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Abstract 

Network neuroscience has yielded crucial insights into the systems-level organisation of 

the brain, however the indirect nature of neuroimaging recordings has rendered the 

discovery of generative mechanisms for a given function inherently challenging. In 

parallel, neural network machine-learning models have exhibited breakthrough 

performance in tackling a range of complex problems, however the principles that govern 

learning-induced modifications to network structure remain poorly understood, in part 

due to a lack of analytic tools to quantify the dynamics of network structure. While the 

question of how network reconfiguration supports learning is mirrored in machine 

learning and network neuroscience, the different contexts of these fields provides a timely 

opportunity to bring them together synergistically to investigate the problem. Here we 

combine these two approaches to reveal connections between the brain’s network 

structure and the emerging network structure of an artificial neural network. Specifically, 

we train a shallow, feedforward neural network to classify handwritten digits and then 

used a combination of systems neuroscience and information theoretic tools to perform 

‘virtual brain analytics’ on the resultant edge weights and activity patterns of each node. 

We identify three distinct phases of network reconfiguration across learning, each of 

which are characterised by unique topological and information-theoretic signatures. Each 

phase involves aligning the connections of the neural network with patterns of 

information contained in the input dataset or preceding layers (as relevant). We also 

observe a process of low-dimensional category separation in the network as a function of 

learning. Our results offer a systems-level perspective of how artificial neural networks 

function – in terms of multi-stage reorganization of edge weights and activity patterns to 

effectively exploit the information content of input data during edge-weight training – 

while simultaneously enriching our understanding of the methods used by systems 

neuroscience. 
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Introduction 

In the human brain, capacities such as cognition, attention, and awareness emerge from 

the coordinated activity of billions of neurons1. Methods that have traditionally been used 

to map these functions from neuroimaging data were designed to identify ‘activated’, 

localized regions of the brain that characterize a particular cognitive context2. This 

historical focus on localization has led to a number of key insights about neural function, 

however it has also made it more challenging to create links between systems-level neural 

organization and psychological capacities. 

 

A potential means for mapping psychological functions to neural architecture involves 

the analysis of neuroimaging data from a systems-level perspective3–5. By representing the 

brain as a network of interacting parts, systems neuroscientists are able to characterize 

high-dimensional datasets in ways that help understand how brain networks process 

information6,7. Across multiple spatial8 and temporal9 scales, these approaches have 

revealed a number of systems-level properties of brain organization. A salient example is 

the measurement of network modularity, which quantifies the extent to which a network 

is comprised of a relatively weakly inter-connected set of tight-knit sub-modules. 

Previous whole-brain imaging approaches have shown that network modularity is 

tightly-linked to performance: modularity increases with learning5,10, but decreases 

during the performance of challenging cognitive tasks9,11. These results provide evidence 

that the network-level topology of the brain is a relevant axis for understanding complex 

features of human behaviour12,13.  

 

Despite their intuitive appeal, current systems-level approaches in human neuroimaging 

are inherently indirect. For instance, it is currently impossible to map the intact nervous 

system at the microscale (i.e., cellular) level – instead, we are force to infer structural 

connectivity indirectly via diffusion weighted imaging14, or so-called ‘functional’ 

connectivity via the similarity of temporal patterns of neural activity or blood flow15. Even 

with access to high resolution images of neural connectivity, we don’t yet have access to 
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generative models that can effectively simulate different patterns of network 

reconfiguration across contexts. Without these ‘ground truth’ approaches, systems 

neuroscience is currently stuck at the descriptive level: we can identify consistent changes 

in network-level reconfiguration as a function of learning5,10, or  more abstract cognitive 

capacities, such as working memory manipulation16 or dual-task performance17, however 

we have no principled means of translating these observations to interpretable 

mechanistic hypotheses18.  

 

The advent of artificial neural networks (ANNs) in machine learning has the opposite 

problem: the algorithmic rules for training high-performing networks have been 

extremely successful, but we don’t yet understand the organizational principles through 

which reconfigurations of network architectures enable strong performance. Although 

some of the details of implementation differ19, neuroscience and machine learning share 

some remarkable similarities. For example, the original ANN algorithms were in part 

inspired by the anatomy of the cerebral cortex19–21, and in the case of deep, layered neural 

networks, both systems share a common property of distributed computation facilitated 

by complex topological wiring between large numbers of (relatively) simple 

computational units. Over the last few decades20, neural networks have been trained to 

outperform world experts at complex strategy games, such as Chess and Go22. Although 

the algorithms that are used to train neural network weights are well understood, the 

manner in which neural networks reconfigure in order to facilitate high levels of 

classification accuracy remains relatively opaque2,20,21. It is this process of adapting a 

complex network of interacting components to perform a useful task that has escaped a 

detailed analysis using the established tools of network neuroscience, which themselves 

have been used to quantify structure–function relationships in the brain for over a decade. 

 

While the question of how network reconfiguration supports learning is mirrored in 

machine learning and network neuroscience, the different contexts of these fields 

provides a timely opportunity to bring them together synergistically to investigate the 
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problem23. First, we can observe that the process of adapting a complex network of 

interacting components to perform a useful task is more simply captured in the training 

of neural networks. Studying this process offers a unique opportunity to study whole-

network structure and activity in a controlled setting with a defined learning objective. In 

this way, we may identify deeper connections between the structure of networks in the 

brain and in ANNs. For instance, macroscopic human brain networks constructed from 

multi-region interactions in neuroimaging data demonstrate substantial reconfiguration 

as a function of task performance: early in the course of learning, the brain is relatively 

inter-connected and integrated, but this pattern typically gives way to a more refined, 

segregated architecture as a simple motor skill becomes second-nature5,10. Do similar 

topological changes happen across training iterations of ANNs? Identifying conserved 

organization properties between a learning brain and a learning ANN could hint at 

common topological principles underlying distributed information processing. 

