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ABSTRACT 

Bone marrow commonly serves as a metastatic niche for disseminated tumor cells (DTCs) of 

solid cancers in patients with unfavorable clinical outcome. Single-cell assessment of bone 

marrow metastases is essential to decipher the entire spectrum of tumor heterogeneity in these 

cancers, however, has previously not been performed. 

Here we used multi-epitope-ligand cartography (MELC) to spatially profile 20 biomarkers and 

assess morphology in DTCs as well as hematopoietic and mesenchymal cells of eight bone 

marrow metastases from neuroblastoma patients. We developed DeepFLEX, a single-cell 

image analysis pipeline for MELC data that combines deep learning-based cell and nucleus 

segmentation and overcomes frequent challenges of multiplex imaging methods including 

autofluorescence and unspecific antibody binding. 

Using DeepFLEX, we built a single-cell atlas of bone marrow metastases comprising more 

than 35,000 single cells. Comparisons of cell type proportions between samples indicated that 

microenvironmental changes in the metastatic bone marrow are associated with tumor cell 

infiltration and therapy response. Hierarchical clustering of DTCs revealed multiple phenotypes 

with highly diverse expression of markers such as FAIM2, an inhibitory protein in the Fas 

apoptotic pathway, which we propose as a complementary marker to capture DTC 

heterogeneity in neuroblastoma. 

The presented single-cell atlas provides first insights into the heterogeneity of human bone 

marrow metastases and is an important step towards a deeper understanding of DTCs and 

their interactions with the bone marrow niche. 
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INTRODUCTION 

Metastasis is the major cause of cancer-related deaths1 and relies on the ability of tumor cells 

to disseminate from the primary site and adapt to distant tissue environments.2 This is an 

arduous process, which can fuel heterogeneity among metastasizing and disseminated tumor 

cells (DTCs).3 Tumor heterogeneity manifests in variations of clinically important features such 

as the abundance of prognostic markers as well as therapeutic targets, which complicates 

patient stratification and explains failure of therapeutic approaches.4,5,6,7  

Cancer cells are attracted by distant microenvironments that promote their growth and 

survival.8 One such hospitable microenvironment is the bone marrow, which has a major role 

in dormancy and relapse9 and is a frequent site of dissemination in numerous solid cancers10,11, 

such as breast cancer, colorectal cancer and neuroblastoma.12  

Neuroblastoma, an extracranial neoplasm of the sympathetic nervous system, is the most 

common solid tumor in children in their first year of life and accounts for roughly 15% of 

childhood cancer related deaths.13,14,15 In more than 90% of metastatic stage (stage M) 

neuroblastoma patients, tumor cells disseminate to the bone marrow16,17, where some tumor 

cells may resist initial chemotherapy and give rise to relapse. These relapse seeding clones 

are frequently, already at the time-point of diagnosis, detected in the bone marrow, but not in 

the primary tumor.6 Based on bulk RNA-sequencing (RNA-seq), we have previously shown 

differences between the transcriptome of DTCs with predominantly hypoxia-associated genes 

enriched, and primary tumor cells with an increased expression of mesenchymal genes.18 

Subsequently, two studies of neuroblastoma cell lines and primary tumors unraveled the gene 

regulatory networks driving two plastic phenotypes, adrenergic and mesenchymal type 

neuroblastoma cells and highlighted their importance, as the latter were more frequently found 

in post-therapy and relapse samples and were more resistant to chemotherapy.19,20 Thus, 

genetic and phenotypic tumor heterogeneity can be considered key to why treatment of 

metastatic disease remains poor.  

Although phenotypic tumor heterogeneity of solid cancers has been investigated at the primary 

site at single-cell resolution,21,22,23,24 to date no analyses of human bone marrow metastases 

have been undertaken.25   

In recent years, numerous technologies for the analysis of single cells have emerged and 

advanced rapidly. While single-cell RNA-seq (scRNA-seq) methods26 enable high-dimensional 

analyses of cells at the transcriptomic level, highly multiplexed imaging methods27 provide an 

image of every cell and thereby allow subcellular localization of proteins as well as 

morphological assessment. Despite the volume of developing multiplex imaging methods, the 

standard method to detect DTCs in bone marrow aspirates in neuroblastoma routine diagnostic 
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procedures, is still automated immunofluorescence plus fluorescence in situ hybridization 

(AIPF), which is limited to only three biomarkers (GD2, CD56 and one genetic marker).28,29 In 

order to unravel the complete scope of intra-tumor heterogeneity and capture therapy-related 

changes and resistant cells in solid cancers with bone marrow involvement, a comprehensive 

single-cell map of bone marrow metastases is indispensable. Thus, we sought to provide the 

first single-cell atlas of bone marrow metastases including DTCs and cells of the 

microenvironment, by employing neuroblastoma as a model.   

We applied Multi-Epitope-Ligand Cartography (MELC), a multiplex imaging method with a 

resolution of 450nm that employs automated sequential cycles of staining with fluorophore-

coupled antibodies followed by immunofluorescence (IF) microscopy and photobleaching.30,31 

A 20-plex antibody panel was established, and we developed an image analysis pipeline, 

called DeepFLEX, which tackles frequent obstacles of IF-based imaging and in addition 

involves accurate, deep learning-based cell and nucleus segmentation. Our study revealed 

novel markers, including FAIM2 (Fas Apoptotic Inhibitory Molecule 2), to capture heterogeneity 

of DTCs in bone marrow metastases of neuroblastoma patients. Moreover, our analyses 

delivered the first indication that the presence of DTCs as well as treatment are associated 

with dynamic changes in the bone marrow microenvironment.   

RESULTS 

Comprehensive single-cell multiplex immunofluorescence imaging panel  
 

To analyze bone marrow metastases on a single-cell level, we sought to establish a MELC 

panel specific to neuroblastoma DTCs, hematopoietic, and mesenchymal cells in the bone 

marrow. Therefore, in our workflow (Fig. 1a), we first selected DTC-associated biomarkers, 

which we then validated separately by conventional IF staining.   

Data mining (see Methods) based on RNA-seq data of stage M neuroblastoma primary tumors, 

DTCs, and bone marrow-derived mononuclear cells (MNCs); proteomics data of 

neuroblastoma tumors, neuroblastoma cell lines, and peripheral-nerve-associated fibroblasts; 

and public databases (Uniprot, Protein Atlas, PubMed) revealed five potential DTC biomarkers: 

TAG1 (CNTN2), DCLK1, FAIM2, PRAME and TACC2 (Fig. 1b). All five candidates had (I) 

significantly higher transcript levels in DTCs as compared to bone-marrow-derived MNCs, (II) 

an equal or higher transcription at the time point of relapse as compared to diagnosis, (III) 

literature available on neuroblastoma-, tumor- or metastasis association and (IV) protein 

expression described to be localized on the cell membrane and detected by proteomic 

analysis. To further characterize DTC heterogeneity, we complemented these five markers by 

mesenchymal-type neuroblastoma cell markers20 VIM and PROM1, immune checkpoint 
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molecules B7-H332 and PD-L1 with its binding partner PD-133, the currently investigated 

therapeutic target NCAM-L134, as well as two gold-standard neuroblastoma markers CD56 and 

the ganglioside GD2.35 VIM was highly, but not exclusively expressed by DTCs (Fig. 1c, top). 

