work should 260 

include research on the origin and the role of singletons. Are they in fact transient species passively 261 

dispersed towards the trap or low abundant resident core species that are not efficiently detected? 262 

 263 
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Figure legends 389 

 390 

Figure 1: Sampling design (trap distances over time) for experiment 1 (a) and experiment 2 (b). 391 

 392 

Figure 2: Results for experiment 1. a) OTU accumulation curves for both sites by sample, b) 393 

Histogram of Bray-Curtis dissimilarities between samples of distance pairs for both sites. 394 

Number of shared OTUs per trap distance pair for the top five arthropod orders at grassland (c) 395 

and forest pond (d) site. 396 

 397 

Figure 3: Results for experiment 2. a) OTU accumulation curves for each sampling week by trap 398 

b) Histogram of Bray-Curtis dissimilarities between samples of distance pairs for all weeks, c) 399 

number of shared OTUs by trap distance for the top five arthropod orders for each week. 400 

 401 

 402 

Figure S1: Histogram of OTU richness per trap (corresponding trap shown in photograph 403 

below) per week of experiment 2. 404 

 405 

Figure S2: Number of OTU occurrences in traps of experiment 2.  406 

 407 
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Table S1: Tagging layout 424 
TableS1_Distance Layout.xls  425 
 426 
Table S2: OTU table (FC, FM, PC, PM – Experiment 1; A, B, F – Experiment 2; C – Controls) 427 
TableS2_OTU Table.xlsx 428 
 429 
Table S3: Taxonomic breakdown by order for both experiments and sites 430 
TableS3_taxonomic breakdown.xlsx 431 
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