 

Furthermore, the synthetic nature of ML networks means that we can directly interrogate 

the functional signature of specific elements within ML networks as they learn how to 

classify diverse input examples into a smaller set of outputs classes. While direct access to 

micro-scale neuronal interconnections is not practically possible using contemporary 

human neuroimaging approaches, we can directly observe changes in the distributed 

patterns of connectivity in ANNs over the course of learning. This allows us to investigate 

how the functional capacities of networks are distributed across their constituent 

components, which is inherently challenging to study in biological brains. The established 

tools of network science, as have been applied to quantify structure–function relationships 

in the brain for over a decade, are perfectly placed for such analysis24–27. 

 

Here, we use a network science approach to understand how network reconfiguration 

supports the performance of ANNs at supervised learning problems. Specifically, we use 

the tools of systems neuroscience and information theory to analyze a feedforward neural 

network as it learns to classify a set of binary digits (from the classic MNIST dataset28). 
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The fact that this classic dataset is so well understood enables us to more clearly interpret 

how network reconfiguration supports learning. Importantly, given the similar principles 

at play in more complex neural networks, which either alter architectural29 or nodal 

features30 while keeping basic principles of training intact, we anticipate that any 

conclusions gleaned from the study of extremely simple network architectures can be 

used as the basis of future interrogation of more complex architectures. If we find 

similarities between network properties in two classic and high-performing distributed 

information processing systems — the brain and ANNs — it could provide hints as to 

more general principles of the properties of underlying network architectures that 

facilitate efficient distributed information processing. 

 

In particular, we were interested in whether the topology of the neural network over the 

course of learning mirrored patterns observed in the analysis of fMRI networks in human 

participants13. By tracking functional networks derived from fMRI data over the course of 

10 sessions in which participants learned to map visual stimuli to motor responses, it was 

observed that effective learning was associated with an increase in network modularity13, 

Q, which quantifies the extent with which the network can be clustered into tight-knit 

communities with relatively sparse connections between them13. A plausible explanation 

of these findings is that structural connections within the modularized regions increased 

their strength over the course of learning, however technological limitations make this 

inference challenging. Fortunately, we can leverage the full observability and tractability 

of feedforward neural networks to directly test these ideas in silico, and indeed contribute 

to the cause of  “explainable AI”19–21. 

 

By tracking the topology of the MNIST-trained network over the course of training, we 

partially confirmed the original hypothesis of increasing segregation as a function of 

learning, however our analysis identified a more subtle temporal partition. Early in 

learning, training reconfigured the edges of the network so that they are strongly aligned 

with information-rich regions of the nodes in up-stream layers of the network, but in a 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 14, 2021. ; https://doi.org/10.1101/2020.09.30.321679doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.30.321679
http://creativecommons.org/licenses/by-nc-nd/4.0/


	

	 7	

manner that did not alter the global topology of the network (i.e., the edges did not 

become more modular during the first phase). Following this initially topologically silent 

phase, the network then entered a second phase characterized by a rapid increase in 

modularity that was coincident with large gains in classification accuracy. Later in 

learning, network-activity patterns reconfigured to a slightly less modular state that 

maximized digit category separation in a low-dimensional state space estimated from the 

activity patterns of the nodes within the network. Our results provide foundational 

understanding of how ANN network activity and connectivity evolves over the course of 

learning that simultaneously informs our understanding of both systems neuroscience 

and machine learning. 

 

Results 

Feed-Forward Neural Network Construction and Training 

We applied systems neuroscience and information theoretic methods to analyze the 

structure of a feed-forward neural network as it was trained to rapidly classify a set of ten 

hand-written digits (Modified National Institute of Standards and Technology [MNIST] 

dataset28). The ANN was trained across 100,000 epochs with stochastic gradient descent, 

however we only present a subset of epochs in order to demonstrate the key patterns 

observed in the dataset – specifically, we analyze a total of 64 epochs: the first 30; every 

10 epochs to 100; every 100 epochs to 1000; every 1000 epochs to 10,000; and every 10,000 

epochs to 100,000. Although a neural network with a single hidden layer is theoretically 

sufficient for high performance on MNIST28, neural networks with more hidden layers 

provide benefits of both computational and parameter efficiency31. For the sake of 

simplicity, we chose a relatively basic network in which edge weights and nodal activity 

patterns could be directly related to performance. 

 

With these constraints in mind, we constructed a feed-forward network with two hidden 

layers – a 100-node hidden layer (HL1) that received the 28 ´ 28 input (pixel intensities 

from the MNIST dataset) and a 100-node hidden layer (HL2) that received input from HL1 
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– and a 10-node output layer (Fig. 1A). The edges between these layers were given unique 

labels: edges connecting the input nodes to the first hidden layer were labelled as α edges 

(dark blue in Fig. 1A); the edges connecting the two hidden layers were labeled as 𝛽 edges 

(orange in Fig. 1A); and the edges connecting the second hidden layer to the readout layer 

were labelled as 𝛾 edges (dark green in Fig. 1A). A clear difference between the topology 

of the ANN and standard approaches to analysing neuroimaging data is that the mean of 

the absolute value of edge weights from all three groups increased nonlinearly over the 

course of training in the ANN, whereas typical neuroimaging analyses normalize the 

strength of weights across cohorts.  

 

 
Figure 1. A feed-forward neural network exhibits three topologically distinct periods of reconfiguration 

throughout learning the MNIST dataset. A) A large (60,000 item) corpus of hand-drawn digits from the 

MNIST database (28 x 28 pixel array with 256 intensity values per pixel) were vectorized and entered into a 

generic feed-forward neural network with two hidden layers – a 100-node layer (HL1) that received the 28 x 28 

input and a 100-node layer (HL2) that received the input from HL1 – and a 10-node output layer (argmax); B) 
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the edges connecting the input à HL1 (dark blue; α), HL1 à HL2 (orange; 𝛽) and HL2 à output (dark green; 

𝛾) were embedded within an asymmetric weighted and signed connectivity matrix; C) Classification accuracy 

increased rapidly in the early stages of training, with an asymptote after ~100 training epochs; D) Network 

modularity (Q) was naturally grouped into three separate periods: an Early period (light blue; epochs 1-14) 

that was relatively static, a Middle period (light green; epochs 15-700) with a rapid increase in Q, and a Late 

period (light purple; epochs 800-10,000) in which Q diminished, albeit not to initial levels. E) classification 

accuracy showed a non-linear relationship with Q: initial increases in accuracy were independent of Q (light 

blue), after which there was a positive linear relationship between accuracy and Q (Pearson’s r = 0.981; light 

green), and finally a sustained drop in Q, as accuracy saturates in the later periods of learning (light purple). 