PD-1, PD-L1 and PROM1 showed low expression on the mRNA level and were not detected 

in the mass spectrometry data (Fig. 1c, bottom), which can be explained by their expression 

on rare cell types.  

To assess their protein expression on a single-cell level, we validated these 13 DTC-related 

biomarkers (Fig. S1a) using optimized IF-sample preparation protocols (Fig. S1b and S2a, 

Table S1) on neuroblastoma cell lines in isolation (Fig. S1c, Table S2 and S3) and spiked into 

bone marrow-derived MNCs or peripheral blood-derived MNCs (Fig. S2b). Three out of the 5 

initial DTC biomarker candidates (Fig. 1b) yielded a tumor-specific IF-staining on 

neuroblastoma cell lines spiked into bone marrow-derived MNCs (Fig. 1d). These were 

DCLK1, which is crucial for neuroblast proliferation36,37, TAG1, a promoter of glioma 

proliferation38 and the inhibitor of Fas induced apoptosis FAIM2 (Fig. S3). We selected FAIM2 

together with GD2, CD56, VIM, B7-H3 and PD-1 for multiplex imaging and tested them 

simultaneously with 14 other bone marrow hematopoietic and mesenchymal cell markers 

(Table S4) in MELC assays, finally resulting in a specific and robust 20-plex panel (Fig. 1e, 

Table 1).  

In conclusion, we here provide a validated 20-plex MELC panel for neuroblastoma composed 

of DTC markers, including a novel candidate marker called FAIM2, as well as myeloid, 

lymphoid, mesenchymal, and hematopoietic stem and progenitor cell markers (Fig. 1f). 

Deep learning-based single-cell analysis pipeline for FLuorescence multiplEX imaging 
– DeepFLEX 

MELC and other IF-based multiplex imaging methods suffer from inhomogeneous illumination, 

background noise due to incomplete signal removal by photobleaching or heat denaturation, 

autofluorescence and unspecific binding, which are either not addressed or not effectively 

solved in published single-cell image analysis pipelines.39,40,41,42,43,44  

To address these challenges and allow unsupervised single-cell analysis of MELC imaging 

data, we developed DeepFLEX (Fig. 2a), a semi-automated, deep learning-based pipeline. 

DeepFLEX integrates methods for image processing, segmentation, feature extraction, 

normalization, and single-cell analysis that were recently published by our group and experts 

in the field (see Methods).   

DeepFLEX corrects for common problems of IF staining and microscopy. Cross-correlation-

based registration45 aligns images, which are shifted due to the microscope stage movement 

in between staining and bleaching cycles. Flat-field correction eliminates gross variations in 
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illumination using calibration images. Image subtraction of the bleached from the subsequently 

stained sample removes bleaching remnants. CIDRE46, a retrospective multi-image 

illumination correction method based on energy minimization further homogenizes illumination 

towards image borders (Fig. S4a-d).   

The deep neuronal network Mask R-CNN47, trained on an annotated fluorescence image 

dataset48, allows accurate cell and nucleus segmentation in the processed images. 

Simultaneous segmentation of the nucleus (based on the nuclear stain propidium iodide) and 

the cell (based on phase contrast images acquired prior to each staining cycle) allows the 

elimination of displaced and inaccurately segmented cells by considering only those cells for 

the analysis, which are present in every cell segmentation mask, but also in the nucleus 

segmentation mask. Cells affected by artifacts are excluded by user-guided region selection 

(Fig. S4e-h).   

Based on the cell and the nucleus segmentation mask, DeepFLEX facilitates the extraction of 

single-cell features (Table S5) describing the intensity (mean intensity, total intensity, and 

mean of the highest 20% of pixel values) and morphology (roundness, solidity, perimeter and 

size) of three cell compartments, namely the cell itself, the nucleus, and their difference, which 

represents the cell cytoplasm with the membrane (Fig. S5a-b).  

Our pipeline diminishes non-specific staining, autofluorescence, and experimental batch 

effects by normalizing single-cell features based on images of negative control secondary 

antibodies (see Methods), and mutually exclusive marker pairs for the prediction of background 

levels via RESTORE49 (Table S6, Fig. S5c-d).  

DeepFLEX analyzes the normalized single-cell data based on the integration of the visual 

analysis framework Cytosplore50 and the python data visualization library seaborn 

(seaborn.pydata.org), which provide methods for interactive and quantitative analysis of 

individual cell classes, respectively (Fig. S5e).   

We proved that features extracted by DeepFLEX are comparable to their respective images in 

representing cells, by using them as inputs to shallow and deep neural networks trained on an 

annotated cell dataset and inferring cell classes (see Suppl. Methods, Fig. S6a-d, Table S7). 

In summary, DeepFLEX represents a comprehensive single-cell image analysis pipeline for 

MELC multiplex imaging, which includes accurate deep learning-based cell and nucleus 

segmentation, and demonstrates computational solutions for common obstacles of targeted 

multiplex imaging technologies such as unspecific binding and autofluorescence  
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Single-cell map of tumor cells and the microenvironment in neuroblastoma bone 
marrow metastases 

To obtain a single-cell map of DTCs and the bone marrow microenvironment in children with 

neuroblastoma, we used the designed 20-plex panel for MELC imaging of eight bone marrow 

samples (Table 2) collected from three stage M and one stage Ms neuroblastoma patient 

(Table 3) at different time-points during therapy. We then fed the generated multiplex images 

into DeepFLEX, which resulted in an atlas of 35,700 single cells distributed between ten 

clusters (Fig. 2b). 

After confirming that potential batch effects have been eliminated (Fig. S5d, bottom), we 

annotated clusters based on median feature expression of cell-type-specific marker proteins 

(Fig. 2c, Fig. S7 and S8) and a recently published single-cell atlas51 of healthy adult human 

bone marrow. In addition, we verified our annotation using representative gallery images of 

each cell type (Fig. 2d).  

