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Abstract 9 

Little is known about how neural representations of natural stimuli differ across species. Speech 10 

and music for example play a unique role in human hearing, but it is unclear how auditory 11 

representations of speech and music differ between humans and other animals. Using functional 12 

Ultrasound imaging, we measured responses in ferret auditory cortex to a set of natural and 13 

spectrotemporally-matched synthetic sounds previously tested in humans, as well as natural and 14 

synthetic ferret vocalizations. Ferrets showed similar frequency and modulation tuning to that 15 

observed in humans. But while humans showed selective responses to natural speech and music 16 

in non-primary auditory cortex, ferret responses to natural and synthetic sounds were closely 17 

matched throughout primary and non-primary regions, even when tested with ferret vocalizations. 18 

This finding suggests the unique demands of speech and music have substantially altered higher-19 

order acoustic representations in human auditory cortex, while largely preserving lower-level 20 

tuning for frequency and modulation.  21 
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 2 

Introduction 22 

 23 

Surprisingly little is known about how sensory representations of natural stimuli differ across 24 

species (Theunissen and Elie, 2014). This question is central to understanding how evolution and 25 

development shape sensory representations (Moore and Woolley, 2019) as well as developing 26 

animal models of human brain functions. Audition provides a natural test case because speech 27 

and music play a unique role in human hearing (Zatorre et al., 2002; Hickok and Poeppel, 2007; 28 

Patel, 2012). While human knowledge of speech and music clearly differs from other species 29 

(Pinker and Jackendoff, 2005), it remains unclear how neural representations of speech and 30 

music differ from those in other species, particularly within the auditory cortex. Few studies have 31 

directly compared neural responses to natural sounds between humans and other animals, and 32 

those which have done so, have often observed similar responses. For example, both humans 33 

and non-human primates show regions that respond preferentially to conspecific vocalizations 34 

(Belin et al., 2000; Petkov et al., 2008). Human auditory cortex exhibits selectivity for speech 35 

phonemes (Mesgarani et al., 2014; Di Liberto et al., 2015), but much of this selectivity can be 36 

predicted by simple forms of spectrotemporal modulation tuning (Mesgarani et al., 2014), and 37 

perhaps as a consequence, can be observed in other animals such as ferrets (Mesgarani et al., 38 

2008; Steinschneider et al., 2013). Consistent with this finding, maps of spectrotemporal 39 

modulation, measured using natural sounds, appear coarsely similar between humans and 40 

macaques (Erb et al., 2019) although temporal modulations present in speech may be over-41 

represented in humans. Thus, it remains unclear if the representation of natural sounds in auditory 42 

cortex differs substantially between humans and other animals, and if so, how. 43 

 44 

A key challenge is that representations of natural stimuli are transformed across different stages 45 

of sensory processing, and species may share some but not all representational stages. 46 

Moreover, responses at different sensory stages are often correlated across natural stimuli (de 47 

Heer et al., 2017), making them difficult to disentangle. Speech and music, for example, have 48 

distinctive patterns of spectrotemporal modulation energy (Singh and Theunissen, 2003; Ding et 49 

al., 2017), as well as higher-order structure (e.g. syllabic and harmonic structure) that is not well 50 

captured by modulation (Norman-Haignere and McDermott, 2018). To isolate neural selectivity 51 

for higher-order structure, we recently developed a method for synthesizing sounds whose 52 

spectrotemporal modulation statistics are closely matched to a corresponding set of natural 53 

sounds (Norman-Haignere and McDermott, 2018). Because the synthetic sounds are otherwise 54 

unconstrained, they lack perceptually salient higher-order structure, particularly for complex 55 

natural sounds like speech and music which are poorly captured by modulation statistics, unlike 56 

many other natural sounds (McDermott and Simoncelli, 2011). We found that human primary 57 

auditory cortex responds similarly to natural and spectrotemporally synthetic sounds, while non-58 

primary regions respond selectively to the natural sounds. Most of this selectivity is driven by 59 

preferential responses to natural speech and music in distinct neural populations of non-primary 60 

auditory cortex (Norman-Haignere et al., 2015; Norman-Haignere and McDermott, 2018). 61 