For clarity, only a subset of the 100,000 epochs are presented here. 

 

The Topological Properties of a Feed-Forward Neural Network During Training 

It has previously been suggested that the concept of modularity (i.e., ‘Q’) may be 

employed to improve the design of deep neural-network architecture in various ways32,33. 

Non-trivial modular structure is a pervasive feature of complex systems25,27, and has been 

shown to increase as a function of learning in neuroimaging experiments5,10. Based on this 

similarity, we hypothesized that Q should increase as a function of training on the MNIST 

dataset and should reflect improvements in classification accuracy. To test this prediction, 

we required a means for translating the edges of the neural network into a format that 

was amenable to network science approaches (i.e., a weighted and directed adjacency 

matrix). To achieve this, we created a sparse node ´ node matrix, and then mapped the α 

(Input–HL1) , 𝛽  (HL1–HL2) and 𝛾  (HL2–output) edges accordingly, yielding the 

adjacency matrix shown in Fig. 1B. 

 

With the network edge weights framed as a graph, we applied methods from network 

science to analyse how its complex topological structure changed as the ANN was trained 

to classify the MNIST dataset (Fig. 1C). We applied used the Louvain algorithm to 

estimate Q from the neural network graph at each training epoch. Variations in network 

modularity across training epochs are plotted in Fig. 1D and reveal three distinct periods 

of: approximately constant Q (‘Early’; training epoch 1-9; data points 1-9 in Fig. 1D), 

followed by increasing Q (‘Middle’; training epoch 10-8,000; data points 10-55 in Fig. 1D), 
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and finally decreasing Q (‘Late’; training epoch 9,000-100,000; data points 56-64 in Fig. 

1D).  Early in training, there was a substantial improvement in accuracy without a 

noticeable change in Q (light blue in Fig. 1E). In the Middle period, we observed an abrupt 

increase in Q (light green in Fig. 1E) that tracked linearly with performance accuracy (r = 

0.981, pPERM < 10-4, permutation test). Finally, in the Late training period, Q began to drop 

(Fig. 1E; light purple). These results demonstrate that the modularity of the neural 

network varies over the course of training in a way that corresponds to three different 

types of behavior with respect to the network’s classification performance. 

 

Early Edge-weight Alteration is Concentrated on Informative Inputs 

The fact that Q didn’t change early in training, despite substantial improvements in 

accuracy, was somewhat surprising. This result was made even more compelling by the 

fact that we observed substantial edge-weight alteration during the Early period, however 

with no alteration in modularity. To better understand this effect, we first created a 

difference score representing the absolute value of edge changes across each pair of 

epochs in the Early phase (i.e., the blue epochs in Fig. 1D/E). We then calculated the grand 

mean of this value across the first epoch (i.e., one value for each of the 784 input 

dimensions, summed across all α edge weights associated with each input node in the 

Input layer), and then reshaped this vector such that it matched the dimensions of the 

Input data (i.e., 282 pixels). We found that the α edge weights that varied the most over 

this period were located along the main stroke lines in the middle of the image (e.g., the 

outside circle and a diagonal line; Fig. 2A).  
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Figure 2. Topologically silent alterations in network edges during the Early period of training. A) although 

network modularity was static in the Early period, the standard deviation of changes in edge strength, Edge 

∆1, in the first hidden layer of the network did change substantially over the course of the Early training period 

(first 10 epochs; cf. Fig. 1C); B) Pixel information, IP = MI(pixel,class); C) We observed a strong positive 

correlation between Edge ∆1 and IP: r = 0.965 (p < 1-10). 
	

Similar to the manner in which an eye saccades to a salient target34, we hypothesized that 

the feed-forward network was reconfiguring early in training so as to align with the most 

informative regions of the input space. To test this hypothesis, we binarized the pixel 

activity across the 60,000 items from the training set, with a threshold that varied across 

each pixel so as to maximize the mutual information (MI) that the binarized pixel provides 

about the class (i.e., the digit), and then calculated the information held by each pixel (IP: 

MI(pixel,class); Fig. 2B). We observed a clear, linear correspondence between IP and the 

edges that reconfigured the most during the Early period (Fig. 2C; r = 0.965, pPERM < 0.0001). 

The effect remained significant for edge changes in the Middle (r = 0.874) and Late (r = 

0.855) periods, however the effect was significantly strongest for the Early period (Z = 

16.03, p < 0.001)35. This result indicates that the network was adjusting to concentrate 

sensitivity to class-discriminative areas of input space, which we demonstrate occurs via 

the reconfiguration of edge weights relating to the most class-discriminative areas of the 

input space. 

 

Topological Segregation During the Middle Period of Learning 

Following the initial period of learning, we observed a substantial increase in network 

modularity, Q, that rose linearly with improvements in classification accuracy (Fig. 1C, 

green). To better understand how node-level network elements reconfigured during the 

Middle period, we computed two metrics for each node that quantify how its connections 

are distributed across network modules: (i) module-degree z-score (MZ); and (ii) 

participation coefficient (PC)36. MZ and PC have together been used characterize the 

cartographic profile of complex networks: MZ measures within-module connectivity, and 

PC measures between-module connectivity and thus captures the amount of inter-
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regional integration within the network (see Methods for details; Fig. 3A)36. These 

statistics have been used previously in combination with whole-brain human fMRI data 

to demonstrate a relationship between heightened network integration and cognitive 

function11,37, however the role of integrative topological organization is less well 

understood in ANNs. Importantly, the calculation of both MZ and PC relies on the 

community assignment estimated from the Louvain algorithm, and hence affords a 

sensitivity to changes in network topology over the course of training. 