We found most of the expected immune cell types including T-helper cells (T-h cells), cytotoxic 

T-lymphocytes (CTLs), monocytes and macrophages (MO/MΦ) as well as B-cells. A dominant 

proportion of cells in the bone marrow microenvironment of children represented a 

hematopoietic mixed (Fig. 2b, yellow cluster) and a stem and progenitor (Fig. 2b, grey cluster) 

cell phenotype. Moreover, we were able to identify a segregated tumor cell cluster with co-

expression of all markers expressed by DTCs from our panel (GD2, CD56, B7-H3, CD24 and 

FAIM2). The mesenchymal marker VIM showed the highest expression on monocytes and 

macrophages (Fig. 2c, Fig. S8). In bulk transcriptomic and proteomic data (Fig 1c), VIM was 

also highly expressed in neuroblastoma cells, which was in accordance with the IF staining 

results on neuroblastoma cell lines (Fig. S1c, Fig. S2b). However, in the eight analyzed bone 

marrow samples, which were prepared with the same protocol (Fig. S2a) and stained with the 

identical antibody (Table 1), DTCs were negative for VIM (Fig. 2c, Fig. S8), and also the 

mesenchymal marker CD29, indicating that DTCs in our sample set are predominantly of an 

adrenergic type, but clarification will require further robust mesenchymal markers. CD29 was 

enriched in two clusters (Fig. 2c): (I) in myelocytes, which, in accordance with a previous 

study52, also showed a strong expression of CD24 as well as a c-shaped morphology (Fig. 2d), 

and hence low values for the two features roundness and solidity; and (II) in a  cluster (CD29+ 

cells), which was negative for CD45 and hematopoietic lineage markers and mainly composed 

of large cells, suggesting a mesenchymal stromal phenotype. These cells, however, displayed 

a low abundance of VIM. One cluster exhibited a pronounced expression of HLA-ABC, but 

could not be assigned to a specific cell type. 
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Taken together, we here provide a comprehensive representation of DTCs and the bone 

marrow microenvironment of neuroblastoma patients. 

Analysis of bone marrow microenvironmental changes 

We then investigated the influence of DTC abundance on the bone marrow microenvironment 

by separately analyzing the cell composition of each individual bone marrow sample (Fig. 3a, 

Fig. S9).   

Independent of the sample size (Fig. 3b), DeepFLEX detected DTCs in the same bone marrow 

samples as AIPF (Table 2), currently the standard method for minimal residual disease 

detection in routine diagnostic procedures. Although the proportion of DTCs detected by the 

two methods was in a similar range, absolute numbers differed, which can be explained by the 

higher number of markers used in DeepFLEX and the difference in sample size.   

Next, we compared bone marrow samples with high and low tumor cell content (Fig. 3b and 

c). The proportion of hematopoietic mixed as well as stem and progenitor cells was strongly 

reduced in samples with a high tumor cell infiltration. Moreover, myelocytes appeared only in 

samples with a high DTC content.  

In order to exclude that the myelocytic cluster co-expressing CD24, which is also highly 

expressed in DTCs, and the mesenchymal marker CD29, might contain mesenchymal-type 

neuroblastoma cells19,20, we performed interphase fluorescence in situ hybridization (iFISH) 

subsequent to MELC. The bone marrow sample with the highest DTC fraction and most 

abundant CD29+CD24+ cluster (BM 1.1) originated from a patient with a chromosome 17q gain 

and was therefore interrogated using a 17q-specific probe. The result (Fig. 3d) unequivocally 

demonstrated that cells from the myelocytic cluster do not carry supernumerary 17q signals 

and were therefore considered normal cells. However, these cells only appeared in the 

presence of DTCs in the bone marrow in our sample set. In addition, FISH analysis also 

confirmed the accurate classification of DTCs. We clearly detected six copies of 17q, which 

was in accordance with a previous FISH analysis of lymph node metastases from the same 

patient (NB1, Fig. S10).   

Patient NB1 (Table 3) was diagnosed with a primary tumor located in the right adrenal gland, 

and widespread metastatic bone marrow infiltration according to abdominal magnetic 

resonance imaging (MRI) and the meta-iodobenzylguanidine (MIBG) scan. This was also 

reflected in results obtained by DeepFLEX, which detected a DTC content of 63% in the 

diagnostic bone marrow sample BM 1.1 (Table 2, Fig. 3a). Upon induction chemotherapy, the 

patient showed a good local response and no evidence of tumor cells in the bone marrow, 

which was in accordance with our results (BM1.2), (Table 2, Fig. 3a). Therapy response also 

coincided with the expansion of hematopoietic mixed as well as stem and progenitor cells 
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indicating hematopoietic restoration.  

In summary, we observed that dissemination of neuroblastoma tumor cells into the bone 

marrow as well as response to therapy was associated with changes in the bone marrow 

microenvironment, specifically alterations of the myelocyte cell and hematopoietic mixed and 

stem and progenitor cell compartments.   

Heterogeneity of disseminated tumor cells and FAIM2 as a novel complementary 

marker 

Though neuroblastoma tumor heterogeneity has been investigated at the primary site on a 

single-cell level19,20, a respective characterization in the metastatic bone marrow was still 

missing. To assess tumor heterogeneity of bone marrow metastatic cells, we therefore 

performed hierarchical clustering (see Methods) on the single-cell data of our DTC cluster 

using only the DTC markers from our 20-plex MELC panel.   

We obtained a clustermap with 30 DTC sub-clusters showing the heterogeneous expression 

of markers expressed by DTCs (Fig. 4a), which was also reflected by representative gallery 

images of individual DTC phenotypes (Fig. 4b). Notably, half of all DTCs belonged to sub-

cluster 19, which represented a dominant phenotype in the two highly tumor-infiltrated bone 

marrow samples BM 1.1 and BM 3.1 (Fig. 4c). While DTCs showed a predominantly round 

nuclear shape, cellular and nuclear size contributed to the fractionation of DTCs into distinct 

sub-clusters and varied between different phenotypes, e.g. 17 and 30, which were composed 

of mainly large and small cells, respectively. Sub-cluster 18 and 20 displayed a high expression 

of FAIM2, an inhibitory protein in the Fas-apoptotic pathway of tumor cells53,54, which was 

proposed as a tumor marker in small cell lung55 and breast cancer56. FAIM2 is known to be 

primarily expressed in neurons54,57, which was in accordance with our bulk proteomics data 

(Fig. S3a). In our RNA-seq datasets, FAIM2 transcription was significantly higher in tumor cells 

than in bone marrow-derived MNCs (Fig. S3b). Moreover, FAIM2 transcription was enriched 

in primary tumor cells without MYCN amplification as compared to those with MYCN 

amplification (Fig. S3B), thus supporting previous findings58. However, we did not observe a 

differential expression between these two classes in DTCs. Interestingly, in our single-cell 

analysis of eight neuroblastoma bone marrow samples, FAIM2 was expressed only in a subset 

of DTCs (Fig. 4a and b, Fig. S11). As other markers, that were found to be expressed by DTCs, 

FAIM2 was NOT exclusive to neuroblastoma cells, but was also found on other cell types in 

the bone marrow (Fig. S8 and S11). To assess the correlation of FAIM2 and other DTC 

markers, we plotted the DTC marker abundances for all cells of the DTC clusters (Fig. 4d, Fig. 