Importantly, this response preference for natural speech and music is independent of speech 62 

semantics, since similar responses are observed for native and foreign speech (Norman-Haignere 63 

et al., 2015; Overath et al., 2015), and explicit musical training, since music selectivity is robust in 64 

humans without any training (Boebinger et al., 2020). These findings suggest that human non-65 

primary regions respond selectively to higher-order acoustic features that both cannot be 66 

explained by lower-level modulation statistics, but do not yet reflect explicit semantic knowledge. 67 

 68 

The goal of the present study was to test whether such higher-order selectivity reflects a generic 69 

mechanism for analyzing complex sounds like speech and music, and thus is present in other 70 

species, or is instead driven by the unique demands of speech and music perception in humans. 71 

We addressed this question by measuring cortical responses in ferrets – one of the most common 72 
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animal models used to study auditory cortex (Nelken et al., 2008) – to the same set of natural and 73 

synthetic sounds previously tested in humans, as well as natural and synthetic ferret vocalizations. 74 

Responses were measured using functional UltraSound imaging (fUS) (Macé et al., 2011; 75 

Bimbard et al., 2018), a newly developed wide-field imaging technique that like fMRI detects 76 

changes in neural activity via changes in blood-flow (movement of blood induces a doppler effect 77 

detectable with ultrasound). fUS has substantially better spatial resolution than fMRI making it 78 

applicable to small animals like ferrets. We found that tuning for spectrotemporal modulations 79 

present in both natural and synthetic sounds was similar between humans and animals, and could 80 

be quantitatively predicted across species, consistent with prior findings (Mesgarani et al., 2008; 81 

Erb et al., 2019). But unlike humans, ferret responses to natural and synthetic sounds were similar 82 

throughout primary and non-primary auditory cortex even when comparing natural and synthetic 83 

ferret vocalizations; and the small differences that were present in ferrets were weak and spatially 84 

scattered, unlike the selectivity observed in humans. This finding suggests that speech and music 85 

have substantially altered higher-order cortical representations in humans, while preserving much 86 

of the lower-level tuning for frequency and modulation. 87 

 88 

Results 89 

 90 

Experiment I: Comparing ferret cortical responses to natural versus synthetic sounds 91 

We measured cortical responses with fUS to the same 36 natural sounds tested previously in 92 

humans plus 4 additional ferret vocalizations (Experiment II tested many more ferret 93 

vocalizations). The 36 natural sounds included speech, music, and other environmental sounds 94 

(see Table S1). For each natural sound, we synthesized 4 sounds that were matched on acoustic 95 

statistics of increasing complexity (Fig 1A): (1) cochlear energy statistics (2) temporal modulation 96 

statistics (3) spectral modulation statistics and (4) spectrotemporal modulation statistics. 97 

Cochlear-matched sounds had a similar frequency spectrum, but their modulation content was 98 

unconstrained and thus differed from the natural sounds. Modulation-matched sounds were 99 

additionally constrained in their temporal and/or spectral modulation rates, measured by linearly 100 

filtering a cochleagram representation with filters tuned to different modulation rates (modulation-101 

matched sounds also had matched cochlear statistics in order to isolate the contribution of 102 

modulation). For complex sounds like speech and music, the modulation-matched sounds audibly 103 

differ from their natural counterparts likely because they lack higher-order structure, not captured 104 

by spectrotemporal modulation statistics (listen to example sounds here). We focused on time-105 

averaged statistics because the hemodynamic response measured by both fMRI and fUS reflects 106 

a time-averaged measure of neural activity. As a consequence, each of the synthetic sounds can 107 

be thought of as being matched under a different model of the fUS or fMRI response (Norman-108 

Haignere and McDermott, 2018). 109 

 110 

We measured fUS responses throughout primary and non-primary ferret auditory cortex (Fig 1B). 111 

We first plot the response timecourse to all 40 natural sounds for one example voxel in non-112 

primary auditory cortex (dPEG) (Fig 1C). We plot the original timecourse of the voxel as well as 113 

a denoised version computed by projecting the timecourse onto a small number of reliable 114 

components, which we found substantially improved prediction accuracy in left-out data (see 115 