 

  

Figure 3 – Topological changes during the Middle period. A) a schematic depiction of two topological 

extremes: on the left is a segregated network, with tight-knit communities that are weakly-interconnected – 

this network would be characterized by high Q, and would have more nodes with high module degree z-

score (MZ) than nodes with high Participation Coefficient (PC); on the right is an integrated network, which 

has stronger connections between nodes in different communities, and hence a lower Q, and more nodes with 

high PC than nodes with high MZ; B) participation coefficient (PC) of Input layer nodes at training epoch 30; 

C) module degree z-score (MZ) of Input layer at training epoch 30; D) Digit information, ID = MI(pixelOn,class); 

E) Pearson’s correlation, r, between ID and PC (red) and MZ (blue) across first 30 training epochs. Black lines 

represent the upper and lower bounds (95th and 5th percentiles) of a permuted null dataset (10,000 iterations) 
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and coloured bars represent learning periods; F) IH = MI(node,class) for HL1 (blue) and HL2 (orange) edges – 

note that both subnetworks increase IH during the Middle period, but that the Late period dissociates the two 

subnetworks. 

 

Using this cartographic approach36, we were able to translate the edge weights in the 

network into values of PC and MZ for each node of the network for each epoch of training. 

Figures 3B and 3C show the PC and MZ values for the nodes in the Input layer (i.e., the 

topological properties of the α edges) at training epoch 30, which was indicative of the 

patterns in the Middle period. PC was associated with a relatively ‘patchy’ appearance 

around the main stroke areas, suggestive of a distributed topological coverage of the input 

space, as well as high values on the edges of the input space (Fig. 3B). In contrast, MZ 

values were far more centrally concentrated, indicative of local hubs within network 

communities around the main stroke areas of the inputs space (Fig. 3C). Overall, PC and 

MZ mapped onto different locations in the input space, and hence were somewhat 

negatively correlated when data were pooled across all epochs (r = –0.107; p = 3 x 10-89). 

We hypothesized that these changes in MZ and PC were indicative of a topological 

reconfiguration of the input layer of the ANN to align network hubs with key aspects of 

the input stream, being the main stroke areas here. 

 

To test this hypothesis, we related the PC and MZ for each node of the network across all 

epochs of training to a statistic, ID: MI(pixelOn,class), which computes the amount of 

information available in each pixel of the input space when that pixel is active (Fig. 3D). 

In contrast to the average information IP held by the pixel about the class, ID is a partial 

information, quantifying how informative each pixel is for tracking multiple different 

digit classes only when the pixel is active (pixelOn). High values of ID imply that the 

recruitment of the pixel is associated with a reduction in uncertainty (i.e., an increase in 

information) about the digit. As detailed in the Methods, IP (Fig. 2B) is negatively 

correlated to ID (Fig. 3D) and dominated by samples when the pixel is inactive.  

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 14, 2021. ; https://doi.org/10.1101/2020.09.30.321679doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.30.321679
http://creativecommons.org/licenses/by-nc-nd/4.0/


	

	 14	

We observed a significant positive correlation between ID and MZ that emerged towards 

the end of the Middle period (Fig. 3E). Specifically, we observed a dissociation in the input 

layer (Fig. 3E) during the Middle period, wherein ID was positively correlated with PC 

(max r = 0.396, pPERM < 10-4), but negatively correlated with the module degree z-score (max 

r = -0.352, pPERM < 10-4). In other words, the topology of the neural network reconfigured so 

as to align highly informative active pixels with topologically integrated hubs (nodes with 

higher PC). Whilst these pixels are less commonly active, they are highly informative of 

class when they are active (high ID), suggesting that the pixel being active requires the 

network to send information about such events to many downstream modules. By 

contrast, more segregated hubs (nodes with higher MZ) are more likely to be associated 

with higher IP, being nodes that are more informative on average of digit class (and 

tending to be more highly informative when inactive). This may indicate that the network 

is reconfiguring so as to organize sets of informative nodes into modules in a way that 

supports the creation of higher-order ‘features’ in the next layer. In neuroscience, nodes 

within the same module are typically presumed to process similar patterns of 

information13, suggesting that the topology of the neural network studied here may be 

adjusting to better detect the presence or absence of low-dimensional features within the 

input space. 

 

Inter-layer Correspondence 

Given that the same gradient descent algorithm used to train the network was applied 

consistently across all layers of the network, we predicted that the same principles 

identified in the input layer should propagate through the network, albeit to the 

abstracted ‘features’ captures by each previous layer. Similar to the manner in which a 

locksmith sequentially opens a bank vault, we hypothesized that each layer of the neural 

network should align with the most informative dimensions of its input in turn, such that 

the information could only be extracted from an insulated layer once a more superficial 

layer was appropriately aligned with the most informative aspects of its input stream. To 

test this hypothesis, we investigated how the mutual information IH: MI(node,class) 
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between each node’s activity and the digit class evolved across training epochs. (Note that 

IH is equivalent to IP but computed for hidden layer nodes rather than inputs). As shown 

in Fig. 2F, mean MI within both hidden layers 1 (MIHL1) and 2 (MIHL2) increased during the 

first two epochs, but then diverged at the point in learning coinciding with the global 

decrease in modularity, Q (cf. Fig. 1D). Crucially, despite the decrease in MIHL1 there was 

still an increase in MIHL2, suggesting that the Layer 2 nodes are improving their ability to 

combine information available in separate individual Layer 1 nodes to become more 

informative about the class. This suggests that Layer 1 nodes specialize (and therefore 

hold less information overall, lower MIHL1) in order to support the integration of 

information in deeper layers of the neural network (increased MIHL2). 

 

Validation with the eMNIST Dataset 

In summary, in studying the topological reconfiguration of an ANN during training on 

the MNIST dataset, we observed three distinctive periods of adjustment, which play 

different roles in augmenting the distributed information processing across the network 

to capture class-relevant information in the input data. To better understand the 

generalizability of these findings, we trained a new feed-forward neural network 

(identical in architecture to the original network) on the eMNIST dataset52. The eMNIST 

dataset is similar to MNIST, but uses hand-written letters, as opposed to numbers. 