S12). This corroborated the observation, that only a subset of DTCs exhibit a high expression 
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of FAIM2 along with low or intermediate abundances of the other DTC markers, while the latter 

were mostly co-expressed by DTCs.  

Here we present a first exploratory survey of DTCs in bone marrow metastases on a single-

cell level highlighting a hitherto unappreciated diversity pointing toward multiple distinct 

subclasses of DTCs. We show that FAIM2 marks a subset of DTCs and can serve as a 

complementary biomarker for capturing DTC heterogeneity in neuroblastoma.  

DISCUSSION 

While the bone marrow attracts tumor cells in numerous solid cancer entities leading to poor 

outcome in affected patients, comprehensive analyses of bone marrow metastases have not 

been performed on a single cell level. We here set out to capture tumor heterogeneity and 

unravel microenvironmental changes in a solid cancer with bone marrow involvement.   

To this end, we constructed an atlas of DTCs and their microenvironment in the metastatic 

bone marrow niche by multiplex imaging of eight human neuroblastoma bone marrow samples 

and subsequent image analysis by our newly-developed pipeline DeepFLEX. Our results 

revealed vast diversity among DTCs and suggest that FAIM2 can act as a complementary 

marker to capture DTC heterogeneity. The presented findings indicate that malignant bone 

marrow infiltration and response to cancer therapy might be associated with changes in the 

bone marrow microenvironment, warranting deeper investigations of spatio-temporal 

dynamics at the single-cell level and of their clinical relevance. 

The bone marrow, as part of the immune system, constitutes a niche comprised of multiple 

immune cell subpopulations59, shown to be involved in cancer progression.60 As a key regulator 

of hematopoietic and mesenchymal stem cell function, the niche may facilitate quiescence and 

drug-resistance61, impairing current therapeutic approaches. Single-cell multi-modal analysis 

of healthy human bone marrow recently identified the major bone marrow mononuclear 

populations.51 However, the single-cell atlas of malignant human bone marrow has so far only 

been described in leukemia62,63, where the bone marrow is not considered a metastatic, but 

rather an originating site. Herein, we provide first insights into the single-cell landscape of 

human bone marrow metastases including variations among DTCs as well as cells of the 

mesenchymal and hematopoietic compartment. 

Among DTCs, we showed a high level of diversity reflected by heterogeneous cell 

morphologies as well as protein expression profiles and fractionation into phenotypically 

diverse DTC sub-clusters. Notably, half of the cells belonged to one major DTC sub-cluster, 

which represented a dominant phenotype in both of the two highly tumor-infiltrated bone 

marrow samples. This phenotype dominance was also observed in a previous study64 on 

breast cancer, where in almost half of the analyzed cohort, 50% of all tumor cells belonged to 
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a single tumor cluster, and might reflect clonal expansion, intrinsic plasticity or result from 

tumor-microenvironment interaction. 

A subset of DTCs exhibited a high expression of FAIM2, an inhibitory protein in the Fas-

apoptotic pathway, which we included into the 20-plex panel upon data mining of a previously 

generated neuroblastoma RNA-seq and proteomics dataset. FAIM2 was described as a 

therapeutic target in small cell lung cancer55 and as a predictive marker of poor outcome in 

breast cancer patients.56 Herein, we propose FAIM2 as a complementary marker to depict a 

broader spectrum of DTC heterogeneity, as it marked a subpopulation of DTCs and showed a 

lower correlation with the other analyzed DTC markers than the latter with each other. DCLK1, 

a cancer stem cell marker65, was another candidate of high interest, whose distribution is yet 

to be assessed in bone marrow metastases. A deeper investigation of DTC sub-classes in 

larger patient cohorts may yield targets for neuroblastoma therapy.   

Neuroblastoma heterogeneity has been investigated before by scRNA-seq of primary tumor 

samples, most of which were shown to be composed of adrenergic and mesenchymal type 

neuroblastoma cells, the latter suggested to be more resistant to chemotherapy.20 Also, we 

have previously shown that mesenchymal characteristics can be adopted upon therapy-

induced tumor cell senescence.66,67 Yet, in the investigated bone marrow samples, collected 

at different time points in the disease course, we did not detect neuroblastoma cells of a 

mesenchymal phenotype based on the expression of the mesenchymal markers, CD29 and 

Vimentin. This might be explained by the limited sample as well as panel size and the fact that 

mesenchymal type neuroblastoma cell identity has previously been defined by master 

transcription factors active in gene regulatory networks. Thus, future research will require the 

identification of robust imaging-based markers to reliably assign neuroblastoma cells to these 

two classes.  

Within the bone marrow microenvironment, we observed alterations in the hematopoietic and 

mesenchymal cell compartment with respect to the level of tumor cell infiltration indicating that 

DTCs shape the metastatic niche, albeit based on a very limited cohort size. In support of this 

notion, leukemia cells are likewise known to reprogram the bone marrow niche in order to 

instigate changes that promote their progression.68 Interestingly, we identified considerably 

fewer progenitor and other immature hematopoietic cells (distributed among 2 clusters, i.e. 

hematopoietic mixed and stem and progenitor cells), in highly tumor infiltrated samples, which 

solidifies previous findings, suggesting that tumor invasion reduces the support for primitive 

hematopoietic stem and progenitor cells in the metastatic niche.69 In addition, it is widely 

accepted that cytotoxic therapy leads to bone marrow perturbation resulting in 

myelosupression70, which might also be responsible for the observed depletion of immature, 

lineage negative hematopoietic cells. Furthermore, we only found myelocytes in samples with 
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a high DTC infiltration, which may be attributable to the immunosuppressive and tumor-

promoting functions of cells from the myeloid origin as well as their role in inflammation.71  

Our findings were based on single-cell analyses of MELC multiplex imaging data, enabled by 

the pipeline DeepFLEX, which we developed based on the integration of methods for image 

processing45,46, segmentation47,48, normalization49 and single-cell analysis.50 DeepFLEX 

tackles confounding factors of targeted imaging technologies such as unspecific binding and 

autofluorescence and combines deep-learning based cell and nucleus segmentation, which 

allow accurate single-cell assessment. In addition to the code, we provide the complete 

multiplex image dataset of all samples used in this study. The demonstrated application of 

DeepFLEX on MELC imaging data serves as a blueprint for further single-cell analyses by 

multiplex imaging methods beyond MELC, facing similar challenges.  