Methods for details). As expected and similar to fMRI, we observed a gradual build-up of the 116 

hemodynamic response after stimulus onset. The shape of the response timecourse was similar 117 

across stimuli, but the magnitude of the response varied, and we thus summarized the response 118 

of each voxel to each sound by its time-averaged response magnitude (the same approach used 119 

in our prior fMRI study).  120 
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 121 
Figure 1. Schematic of stimuli and imaging protocol. A, Cochleagrams for two example natural sounds 122 
(left column) and corresponding synthetic sounds (right four columns) that were matched to the natural 123 
sounds along a set of acoustic statistics of increasing complexity. Statistics were measured by filtering a 124 
cochleagram with filters tuned to temporal, spectral or joint spectrotemporal modulations. The natural sounds 125 
were diverse, and were grouped into 10 different categories shown at right. English and Non-English speech 126 
are separated out because all of the human subjects tested in our prior study were native English speakers, 127 
and so the distinction is meaningful in humans. B, Schematic of the imaging procedure. A three-dimensional 128 
volume covering all of ferret auditory cortex was acquired through successive coronal slices. Auditory cortical 129 
regions (colored regions) were mapped with anatomical and functional markers. The rightmost image shows 130 
a single ultrasound image with overlaid region boundaries. Auditory regions: dPEG: dorsal posterior 131 
ectosylvian gyrus; AEG: anterior ectosylvian gyrus; VP: ventral posterior auditory field; ADF: anterior dorsal 132 
field; AAF: anterior auditory field. Non-auditory regions: hpc: hippocampus; SSG: suprasylvian gyrus; LG: 133 
lateral gyrus. Anatomical markers: pss: posterior sylvian sulcus; sss: superior sylvian sulcus. C, Response 134 
timecourse of a single voxel to all natural sounds, measured from raw (left) and denoised data (right). Each 135 
line reflects a different sound, and its color indicates the sound’s category. The gray region shows the time 136 
window when sound was present. The location of this voxel corresponds to the highlighted voxel in panel B.  137 

 138 

We next plot the time-averaged response of two example voxels – one in primary auditory cortex 139 

(A1) and one in a non-primary area (dPEG) – to natural and corresponding synthetic sounds that 140 

have been matched on the full spectrotemporal modulation model (Fig 2A). For comparison, we 141 

plot the test-retest reliability of each voxel across repeated presentations of the same sound (Fig 142 

2B), as well as corresponding figures from two example voxels in human primary/non-primary 143 

auditory cortex (Fig 2C-D; these voxels are re-plotted from our prior paper). As in our prior study, 144 

we quantified the similarity of responses to natural and synthetic sounds using the normalized 145 

squared error (NSE). The NSE takes a value of 0 if responses to natural and synthetic sounds 146 

are the same, and 1 if there is no correspondence between the two (see Methods for details).  147 