Although learning was more protracted in the eMNIST dataset (likely due to the increased 

complexity of the alphabet, relative to the set of digits), we observed similar changes in 

network structure across training as reported above for the MNIST dataset. Specifically: 

(i) the network shifted from integration to segregation; (ii) layers reconfigured in serial; 

and (iii) nodal roles (with respect to inferred network modules) were similarly related to 

class-relevant information in individual pixels (Fig. S1). These results suggest that the 

insights obtained from the MNIST analysis may represent general topological features of 

efficient distributed information processing in complex systems. 

 

The Late Period is Associated with Low-Dimensional Pattern Separation 
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Next, we investigated whether the extent to which the nodal topology of the networks 

trained on the two datasets differed (i.e., whether different regions of the input space had 

higher or lower PC and MZ) was proportional to the most informative locations of the 

input space in each dataset (∆ID). Specifically, the difference in the pattern of an input 

node’s edges across inferred network modules between the eMNIST and MNIST datasets 

(∆PC) was correlated with the difference in image input characteristics between the two 

datasets (∆ID vs. ∆PC: r = 0.301, pPERM < 0.0001;	∆ID vs. ∆MZ: r = -0.247, pPERM < 0.0001). This 

result provides further confirmation that neural networks learn by reorganizing their 

nodal topology into a set of periods that act to align network edges and activity patterns 

with the most informative pixels within the training set. 

 

We found that pixels demonstrated unique roles across learning with respect to the 

emerging modular architecture of the neural network, and that these roles were shaped 

by their class-relevant information. As edge weights were reconfigured across training, 

we observed that standard deviation of changes in outgoing edge strength from a node 

(i.e., Edge ∆1) increases for highly informative inputs (i.e., high IP; Fig. S1D for eMNIST 

corresponding to Fig. 2C for MNIST). As these weights change, they alter the activity of 

each of the nodes in the hidden layers, which ultimately pool their activity via modules 

to affect the class predictions, which are read out based on the activity of the final output 

layer. So how do the changes in edge weight translate into nodal activity? Based on recent 

empirical electrophysiological38 and fMRI39 studies, we hypothesized that the activity 

patterns would be distributed across the neural network in a low-dimensional fashion. 

Specifically, by way of analogy to the notion of manifold untangling in the ventral visual 

system40, we predicted that across training, the high-dimensional initial state of the system 

(i.e., random edge weights) would become more low-dimensional as pixel-pixel 

redundancies were discovered through the learning process. 

 

To test this hypothesis, we used dimensionality-reduction41 to analyze the ‘activity’ of all 

of the nodes within the neural network, across the different training epochs. Here, activity 
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was defined as the sum of weighted inputs from inputs or earlier layers of the network, 

after having been filtered through an activation function. We applied PCA42 to the nodal 

activity across all four layers of the feed-forward network – i.e., the Input, HL1, HL2 and 

Output nodes – which were first standardized and then either concatenated (to calculate 

the dimensionality of the entire process) or analyzed on an epoch-to-epoch basis (to 

calculate the effect of training; see Methods for details). The concatenated state-space 

embedding was relatively low-dimensional (120/994 components, or 12.2%, explained 

~80% of the variance) and the pixel-wise loading of each of the top eigenvalues (λs) for 

the Input layer (Fig. 4A) was correlated with both IP and ID statistics used in the prior 

analyses (IP – λ1: r = 0.218, p < 10-4; λ2: r = 0.189, p < 10-4; λ3 = 0.158, p < 0.0001; and ID – λ1: r 

= 0.338, p < 10-4; λ2: r = 0.123, p < 10-4; λ3: r = 0.062, p = 0.08), suggesting a direct 

correspondence between class-relevant information in the input space and the low-

dimensional embedding. Crucially, test trials that were incorrectly classified (at Epoch 

10,000, though results were consistent for other epochs) were associated with lower 

absolute loadings on the ten most explanatory EVs (EV1-10; Figure S3; FDR p < 0.05). These 

results are tangentially related to recent empirical neuroscientific studies that employed 

dimensionality reduction on electrophysiological38 and fMRI data39 to show that learning 

and cognitive task performance are typically more effective when constrained to a low-

dimensional embedding space. 
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Figure 4 – Unravelling the manifold: low-dimensional projections of feed-forward neural network activity 

during MNIST training reveal category-specific untangling. A) The first three principal components 

(eigenvalues 1-3: λ1/ λ2/ λ3) of the Input nodes; B) The percentage of variance explained by EV1, when the PCA 

was fit on data from each training epoch separately; C) 3D scatter plot of the items from the training set during 

three different periods: during the Early period (Epochs 1–10), the topological embedding of the different 

digits showed substantial overlap, which is reflected in the low between-category distance (i.e., distance 

between mean of each digit); in the Middle period (Epochs 11–300), the embedding showed a relative 

expansion in the low-dimensional space; and during the Late period (Epochs 300+), the distance within each 

category dropped dramatically; D) 3D scatter plot of between-category and within-category distance, along 

with training accuracy – note that maximal accuracy is associated with increases in both within- and between-

category distance. 

 

By conducting a PCA on each epoch in turn, we found that training was associated with 

a nonlinear alteration in the amount of variance explained by the top 10 PCs (Vd10), and 

that these changes aligned well with the topologically identified periods (Fig. 4B and 

Movie S1). The network began in a relatively high-dimensional configuration, consistent 
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with the random initiation of nodal activity. During the Early period (light blue in Fig. 

4B), as the edge weights reconfigured to align with IP (Fig. 3D), Vd10 remained relatively 

high. During the Middle period (light green in Fig. 3B), there was a sharp reduction in 

Vd10, however the dimensionality collapse was diminished mid-way through the period. 

The Late period (purple in Fig. 3B) was associated with a mild reduction in Vd10. 

Interestingly, heightened levels of training led to a tighter correspondence between nodal 

topological signatures (PC/MZ calculated separately at each epoch) and the principal 

component loadings of nodes in the Input layer (Fig. S2), suggesting that the topology of 

the neural network reconfigured over training to better map onto a low-dimensional sub-

space that concentrated class-relevant information in the training dataset.  