In conclusion, this study offers a first view into the single-cell landscape of human bone marrow 

metastases and might motivate further investigations in other solid cancers with bone marrow 

involvement. Moreover, our findings represent a valuable source of information for the design 

of therapeutic approaches depending on the distribution of target molecules on cancer cells 

such as immunotherapies72, and can hence contribute towards better patient stratification in 

neuroblastoma.  

 

DATA AND CODE AVAILABILITY 

The RNA-seq dataset used for datamining is available for download on the GEO data 

repository under accession number GSE94035.  

Supplementary data (.csv and .doc files) holding manually curated information retrieved from 

protein databases and literature search can be found on  

https://cloud.stanna.at/sharing/iyorsYWzp . 

The mass spectrometry proteomics data has been deposited to the ProteomeXchange 

Consortium (proteomecentral.proteomexchange.org) via the PRIDE partner repository 

(ebi.ac.uk/pride/ , PMID: 24727771) with the dataset identifier PXD018267.  

Python code for the DeepFLEX pipeline is available on github.com/perlfloccri/DeepFLEX. A 

compiled release with all necessary dependencies pre-installed is available from dockerhub 

URL https://hub.docker.com/repository/docker/imageprocessing29092020/deepflex.  

The MELC multiplex imaging data of our neuroblastoma cohort is available at 

https://cloud.stanna.at/sharing/qiN0u9QPO . 
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 METHODS 

Patients and cell lines 

The collection and research use of human tumor specimen was conducted according to the 

guidelines of the Council for International Organizations of Medical Sciences (CIOMS) and 

World Health Organization (WHO) and has been approved by the local ethics committees of 

the Medical University of Vienna (EK1216/2018, EK2220/2016). 

Neuroblastoma cell lines 

Five patient-derived neuroblastoma cell lines were used for validation of biomarkers and 

identification of the best sample preparation conditions. STA-NB-2, -4 and -10 have been 

established from primary tumors, and STA-NB-8 and STA-NB-12 from DTCs of bone marrow 

aspirates. INSS (International Neuroblastoma Staging System) and MYCN amplification status 

for all neuroblastoma cell lines were described previously73 and are listed in Table S2. Cells 

were maintained in RPMI1640-Glutamax-I (GIBCO) supplemented with 1% Pen/Strep 

(GIBCO), 10% FCS (PAA Laboratories), 1 mM sodium pyruvate (PAN Biotech) and 25 mM 

HEPES (PAN Biotech). All neuroblastoma cell lines were cultivated at 37°C and 5% CO2. 

Bone marrow aspirates 

Bilateral bone marrow aspirates were collected according to the SIOPEN/HR-NBL-1 study 

protocol or standard of care during routine diagnostics at initial diagnosis and at clinical 

response evaluation time points. Samples were shipped at room temperature within 4 hours 

or at 4°C within 24 hours. Bone marrow-derived MNCs were isolated by density gradient 

centrifugation (LymphoprepTM, AXIS-SHIELD PoC AS).   

For the validation of antibodies, neuroblastoma cell lines were mixed with tumor-free bone 

marrow-derived MNCs to obtain a tumor cell suspension of 5% neuroblastoma cell line in bone 

marrow-derived MNCs.   

For single-cell analysis, eight bone marrow aspirates (Table 2) were collected at different time 

points along the therapy protocol from four neuroblastoma patients with metastatic (INRG 

stage M or Ms) disease (Table 3). 

Peripheral blood-derived MNCs 

Left over samples of peripheral blood from routine diagnostics was collected and peripheral 

blood-derived MNCs were isolated, washed and counted as described for bone marrow-

derived MNCs. Neuroblastoma cell lines were spiked into peripheral blood-derived MNCs to 

obtain a tumor cell content of 5%. The cell mixture was cultivated in the presence 0.125% (v/v) 

anti-CD3/CD28 beads (Thermo Fisher Scientific) and 1% (v/v) IFNγ (Peprotech) for 5 days. 
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Biomarker identification by data mining 

DTC-associated biomarkers were identified based on data mining of previously generated 

RNA-seq datasets and proteomics data, and guided by public databases. The following 

prioritization scheme was employed: 

Differential gene expression analysis 

RNA-Seq data (GEO repository available under accession number GSE94035) of primary 

tumors (n=16), enriched bone marrow-derived diagnostic (n=22) and relapse DTCs (n=20), 

and the corresponding bone marrow-derived MNCs (n=28) of in total 53 stage M 

neuroblastoma patients was processed as previously described18 and used for the 

identification of potential DTC biomarkers. Genes with significantly higher (DEseq274, FDR-

adjusted p ≤ 0.001, log2FC ≥ 4) transcript levels (FC, fold change) in DTCs as compared to 

bone marrow-derived MNCs were selected (n=1,594) and further filtered for those with an 

equal or  higher transcription (DEseq2, FDR-adjusted p : 0.01 ÷ 0.7, log2FC ≥ 0) at the time 

point of relapse as compared to diagnosis (n=921).  

Protein databases and literature search 

The remaining genes were manually annotated with the cellular location of the encoded protein 

according to protein databases UniProt75 and The Human Protein Atlas76, and only proteins 

localized on the cell membrane by at least one database were further considered (n=134, see 

Data and code availability). 

Detailed literature search using the search terms [neuroblastoma], [tumor] and [metastasis] 

was carried in the PubMed database (pubmed.ncbi.nlm.nih.gov) resulting in 99 candidates 

(see Data and code availability), from which five (TAG1, DCLK1, FAIM2, PRAME and TACC2) 

were selected based on detailed examination of available literature and commercial availability 

of respective antibodies.  

Proteomics data 

Proteomics data of eight peripheral-nerve-associated fibroblasts, 3 in-house established 

patient-derived neuroblastoma cell lines (STA-NB-10, STA-NB-2, STA-NB-7) and 6 

corresponding neuroblastoma primary tumors was previously generated77 and is available on 

the ProteomeXchange Consortium (proteomecentral.proteomexchange.org) with the dataset 

identifier PXD018267. The proteomics dataset was used to confirm the expression of the five 

candidates selected above as well as seven other biomarkers (CD56, NCAM-L1, PD-L1, VIM, 

PROM1, B7-H3 and PD1), which were added based on their relevance in neuroblastoma as 

previously reported. 20,32,33,34,35 
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Biomarker validation 

Cytospin slide preparation 

50,000 cells (cell lines) or 250,000 cells (spike-in and patients samples) were applied onto 

poly-L-lysine hydrobromide (PLL) (Sigma Aldrich) -coated microscope cover glasses (24x60 

mm, Assistent) using filter paper (4 ml, CytoSepTM) and funnel chamber (4 ml, CytoSepTM) 

of a Hettich cyto-centrifuge (Hettich). Three different centrifugation and fixation methods were 

tested in the present study (Table S1, Fig. S1b, Fig. S2a). The optimized protocol for 

processing patient samples is detailed in Table S1 and involves PFA (paraformaldehyde) 

followed by acetone (AC) fixation (PFA-AC). Chemicals used for fixation, acetone and 4% PFA, 

were ordered from Carl Roth GmbH. Slides were dried for 2 min after fixation and stored at -

80°C until further analyses. 