 148 
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 149 
Figure 2: Dissimilarity of responses to natural vs. synthetic sounds in ferrets and humans. A, 150 
Response of two example fUS voxels to natural and corresponding synthetic sounds with matched 151 
spectrotemporal modulation statistics. Each dot shows the time-averaged response to a single pair of 152 
natural/synthetic sounds (after denoising), with colors indicating the sound category. The example voxels 153 
come from primary (top, A1) and non-primary (bottom, dPEG) regions of the ferret auditory cortex. The 154 
normalized squared error (NSE) quantifies the dissimilarity of responses. B, Test-retest response of the 155 
example voxels across all natural (o) and synthetic (+) sounds  (odd vs. even repetitions). The responses 156 
were highly reliable due to the denoising procedure. C-D, Same as panel A-B, but showing two example 157 
voxels from human primary/non-primary auditory cortex. E, Maps plotting the dissimilarity of responses to 158 
natural vs. synthetic sounds from one ferret hemisphere (top row) and from humans (bottom row). Each 159 
column shows results for a different set of synthetic sounds. The synthetic sounds were constrained by 160 
statistics of increasing complexity from left to right: just cochlear statistics, cochlear + temporal modulation 161 
statistics, cochlear + spectral modulation statistics, and cochlear + spectrotemporal modulation statistics. 162 
Dissimilarity was quantified using the normalized squared error (NSE), corrected for noise using the test-163 
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retest reliability of the voxel responses. Ferret maps show a “surface” view from above of the sylvian gyri, 164 
similar to the map in humans. Surface views were computed by averaging activity perpendicular to the cortical 165 
surface. The border between primary and non-primary auditory cortex is shown with a white line in both 166 
species, and was defined using tonotopic gradients. Areal boundaries in the ferret are also shown (dashed 167 
thin lines). This panel shows results from one hemisphere of one animal (Ferret T, left hemisphere), but 168 
results were similar in other animals/hemispheres (Fig  S1). The human map is a group map averaged across 169 
many subjects, but results were similar in individual subjects (Norman-Haignere and McDermott, 2018). F, 170 
Voxels were binned based on their distance to primary auditory cortex (defined tonotopically). This figure 171 
plots the median NSE value in each bin. Each thin line corresponds to a single ferret hemisphere (gray) or a 172 
single human subject averaged across hemispheres (gold) (results were very similar in the left and right 173 
hemisphere of humans). Thick lines show the average across all hemispheres/subjects.  174 
 175 

Both the primary and non-primary ferret voxels produced nearly identical responses to natural 176 

and corresponding synthetic sounds (NSEs: 0.042, 0.045), suggesting that spectrotemporal 177 

modulation are sufficient to account for the responses in these voxels. The human primary voxel 178 

also showed similar responses to natural and synthetic responses, and the NSE for natural vs. 179 

synthetic sounds (0.1) was similar to the test-retest NSE (0.094), indicating that the response was 180 

about as similar as possible given the noise ceiling. In contrast, the human non-primary voxel 181 

responded selectively to the natural speech (green) and music (blue), yielding a high NSE value 182 

(0.73). This pattern demonstrates that spectrotemporal modulations are insufficient to drive the 183 

response of the human non-primary voxel, plausibly because it responds to higher-order features 184 

that are not captured by modulation statistics.  185 

 186 

We quantified this trend across voxels by plotting maps of the noise-corrected NSE between 187 

natural and synthetic sounds (Fig 2E shows one hemisphere of one animal, but results were very 188 

similar in other hemispheres of other animals, see Fig S1). We show separate maps for each of 189 

the different sets of statistics used to constrain the synthetic sounds (cochlear, temporal 190 

modulation, spectral modulation and spectrotemporal modulation). Below we plot corresponding 191 

maps from humans. The human maps are based on data averaged across subjects, but similar 192 

results were observed in individual subjects (Norman-Haignere and McDermott, 2018).  193 

 194 

In ferrets, we observed a similar pattern throughout both primary and non-primary regions: 195 

responses became more similar as we matched additional acoustic features with NSE values 196 

close to 0 for sounds matched on the full spectrotemporal model. This pattern contrasts sharply 197 

with that observed in humans, where we observed a clear and substantial rise in NSE values 198 

when moving from primary to non-primary auditory cortex even for sounds matched on joint 199 

spectrotemporal modulations statistics. We quantified these effects by measuring NSE values 200 

using ROIs binned based on distance to primary auditory cortex, as was done previously in 201 

humans (Fig 2F). This analysis revealed a substantial and significant rise in NSEs when matching 202 

additional acoustic features in ferrets (NSE spectrotemporal < NSE temporal < NSE spectral < 203 

NSE cochlear, p < 0.01 via a bootstrapping analysis across the sound set). But there was little 204 

difference in NSEs between ferret primary and non-primary regions, with NSE values close to 205 

zero in all regions for spectrotemporally matched synthetics. In contrast, every human subject 206 

tested showed larger NSE values in non-primary regions, yielding a significant species difference 207 

(p < 0.01 via a sign-test comparing each ferret to all of the human subjects tested; see Methods 208 

for details).  209 

 210 

Assessing and comparing selectivity for frequency and modulation across species 211 