 

Organising an information processing system within the constraints of a relatively low-

dimensional architecture (i.e., dimensions << nodes) can confer important computational 

benefits41. For instance, previous theoretical work in systems neuroscience has argued that 

the ventral visual stream of the cerebral cortex is organised so as to ‘untangle’ different 

inputs streams into highly informative categories40. Here, ‘untangling’ refers to the ability 

of the system to effectively separate inputs along different categorical dimensions (e.g., 

distinguish a well-known face from that of a stranger), while still retaining sufficient 

information in the signal such that higher-order classifications of the same data are still 

possible (e.g., recognising a well-known face in a unique orientation). Interestingly, the 

same concept has been used to explain the function of both the visual system40 and 

effective decision making43, and may underpin the functionality of convolutional neural 

networks trained on naturalistic images24. In the context of our PCA analysis, ‘untangling’ 

could be envisaged as alterations in the way that the activity of the network reflecting 

different digit categories is embedded within the network’s state space: the loadings onto 

different categories in the untrained network should be relatively overlapping (i.e., 

‘tangled’), but should become less overlapping (i.e., ‘untangled’) as the network learns to 

effectively categorise the inputs into distinct digits. 
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Analysing our data from this vantage point, we found that the increase in topologically 

rich, low-dimensionality was associated with a relative ‘untangling’ of the low-

dimensional manifold (Fig. 4C): the Middle period was associated with a general 

expansion in the low-dimensional embedding distance Within categories (light green in 

Fig. 4D), which then allowed the system to both expand Between categories and contract 

within Categories during the Late period of learning (purple in Fig. 4D). This ultimately 

had the effect of boosting classification accuracy. Indeed, the contraction of the within 

category embedding distance – which takes place first – co-occurs with the drop of MIHL1, 

with the following expansion of Between category distance co-occurring with the increase 

in MIHL2. At the sub-network level, the activity on nodes in HL2 was substantially more 

low-dimensional than HL1 (Fig. S4), further expanding on the notion that different 

computational constraints are imposed on neural networks, depending on the depth of 

network layers. Overall, these results confirm the presence of manifold ‘untangling’ in a 

simple, feed-forward ANN, and hence provide a further link between the way that both 

synthetic and biological neural networks learn how to classify visual inputs. 

 

Discussion 

In this work, we used information theoretic and network science tools to study the 

topological features of a training neural network that underly its performance on 

supervised learning problems. We found many similarities between the topological 

properties of the brain and ANNs – two systems known for efficient distributed 

information processing. In the training ANN, we observed three distinctive periods of 

topological reconfiguration, in which changes in edge-strength (Fig. 2), topology (Fig. 3) 

and low-dimensional activity (Fig. 4) showed a striking correspondence with class-

relevant information in the input data. The results of our study help to both validate and 

refine the study of network topology in systems neuroscience, while also improving our 

understanding of how neural networks alter their structure so as to better align network 

edges and the topological signature of the network with the available streams of 

information delivered to the input nodes. 
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The reconfiguration of network edges occurred in three distinct periods over the course 

of learning. In the first (relatively short) period (light blue in Fig. 1C), the weights of edges 

in the first layer were adjusted in proportion to the amount of class-relevant information 

related to each node (i.e., IP). This process achieved "easy" increases in accuracy, with very 

little alteration to the modular structure of the network, and only modest increases in 

information held by the hidden layer nodes about the digit class. The next, somewhat 

more protracted period (light green in Fig. 1C) involved a substantial topological 

reconfiguration that resulted in large increases of network modularity that linearly drove 

classification accuracy near its maximal level. Intriguingly, in this period the information 

held individually by nodes in the first hidden layer about the class increased substantially 

before ultimately returning to a lower level. This was reflected in changes to low-

dimensional embedding distance Within categories (Fig. 4D), which first expanded and 

subsequently contracted in step with the changes in information held individually by the 

HL1 nodes about the class. This more complex reconfiguration appeared to organize sets 

of nodes into modules in a way that involved the most informative nodes about the class 

becoming segregated hubs within each module and appeared to support the creation of 

higher order "features" in the next layer. In other words, the reduction in information held 

by individual nodes in the hidden layer appears to be due to their specialization within 

modules in carrying this higher-order feature information rather than information 

directly about the class. 

 

The final period (light purple in Fig. 1C) involved a subsequent reduction in modularity, 

along with a consolidation that was similarly reflected in an expansion of Between 

category distance in the low-dimensional embedding of the activity patterns (Fig. 4D). 

These changes are aligned with a continued increase in information held by the second 

hidden layer nodes about the class, despite the decrease that occurred earlier in the first 

hidden layer. Further analysis suggested that this period involved Layer 2 nodes utilizing 
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the higher-order features, combining them (which increases integration/reduces overall 

modularity) to become more informative about the digit class. 

 

Overall, we conclude that the specialization at earlier layers (i.e., increasing their 

modularity but decreasing individual information) facilitates the integration of 

information at later layers, which occurs later in learning. These general trends were 

confirmed in application to the eMNIST dataset and may represent general learning 

principles of distributed information processing in networked systems. While some of 

these features (e.g., increased modularity with learning) are consistent with findings in 

the systems neuroscience literature, there are others that were more subtle than has been 

observed in biological systems (e.g., non-topological reconfigurations in early period; late 

decreases in modularity without performance decrement), and hence may be related to 

idiosyncrasies inherent within the training of artificial neural networks (e.g., ‘random’ 

weights at initialisation and back-propagation induced over-fitting, respectively). Future 

studies will be key to addressing these important open questions. 

 

This study was designed to expose the inner workings of an architecturally basic neural 

network using a common training dataset. These features were chosen due to their 

simplicity, which we hoped would help to refine the clarity of the resultant network and 

informational signatures. With these constraints in mind, a clear open question is whether 

other more complex network architectures, such as recurrent44, convolutional29, echo 

state45 or generative adversarial networks46, will share similar information processing 

principles2,20,21, or whether the idiosyncratic features that define each of these unique 

architectures will rely on distinct algorithmic capacities. Since each of these more complex 

networks use much of the same basic machinery (i.e., diversely connected virtual nodes 

connected with statistical edges whose weights are trained as a function of trial-and-

error), our hypothesis is that most of the informational features described in this study 

will be pervasive across the family of different network architectures. Regardless, our 

work provides evidence that network science can provide intuitive explanations for the 
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computational benefits of neural network learning, and helps to highlight the growing 

intersection between artificial and biological network analyses47.  