IF Staining 

Antibodies (Table S4) were diluted in 2% BSA/PBS. Slides were incubated with primary 

antibody solutions for 1 h at room temperature, washed in PBS twice followed by secondary 

antibodies for 1 h at room temperature. After washing, slides were incubated with the nuclear 

stain DAPI (2 µg/ml) for 2 min and covered with antifade medium Vectashield (Vector 

Laboratories). 

Validation procedure 

DTC-related biomarkers were validated based on an intuitive validation procedure (Fig. S1a). 

First, IF-staining of individual biomarkers was performed on neuroblastoma cell lines prepared 

with the AC and PFA based protocol (Table S1, Fig. S1b). Thereafter, slides were assessed 

visually using a Zeiss Axioplan two microscope in five criteria (nuclear morphology, 

background noise, cell debris, staining intensity, staining quality) to evaluate the impact of the 

respective sample preparation protocol (AC or PFA) on cell morphology and antigenicity. 

Scores from one to five were assigned to each criterion with five corresponding to the best 

result. Accordingly, the maximum score for one slide was 25. Overall scores for all five 

neuroblastoma cell lines, incubated with the corresponding antibody, were summed up for 

each fixation method separately, and a mean score was calculated as a qualitative metric 

(Table S3). Antibodies with a mean score below 13 for both AC and PFA based fixation were 

considered invalid and not further validated. For all other antibodies, images of the slides 

prepared with the better sample preparation protocol (higher mean score) were acquired using 

the automated scanning system, Metafer 4 (software version V3.11.8 WK, Metasystems) and 

63x magnification (Fig. S1c). 

Antibodies that were successfully validated on neuroblastoma cell lines, were additionally 

tested on two cytospin samples of neuroblastoma cell lines and bone marrow-derived MNCs 
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or peripheral blood-derived MNCs (for validation of PD-L1, PD-1) prepared with the PFA-AC 

protocol (Table S1, Fig. S2a). Slides were then visually inspected and imaged automatically 

as above (Fig. S2b).  

For sequential IF-staining by MELC, antibodies, which passed the validation procedure, were 

combined with already validated antibodies specific to bone marrow hematopoietic and 

mesenchymal cells (Table S4). Staining sequence and panel were refined in several pilot 

MELC rounds and finally resulted in a 20-plex biomarker panel (Table 1, Fig. 1e and f). 

Multi Epitope Ligand Cartography  

MELC was employed for multiplex IF-staining of the herein established 20-plex antibody panel, 

as described.30 

Briefly, MELC is based on repetitive cycles of antibody staining and photobleaching. After 

system start, four field of views are selected and calibration (brightfield and darkframe) images 

are acquired. Prior to every staining and photobleaching cycle with the acquisition of the 

corresponding fluorescence tag and post-bleaching image, the slide is washed with PBS and 

a phase contrast image is taken.  

Camera (ApogeeKX4,Apogee Instruments) and light source maintain the same position; the 

motor-controlled xy stage of the inverted fluorescence microscope (Leica DMIRE2, Leica 

Microsystems; x20 air lens; numerical aperture, 0.7) moves in between field of views. Images 

with a resolution of 2018 x 2018 pixels are acquired, with one pixel corresponding to 0.45 µm 

at a 20x magnification. Thus the whole image covers a field of view covering 908.1 x 908.1 

µm.  

Additionally, negative control secondary antibodies were implemented, which were applied to 

the sample prior to indirect staining of the respective primary antibody. 

Interphase fluorescence in situ hybridization (iFISH) 

The MELC pre-processed sample BM 1.1 was fixed in 4% paraformaldehyde at 4°C overnight 

for subsequent analysis by iFISH. iFISH was performed as previously described.78 

Predigestion of cells was carried out in 0.005% pepsin in 0.01 NHCL for 25 min. Since the 

sample originated from a patient with a chromosome 17q gain, a labeled 17q-specific probe 

(XL Iso (17q), Metasystems probes) was used. Denaturation was performed at 80°C. Nuclei 

were counterstained with nuclear stain DAPI (2 µg/ml) for 2 min and covered with antifade 

medium Vectashield (Vector Laboratories). Slides were imaged with the Zeiss Axioplan 2 

microscope and the ISIS software (version 5.7.4, Metasystems). 
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DeepFLEX 

Main parameters used by methods integrated in the pipeline are listed below. Further 

parameters are detailed in Table S8. 

Image processing 

Images were registered, as previously described45 (Fig. S4a). Then, flat field correction using 

brightfield and darkframe calibration images was performed to eradicate gross variations in 

illumination (Fig. S4b). Accumulative background noise caused by residual post-bleaching 

signals was eliminated by subtracting post-bleaching images from successive fluorescence 

tag images (Fig. S4c). To reduce vignetting (reduction of image brightness toward periphery 

compared to image center), intensity distributions were corrected using regularized energy 

minimization on the set of all fluorescence tag images from our eight samples via CIDRE46 

(github.com/smithk/cidre); (Fig. S4d). 

Segmentation 

For accurate nuclei and cell segmentation, annotated datasets48 of propidium iodide or phase 

contrast images were created, respectively.  We trained the deep learning architecture Mask 

R-CNN for instance-aware segmentation, as previously described.47  Briefly, after augmenting 

the training dataset with automatically generated artificial images, we used image tiling and 

rescaling to segment MELC images in order to make them compatible with the input size 

(256x256 pixels) of the trained Mask R-CNN. The fluorescence tag image (nuclear stain 

propidium iodide) was segmented into a labeled nucleus mask (Fig. S4f), while phase contrast 

images (which are acquired prior to each IF staining) were segmented into labeled cell masks 

(Fig. S4e) for each of the 20 markers. Inferred objects were only counted as cells if they were 

reproduced in all of the 20 cell and the nucleus mask (Fig. S4g). We furthermore removed cells 

affected by image artifacts or located in poorly illuminated image corners by user-guided region 

selection (Fig. S4h). 

Feature extraction 

The segmentation masks were used as a reference to generate multi-channel single-cell 

images (Fig. S5a), based on which intensity and morphological features were extracted (Fig. 

S5b, Table S5). The morphology of the cell nucleus was described by the features size, 

perimeter, roundness and solidity. To describe the morphology of the cell, the features size 

and perimeter were extracted. We used three intensity features to quantitate marker 

abundance: mean intensity, total intensity and mean of the top 20% intensities (less dependent 

on cell size). Intensity was measured per cell, per nucleus, and per cell cytoplasm and 

membrane (= cell - nucleus). After feature extraction, cells with a larger nucleus than cell 

segmentation mask were excluded. 
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Normalization 

To eliminate unspecific staining caused by secondary antibodies and to increase the signal-

to-noise ratio, features extracted from the second secondary antibody were divided by features 

extracted from the negative control secondary antibody (Fig. S5c).  