Our NSE maps suggest that ferret cortical responses are selective for frequency and modulation, 212 

but do not reveal how this selectivity is organized or whether it is similar to that in humans. While 213 

it is not feasible to inspect or plot all individual voxels, we found that fUS responses like human 214 

fMRI responses are low-dimensional and can be explained as the weighted sum of a small number 215 

of component response patterns. This observation served as the basis for our denoising 216 
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procedure, as well as a useful way to examining ferret cortical selectivity and comparing that 217 

selectivity with humans. We found that we could discriminate approximately 8 distinct component 218 

response patterns before over-fitting to noise (Fig S2C).  219 

 220 
Figure 3: Organization of frequency and modulation selectivity in ferret auditory cortex, revealed by 221 
component analysis. A, For reference with the weight maps in panel B, a tonotopic map is shown, measured 222 
using pure tones. The map is from one hemisphere of one animal (Ferret T, left). B, Voxel weight maps from 223 
three components, inferred using responses to natural and synthetic sounds (see Fig S3 for all 8 components 224 
and Fig S4 for all hemispheres). The maps for components f1 and f2 closely mirrored the high and low-225 
frequency tonotopic gradients respectively. C, Component response to natural and spectrotemporally-226 
matched synthetic sounds, colored based on category labels (labels shown at the bottom left of the figure). 227 
Components f1 and f2 did not respond selectively to particular categories. Component f3 responded 228 
preferentially to speech sounds. D, Correlation of component responses with energy at different audio 229 
frequencies, measured from a cochleagram. Inset for f3 shows the correlation pattern that would be expected 230 
from a response that was perfectly selective for speech (i.e. 1 for speech, 0 for all other sounds). E, 231 
Correlations with modulation energy at different temporal and spectral rates. Inset shows the correlation 232 
pattern that would be expected for a perfectly speech-selective response. 233 

 234 

We first examined the selectivity of the inferred response patterns and their anatomical distribution 235 

of weights in the brain (Fig 3 shows three example components; Fig S3 shows all 8 components). 236 

All of the component response profiles showed significant correlations with measures of energy 237 

at different cochlear frequencies and spectrotemporal modulation rates (Fig 3D-E) (p < 0.01 for 238 

all components for both frequency and modulation features; statistics computed via a permutation 239 

test across the sound set). Two components (f1 & f2) had responses that correlated with energy 240 

at high and low-frequencies respectively, with voxel weights that mirrored the tonotopic gradients 241 

measured in these animals (compare Fig 3B and 3A; see Fig S4 for all hemispheres/animals), 242 

similar to the tonotopic components previously identified in humans (Norman-Haignere et al., 243 

2015) (Fig S5, components h1 and h2). We also observed components with weak frequency 244 

tuning but prominent tuning for spectrotemporal modulations (Fig S3), again similar to humans. 245 

Surprisingly, one component (f3) responded selectively to speech sounds, and its response 246 

correlated with energy at frequency and modulation rates characteristic of speech (insets in Fig 247 

3D-E, bottom row). But notably, all of the inferred components, including the speech-selective 248 

component, produced very similar responses to natural and synthetic sounds (Fig 3C), suggesting 249 
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that their selectivity can be explained by their tuning for frequency and modulation. This contrasts 250 

with the speech- and music-selective components previously observed in humans, which 251 

responded selectively to natural speech and music, respectively, and which clustered in distinct 252 

non-primary regions of human auditory cortex (see Fig S5, components h5 and h6). 253 

 254 

The frequency and modulation selectivity evident in the ferret components appeared similar to 255 

that in humans (Norman-Haignere et al., 2015). To quantitatively evaluate similarity, we attempted 256 

to predict the response of each human component, inferred from our prior work, from those in the 257 

ferrets (Fig S6) and vice versa (Fig S7). We found that much of the component response variation 258 

to synthetic sounds could be predicted across species (Fig S6B&D, S7A&C). This finding is 259 

consistent with the hypothesis that tuning for frequency and modulation is similar across species, 260 

since the synthetic sounds only varied in their frequency and modulation statistics. In contrast, 261 

differences between natural vs. synthetic sounds were only robust in humans and as a 262 