 

What can network neuroscientists take from the results of this experiment? For one, our 

observations provide evidence that the tools of systems neuroscience and engineering can 

indeed be used to understand the function during learning of a complex, high-

dimensional system4,41,42. Specifically, we observed a substantial increase in network 

modularity during a simple learning task in silico, confirming our a priori hypothesis that 

neural network topology would mirror increases observed in analysis of fMRI networks 

in human participants13. Yet the confirmation can only be considered as partial, as we 

observed a considerably more subtle temporal partition which, as outlined above, 

involved three periods that incorporated: edge weight changes without altering the 

network structure; large increases in modularity to yield seemingly specialist segregated 

regions; and a regression in overall modularity in later periods. One intriguing possibility 

is that similar organizing principles underpin learning in biological systems, but are either 

heavily ingrained in the brain across phylogeny47 or occur on sufficiently rapid timescales, 

such that they are challenging to observe within the limitations inherent within current 

measurement techniques. Another possibility is that biological brains (and their learning 

processes) are fundamentally different to what we have observed here, however future 

experimental work will be required to effectively elucidate these answers. 

 

In addition to these conceptual issues, there are several benefits to analysing neural 

networks that are not readily apparent in neurobiological analyses. For instance, in the 

case of feed-forward neural networks, we know the direct, “ground-truth” mapping 

between inputs and nodes, whereas in neuroscience, this mapping is often opaque. For 

instance, recordings from standard neuroimaging approaches are often conflated by non-

neuronal signals (such as the heartbeat and respiration), and there is also often an indirect 

mapping between information in the world and the brain’s sensory receptors (e.g., the 

location of the animal’s gaze can alter the information entering the brain). In addition, 
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standard network approaches in neuroscience require a noisy estimation of network 

edges, whereas the process here allows us to observe the edge weights directly. It is our 

hope that these benefits can be used to improve our understanding of the computational 

benefits of systems-level organizing principles, which in turn can be brought back to 

neuroscience to accelerate progress in our understanding of the systems-level 

mechanisms that comprise effective neurological function.  

 

With all that said, neural networks are clearly nowhere near as complex as the typical 

nervous systems studied by neuroscientists48. Most artificial neural networks treat all 

nodes as identical, whereas diversity reigns supreme in the biological networks of the 

brain49. One key feature of this diversity is the multi-compartment nature of specialist 

neuronal populations50, which render neuronal responses as fundamentally and 

inextricably non-linear. Crucially, embedding these features into artificial networks has 

been shown to afford key computational features over more standard approaches51. These 

axonal adaptations are just one of numerous non-linear mechanisms inherent to the brain, 

including both structural circuit-based mechanisms52, as well as more dynamic 

neuromodulatory gain modulation53,54, which are rarely explicitly modelled in neural 

network studies (though see 55). All these features are likely the result of the fact that 

biological neural networks have been shaped over countless phylogenetic generations, 

and through this process have inherited innumerable features that have helped to adapt 

organisms to their different environments47. This is in stark contrast to the typical (and 

admittedly pragmatic) ‘random’ starting point employed in standard neural network 

experiments – precisely how our psychological and cognitive capacities emerge over the 

course of phylogeny remains a fascinating source of inspiration for evolving artificial 

networks56. Despite these differences, we maintain that by analysing an artificial network 

with systems-neuroscience analyses, we  can improve our ability to interpret the inner 

workings of the “black box” of the brain21. 
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In conclusion, we used a systems-level perspective to reveal a series of three serial periods 

of topological reconfiguration across the course of network training. These periods are 

associated with distinctive changes to the network and provide important hints as the 

complex properties that underly efficient distributed information processing in complex 

systems. Interestingly, many higher-order network properties are shared between the 

brain and ANNs, suggesting the existence of more general network learning principles 

that may be uncovered using methods from network science and information theory. 
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Methods 

 

Feed-forward Neural Network 

A prototypical, four-layer, feed-forward neural network with no non-linearities was 

created with randomized weights (edge strengths: -1 to 1). The input layer was designed 

to take 784 inputs, which themselves were flattened from a 28x28 greyscale pixel array 

from the MNIST dataset57. The input layer was fully connected to a hidden layer of 100 

nodes (HL1), which in turn was fully connected to a second hidden layer of 100 nodes 

(HL2). The second hidden layer was then fully connected to a 10-node output layer. The 

activation function was a standard sigmoid for the incoming connections at each hidden 

layer (exponent = 1), and a soft max at the output layer. The maximum value across the 

nodes of the output layer was taken to reflect the ‘response’ of the network. Each result in 

our study was also replicated in a separate eMNIST dataset, which was identical to 

MNIST, but had 26 hand-written letters, as opposed to 10 hand-written digits58. 

 

Training Approach 

The network was trained with backpropagation using a Stochastic Gradient Descent 

optimiser. To aid interpretation, the learnt bias at each neuron was kept to zero and no 

regularisation was used.  The weights and activities were saved as training progressed 

over the course of a number of epochs (SGD: 100,000). Accuracy was defined as the 

percentage of trials in a held-out, 10,000 trial testing set in which the maximum value of 

the output layer was matched with the test category. 

 

Network Construction 

The weighted and signed edges from each asymmetric layer of the neural network were 

concatenated together to create an asymmetric connectivity matrix. Each connectivity 

profile was placed in the upper triangle of the matrix (see Fig. 2). To ensure that this step 

did not adversely affect the topological estimates, each experiment was conducted 

separately on: a) each layer in turn; b) only the upper triangle of the connectivity matrix. 
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Similar patterns were observed when we re-ran each network separately, suggesting that 

the embedding did not adversely affect topological interpretation. 