To further remove unspecific binding of primary antibodies and batch variation in staining 

intensity, autofluorescence, and illumination, we applied RESTORE49  

(gitlab.com/Chang_Lab/cycif_int_norm) to predict a background level (threshold separating 

signal and noise/background) for each marker in each image based on a mutually exclusive 

counterpart. Mutually exclusive marker pairs (Table S6) were selected based on biological 

knowledge and a data-driven approach using singular value decomposition, as described.49 

Background levels were then inferred for each field of view and each intensity feature, 

separately. Guided by generated scatter plots (Fig. S5d, top), we selected the background 

level predicted by sparse subspace clustering (σ = 0). If no positive signals were present in the 

analyzed field of view for a certain marker by visual inspection, the respective background level 

was set to the maximum intensity value.  

Subsequently, all values below the background level were randomly set within a range 

between 0 and 0.02, while all values exceeding the background level (corresponding to 

signals) were linearly scaled to a range between 0.02 and 1. Thereby, influence of background 

variation on the subsequently applied single-cell analysis was eliminated, while foreground 

signals were stretched to a larger dynamic range.    

Morphological features were linearly scaled between 0 and 1. Upon RESTORE normalization 

and scaling, batch effects were successfully removed (Fig. S5d, bottom).   

Single-cell analysis 

Normalized features were converted into an FCS file format and loaded into Cytosplore50 

(cytosplore.org, version 2.3.1), an interactive tool providing methods for single-cell analysis. A-

tSNE79 (approximated and user steerable t-distributed Stochastic Neighbor Embedding, 

perplexity = 30) and subsequent clustering by GMS80 (Gaussian Mean Shift, σ = 45) clustering 

was computed on the complete single-cell dataset of eight bone marrow samples and resulted 

in 10 clusters, which were exported as FCS files together with the CSV file of the corresponding 

heatmap (Fig. 2b and c). The latter were imported into python to allow further quantitative and 

explorative analysis (Fig. 2d, Fig. 3a-d, Fig. 4a-d, Fig S7-S9) with the python (version 3.7) data 

visualization library seaborn (seaborn.pydata.org, version 0.10.rc0), (Fig. S5e). Hierarchical 

clustering was performed using the complete-link / Voorhees algorithm80 provided by seaborn. 
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TABLES 

 Table 1| All primary and secondary antibodies, which passed the validation procedure and were included in the final 20-plex 

MELC panel. n.r. not relevant 

Antibody Conjugate Class|Host|Isotype Clone Supplier 
Catalogue-

Number 
Optimal 
Dilution 

B7-H3 PE human IgG1 REA1094 Miltenyi Biotec 130-118-570 1:40 

CD14 PE 
monoclonal mouse 

IgG1 18D11 ImmunoTools 21620144 1:20 

CD20 PE 
recombinant human 

IgG1 
REA780 

Miltenyi Biotec 130-111-338 1:20 

CD24 FITC 
monoclonal mouse 

IgG1 SN3 ImmunoTools 21270243 1:20 

CD25 PE 
monoclonal mouse 

IgG HI25a ImmunoTools 21810254 1:20 

CD29 FITC 
monoclonal mouse 

IgG1 HI29a ImmunoTools 21810293 1:20 

CD3 PE 
monoclonal mouse 

IgG1 UCHT1 ImmunoTools 
21620034 

1:20 

CD34 PE 
monoclonal mouse 

IgG1 4H11[APG] ImmunoTools 21270344 1:20 

CD4 PE 
monoclonal mouse 

IgG2a,k VIT4 Miltenyi Biotec 130-113-214 1:20 

CD44 PE monoclonal rat IgG2b IM7 ImmunoTools 21850444 1:20 

CD45 PE 
monoclonal mouse 

IgG1 HI30 ImmunoTools 21810454 1:20 

CD56 PE 
monoclonal mouse 

IgG1 
B-A19 

ImmunoTools 
21810564S 

1:20 

CD8 PE 
monoclonal mouse 

IgG1 HIT8a ImmunoTools 21810084 1:20 

FAIM2 unconj. polyclonal rabbit IgG  ThermoFisher PA5-20311 1:50 

GD2 FITC 
monoclonal chinese 
hamser/humanized ch14.18/deltaCHO Tübingen n.r. 1:100 

HLA-ABC PE 
monoclonal mouse 

IgG2a W6/32 ImmunoTools 21159034 1:20 

HLA-DR PE 
monoclonal mouse 

IgG1 HI43 ImmunoTools 21819984 1:20 

PD-1 biotinylated 
monoclonal mouse 

IgG1 NAT105 BioLegend 367418 1:50 

Propidium 
Iodide PI n.r. n.r. Genaxxon bioscience M3181.0010 1:1000 

Vimentin unconj. 
recombinant chicken 

IgY  Milipore/Chemicon AB5733 1:100 

Gt α Ch FITC polyclonal goat IgG  ThermoFisher A16055 1:500 

Ms α Biot. Cy3 
monoclonal mouse 

IgG 3D6.6 
Jackson 

ImmunoResearch 200-162-211 1:800 
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Sw α Rb FITC polyclonal swine IgG  Dako F0205 1:50 

 

Table 2 | Sample set comprised of eight bone marrow samples. Tumor cell content detected by DeepFLEX was compared to 

AIPF, the standard method used in the diagnostic routine. AIPF, Automatic Immunofluorescence Plus FISH; BM-MNCs, bone 

marrow-derived mononuclear cells; left/right, bone marrow aspirate from left/right puncture side (pooled for analysis by 

DeepFLEX); TVD, topotecan-vincristine-doxorubicin; MAT, myeloablative therapy with autologous stem cell transplantation. 
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BM1.1 diagnosis 800,000 (81,000) 500,000 (840,000) 4,827 (7,672) 629,171 (7,672)  

BM1.2 
post induction 
chemotherapy 

0 (5,300,000)  0 (841) 0 (841)  

BM1.3 
start MRD 

phase 
0 (1,830,000) 0 (2,590,000) 0 (1,381) 0 (1,381)  

N
B

2
 

BM2.1 
post induction 

+ TVD 
3 (3,620,000)  3 (6,044) 496 (6,044)  

BM2.2 
post induction 

+ TVD II 
1 (4,420,000)  8 (7,474) 1070 (7,474)  

BM2.3 post MAT 0 (3,070,000)  0 (1,020) 0 (1,020)  

N
B

3
 

BM3.1 relapse 75,000 (1,070,000) 75,000 (1,340,000) 223 (7,788) 28,633 (7,788)  