consequence could not be predicted from responses in ferrets (Fig S6C&E). Thus, selectivity for 263 

frequency and modulation is both qualitatively and quantitatively similar across species, despite 264 

large and substantial differences in higher-order tuning.   265 

 266 

Experiment II: Testing the importance of ecological relevance  267 

Experiment I included more speech (8) and music (10) sounds than ferret vocalizations (4). We 268 

have previously found that differences between natural and synthetic sounds in humans are 269 

mostly driven by speech and music (Norman-Haignere and McDermott, 2018), which could be 270 

due to their more complex structure (McDermott and Simoncelli, 2011), their ecological relevance, 271 

or a combination of the two. Given this fact, it seemed possible that the observed species 272 

difference might reflect a difference in the ecological relevance of the natural sounds tested. To 273 

test this possibility, we performed a second experiment that included many more ferret 274 

vocalizations (30) (Fig 4A), as well as a smaller number of speech (14) and music (16) sounds to 275 

allow comparison with Experiment I. We only synthesized sounds matched in their full 276 

spectrotemporal modulation statistics to be able to test a broader sound set.  277 

 278 

Using a video recording of the animals’ face (Fig 4B), we found that the ferrets showed greater 279 

spontaneous movements during the presentation of the natural ferret vocalizations compared with 280 

both the synthetic sounds and the other natural sounds (Fig 4C; see Fig S8 for additional plots 281 

from individual animals and finer-grained vocalization categories). This observation demonstrates 282 

that natural ferret vocalizations contain additional structure that is missing from their synthetic 283 

counterparts, and that this additional structure is sufficiently salient to cause a spontaneous 284 

increase in motion without any overt training. Moreover, the behavioral differences between 285 

natural and synthetic vocalizations were greater than those for speech (p < 0.001 via Wilcoxon 286 

signed-rank test) and music (p < 0.05), consistent with their greater ecological relevance. To 287 

prevent motion from affecting the ultrasound responses, we designed a denoising procedure that 288 

greatly minimized correlations between the ultrasound responses and motion without removing 289 

sound-evoked activity (see Methods and Appendix).  290 
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 291 
Figure 4. Testing the importance of ecological relevance. A, Experiment II measured responses to a 292 
much larger number of ferret vocalizations (30), as well as a smaller number of speech (14) and music (16) 293 
sounds, unlike Experiment I which only tested 4 ferret vocalizations. Cochleagrams for an example natural 294 
and synthetic vocalization (a “pup call”) are plotted. B, The animal’s spontaneous movements were monitored 295 
with a video recording of the animal’s face. Motion was measured as the mean absolute deviation between 296 
adjacent video frames, averaged across pixels. C, Average evoked movement amplitude for natural (shaded) 297 
and synthetic (unshaded) sounds broken down by category. Each dot represents one recording session. 298 
Significant differences between natural and synthetic sounds, and between categories of natural sounds are 299 
plotted (paired Wilcoxon test, p<0.001: ***). Evoked movement amplitude was normalized by the standard 300 
deviation across sounds for each recording session prior to averaging across sound category (necessary 301 
because absolute pixel deviations cannot be meaningfully compared across sessions). Results were 302 
consistent across ferrets (Fig S8A). Both animals moved substantially more during natural ferret vocalizations 303 
compared with both matched synthetics as well as speech and music. D, Map showing the dissimilarity 304 
between natural and spectrotemporally matched synthetic sounds from Experiment II for one hemisphere 305 
(Ferret T, left; see Fig S8B for all hemispheres), measured using the noise-corrected NSE across sounds. 306 
NSE values were low across auditory cortex, replicating the first experiment. E, Maps showing the average 307 
difference between responses to natural and synthetic sounds for vocalizations, speech, music, and others 308 
sounds, normalized for each voxel by the standard deviation across all sounds. Results are shown for the 309 
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same ferret hemisphere (T, left) for both Experiment I and II. Humans were only tested in Experiment I. F, 310 
NSE for different sound categories, plotted as a function of distance to primary auditory cortex (binned as in 311 
Fig 2F). Shaded area represents +/- 1 s.e.m. (Fig S8D plots NSEs for individual sounds) G, Same as panel 312 
F but showing results from Experiment II.  313 