 

Edge Weight Changes 

To determine which edges were associated with maximal change in the first period, we 

first created a difference score representing the absolute value of edge changes across each 

pair of epochs in the Early phase. We then calculated the grand mean of this value across 

the first epoch (i.e., one value for each of the 784 input dimensions, summed across all α 

edge weights associated with each input node in the Input layer), and then reshaped this 

vector such that it matched the dimensions of the Input data (i.e., 282 pixels). These values 

were then compared to the information values (see Mutual Information section below). 

Correlations between nodes with edge changes across the different periods and IP were 

compared statistically using an online calculator 

(https://www.psychometrica.de/correlation.html#dependent)35. 

 

Modularity Maximization 

The Louvain modularity algorithm from the Brain Connectivity Toolbox (BCT73) was used 

on the neural network edge weights to estimate community structure. The Louvain 

algorithm iteratively maximizes the modularity statistic, Q, for different community 

assignments until the maximum possible score of Q has been obtained (see Equation 1). 

The modularity of a given network is therefore a quantification of the extent to which the 

network may be subdivided into communities with stronger within-module than 

between-module connections. 

 

  𝑄! =
"
𝓋!
∑ *𝑤$%& − 𝑒$%&.𝛿'"'#$% − "

𝓋!&𝓋$
∑ *𝑤$%( − 𝑒$%(.𝛿'"'#$%         [1] 

 

where v is the total weight of the network (sum of all negative and positive connections), 

wij is the weighted and signed connection between nodes i and j, eij is the strength of a 

connection divided by the total weight of the network, and δMiMj is set to 1 when nodes are 
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in the same community and 0 otherwise. ‘+’ and ‘–‘ superscripts denote all positive and 

negative connections, respectively.  

 

For each epoch, we assessed the community assignment for each region 500 times and a 

consensus partition was identified using a fine-tuning algorithm from the BCT. We 

calculated all graph theoretical measures on un-thresholded, weighted and signed 

undirected, asymmetric connectivity matrices73. The stability of the γ parameter (which 

defines the resolution of the community detection algorithm) was estimated by iteratively 

calculating the modularity across a range of γ values (0.5-2.5; mean Pearson’s r = 0.859 +- 

0.01) on the time-averaged connectivity matrix for each subject – across iterations and 

subjects, a γ value of 1.0 was found to be the least variable, and hence was used for the 

resultant topological analyses. A consensus clustering partition was defined across all 

epochs using consensus_und.m from the BCT. The resultant solution contained 10 clusters 

that each contained nodes that were distributed across multiple layers (i.e., Input, HL1, 

HL2 and Output). 

 

Cartographic Profiling 

Based on time-resolved community assignments, we estimated within-module 

connectivity by calculating the time-resolved module-degree Z-score (MZ; within module 

strength) for each region in our analysis (Equation 2)74, where κiT is the strength of the 

connections of node i to other nodes in its module si at time T, 𝜅̅)"% is the average of κ over 

all the regions in si at time T, and 𝜎*&"%  is the standard deviation of κ in si at time T. 

 

        MZ =
*"%(*+&"%
,'&"%

            [2] 

 

The participation coefficient, PC, quantifies the extent to which a node connects across all 

modules (i.e. between-module strength) and has previously been used to successfully 

characterize hubs within brain networks (e.g. see 75). The PC for each node was calculated 
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within each temporal window using Equation 3, where κisT is the strength of the positive 

connections of node i to nodes in module s at time T, and κiT is the sum of strengths of all 

positive connections of nodes i at time T. Consistent with previous approaches in 

neuroscience11,59, negative connections were removed prior to calculation. The 

participation coefficient of a region is therefore close to 1 if its connections are uniformly 

distributed among all the modules and 0 if all of its links are within its own module. 

 

    PC = 1 − ∑ 8*"&%
*"%
9
-.(

)/"               [3] 

 

Mutual Information 

We calculated three separate Information measures. To calculate the Information content 

within each pixel (IP), we binarized the pixel activity across the 60,000 items from the 

training set, with a threshold that varied across each pixel so as to maximize the mutual 

information (MI) that the binarized pixel provides about the class, and then calculated the 

information within each pixel: MI(pixel,class). To calculate the Information content ID = 

MI(pixelOn,class) within each pixel when the pixel was active (after thresholding), we 

averaged the pointwise MI for each training item, log-
0(class|pixel)
0(class)

, only over the items 

where the pixel was on (pixelOn). Note that IP and ID were negatively correlated across the 

28x28 input dimension (r = -0.560, pPERM < 0.0001), suggesting that the total information 

from the pixel is dominated by samples when the pixel is inactive (which would be 

correspondingly averaged as MI(pixelOff,class)). To calculate the Information content 

within each hidden layer node (IH), we calculated the mutual information for each node 

(binarized at activity = 0.5) with the digit class. All MI values were computed using the 

open source JIDT software60. 

 

Principal Components Analysis 

Activity values from the test trials from the input, HL1 and HL2 layers from each epoch 

were concatenated to form a multi-epoch time series. The data were normalized and then 
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a spatial PCA was performed on the resultant data41. The top 3 eigenvectors were used to 

track the data within a low-dimensional embedding space (Fig. 3), and the percentage 

explained variance was tracked across all learning epochs. The eigenvectors from the 

concatenated data were then used to estimate the leading eigenvalues across all training 

epochs. The analysis was also re-run with activity patterns in HL1 and HL2 separately 

(i.e., independent of the input layer; Fig. S4). The average value for each exemplar was 

then used to create two distance measures: Between-category distance, which was defined 

as the average between-category Euclidean distance at each epoch; and Within-category 

distance, which was defined as the average within-category Euclidean distance within 

each epoch. 

 

Permutation Testing 

We used non-parametric testing to determine statistical significance of the relationships 

identified across our study61. A distribution of 10,000 Pearson’s correlations was 

calculated for each comparison, against which the original correlation was compared. 

Using this approach, the p-value was calculated as the proportion of the null distribution 

that was less extreme than the original correlation value. In many instances, the effects we 

observed were more extreme than the null distribution, in which case the p-value was 

designated as pPERM < 0.0001. 
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