N
B

4
 

BM4.1 diagnosis 23 (1,910,000) 465 (2,150,000) 2 (3,480) 575 (3,480)  

 

Table 3 | Patient set. INRG, International Neuroblastoma Risk Group Staging System, HRNBL1, High Risk Neuroblastoma study 

1; LINES, Low and Intermediate Risk Neuroblastoma European Study; MNA, MYCN amplification; neg, negative; pos, positive;  

Patient_ID sex 
age at diagnosis 

(months) 
INRG 

clinical 
study 

event 
dead/ 
alive 

MNA 17q gain 

NB1 F 54 M HRNBL1 no alive neg pos 

NB2 M 8.5 M no no alive neg pos 

NB3 F 86 M HRNBL1 yes dead pos neg 

NB4 F 5 Ms LINES no alive neg neg 
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a, Flow chart of experimental approach. b, 5 potential disseminated tumor cell (DTC) biomarkers identified by data mining of RNA-seq data, proteomics data (LC-MS/MS) 
and literature. Top: mRNA transcription (RNA-seq) in neuroblastoma primary tumors (TU), diagnostic (dx) and relapse (rel) DTCs and bone marrow-derived mononuclear cells 
(BM-MNCs). DESeq2, FDR-adjusted p value: ns, p> 0.05, *, p ≤ 0.05; **, p ≤ 0.01; ***, p ≤ 0.001. Bottom: Protein expression in NB peripheral-nerve-associated fibroblasts 
(PF), neuroblastoma cells lines and TU samples. LFQ, Label Free Quantification; FPM, fragments per million. c, Extension of potential DTC biomarkers by immune checkpoint 
molecules (PD-L1, PD-1, B7-H3), mesenchymal-type neuroblastoma cell markers (VIM, PROM1), therapeutic target NCAM-L1 and diagnostic neuroblastoma marker CD56. 
DESeq2, FDR-adjusted p value: ns, p> 0.05, *, p ≤ 0.05; **, p ≤ 0.01; ***, p ≤ 0.001. d, Representative MELC images of newly identified DTC biomarkers DCLK1, FAIM2 and 
TAG1 on separate samples stained by MELC. Top: DCLK1 (green) and GD2 (red) on BM-MNCs and neuroblastoma cells line STA-NB-10 (mixed 20:1); center: FAIM2 (green) and 
GD2 (red) on BM-MNCs and neuroblastoma cell line STA-NB-2 (20:1), bottom: TAG1 (green) on peripheral blood-derived MNCs and neuroblastoma cell line STA-NB-4 (20:1) 
stimulated with IFNγ and anti-CD3/28 beads. Nuclei were counterstained with DAPI (blue). e, Representative MELC images of our single-cell 20-plex panel on one patient 
bone marrow sample. f, Single-cell 20-plex panel composed of DTC, myeloid, lymphoid, mesenchymal and HSPC (hematopoietic stem and progenitor cell) markers. 
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a, Schematic overview of the deep learning-based image processing, segmentation, normalization and single-cell analysis pipeline DeepFLEX. b, Single-cell atlas of 35,700 
single cells clustered colored by cell type. Dimensionality reduction was performed by A-tSNE (approximated and user steerable t-distributed Stochastic Neighbor Embed-
ding) and subsequent clustering by GMS (Gaussian Mean Shift) in Cytosplore.50 c, Heatmap showing the median feature expression of all created clusters with feature-wise 
scaling. n, nucleus; c, cell. 9 columns per marker represent, from left to right, mean intensity, total intensity and mean of the highest 20% of pixel values in the (I) nucleus, 
(II) cell and (III) cytoplasm/membrane. DTCs, disseminated tumor cells; Myel., myelocytes; MO/MΦ, monocytes/macrophages; HSPC, hematopoietic stem and progenitor 
cells; T-h cells, T-helper cells; CTLs; cytotoxic T-lymphocytes; Mixed, hematopoietic mixed cell population. d, Representative gallery images of all cell types. For FAIM2, PD-1 
and VIM we introduced negative controls (NC) to be used for normalization during data processing. Hence, for these four biomarkers, the ratio between right column and 
left column (NC) represents the true signal.
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a, Bar charts demonstrating the cell composition of 8 analyzed bone marrow samples. DTCs, disseminated tumor cells; Myel., myelocytes; MO/MΦ, monocytes/macrophages; 
Mes. cells, mesenchymal cells; HSPC, hematopoietic stem and progenitor cells; T-h cells, T-helper cells; CTLs; cytotoxic T-lymphocytes; Mixed, hematopoietic mixed cell popu-
lation. b, A-tSNE plot of 35,700 single cells colored by sample and pie chart showing sample size. c, A-tSNE plot of 35,700 single cells highlighted by samples with high (top, 
BM 1.1, BM 3.1) and low (bottom, BM 1.2, BM 1.3, BM 2.1, BM 2.2, BM 2.3, BM 4.1) tumor cell infiltration and colored by cell type. Dimensionality reduction was performed 
by A-tSNE (approximated and user steerable t-distributed Stochastic Neighbor Embedding) and subsequent clustering by GMS (Gaussian Mean Shift) in Cytosplore.50 d, FISH 
analysis with chromosome 17q-specific probe on MELC-preprocessed sample BM 1.1, collected from a patient with 17q gain. Nucleus segmentation mask (left, large) pseu-
do-colored according to cell type and based on propidium iodide image (right, large) acquired during MELC. 6 copies of 17q (red) were detected on DTCs (D, orange) and 2 on 
myelocytes (M, brown). The 17p reference probe did not yield interpretable results due to preprocessing of the sample by MELC. Nuclei were counterstained with DAPI (blue). 
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a, Clustermap (hierarchical clustering by Voorhees80) showing normalized single-cell feature values of DTCs. n, nucleus; c, cell. 9 columns per marker represent, from right 
to left, mean intensity, total intensity and mean of the highest 20% of pixel values in the (I) nucleus, (II) cell and (III) cytoplasm/membrane. Color bar on the right shows 30 
sub-clusters. Color bar on the left shows corresponding bone marrow sample. b, Representative gallery images of 6 selected cells from different DTC sub-clusters reflecting 
DTC heterogeneity. For FAIM2 we introduced negative controls (NC) to be used as background threshold levels during data processing. Hence, for this biomarker, the ratio 
between right column and left column (NC) represents the true signal. c, Proportion of 30 DTC sub-clusters in highly tumor-infiltrated bone marrow samples (BM 1.1, BM 
3.1). d, Scatter plots showing correlations of DTC marker CD276 versus CD56 (left), and FAIM2 versus CD56 (right) for all cells of the DTC cluster. Mean of the highest 20% of 
pixel values in the cytoplasm/membrane was used as measure for marker abundance. 
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