 314 

Despite this clear behavioral difference, we nonetheless found that voxel responses to natural 315 

and synthetic sounds were similar throughout primary and non-primary regions, yielding small 316 

NSE values (Fig 4D). This result demonstrates that our key findings from Experiment I are not 317 

due to the weak ecological relevance of the tested sounds, since a qualitatively similar result was 318 

obtained in Experiment II when half of the sounds were ferret vocalizations.  319 
 320 

To directly test if ferrets showed selective responses to natural vs. synthetic ferret vocalizations, 321 

we computed maps showing the average difference between natural vs. synthetic sounds for 322 

different categories, using data from both Experiments I and II (Fig 4E). We also separately 323 

measured the NSE for sounds from different categories (Fig 4F-G; note the normalization term in 324 

the NSE was computed using all sounds to avoid inadvertently normalizing out meaningful 325 

differences between sounds/categories). We plot the median NSE for sounds from different 326 

categories as a function of distance to primary auditory cortex for each animal and experiment 327 

(Fig 4F-G; Fig S8D-E shows the distribution of NSE values for individual sound pairs). This 328 

analysis revealed that NSE values in ferrets were slightly elevated for ferret vocalizations 329 

compared with other categories (Fig 4F-G), consistent with their ecological relevance. This effect, 330 

however, was small and inconsistent, reaching significance in only one of the two animals in 331 

Experiment II (Ferret A, p < 0.005, Wilcoxon test) (the effect was significant in both animals in 332 

Experiment I, but this experiment only tested 4 ferret vocalizations). Moreover, the small 333 

differences that were present between natural and synthetic sounds were spatially distributed 334 

throughout primary and non-primary regions, and very similar to those for speech, music and 335 

other natural sounds (Fig 4E). In contrast, humans showed large and selective responses to 336 

speech and music that were concentrated in distinct non-primary regions (lateral for speech and 337 

anterior/posterior for music) and clearly different from those for other natural sounds (Fig 4E). 338 

Thus, ferrets do not show any of the neural signatures of higher-order selectivity that we previously 339 

identified in humans (large effect size, spatially clustered responses, and a clear non-primary 340 

bias), even for con-specific vocalizations, which produced clear behavioral differences reflecting 341 

their ecological significance.  342 

 343 

Discussion 344 

 345 

Our study reveals a prominent divergence in the representation of ecologically relevant natural 346 

sounds between humans and ferrets. Using a recently developed wide-field imaging technique 347 

(functional Ultrasound), we measured cortical responses in the ferret to a set of natural and 348 

spectrotemporally-matched synthetic sounds previously tested in humans. We found that 349 

selectivity for frequency and modulation statistics in the synthetic sounds was similar across 350 

species. But unlike humans, who showed selective responses to natural speech and music in 351 

non-primary auditory cortex, ferrets cortical responses to natural and synthetic sounds were 352 

similar throughout primary and non-primary regions, even when tested with ferret vocalizations. 353 

This finding suggests that speech and music have substantially altered higher-order acoustic 354 

representations in human auditory cortex, but have largely preserved tuning for lower-level 355 

acoustic features like frequency and spectrotemporal modulation.  356 

 357 

Species differences in the representation of natural sounds 358 

The central challenge of sensory coding is that behaviorally relevant information is often not 359 

explicit in the inputs to sensory systems. As a consequence, sensory systems transform their 360 

inputs into higher-order representations that expose behaviorally relevant properties of stimuli 361 
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(DiCarlo and Cox, 2007; Mizrahi et al., 2014; Theunissen and Elie, 2014). The early stages of this 362 

transformation are thought to be conserved across many species. For example, all mammals 363 

transduce sound pressure waveforms into a frequency-specific representation of sound energy in 364 

the cochlea, although the resolution and frequency range of cochlear tuning differ across species 365 

(Bruns and Schmieszek, 1980; Köppl et al., 1993; Joris et al., 2011; Walker et al., 2019). But it 366 

has remained unclear whether representations at later stages are similarly conserved across 367 

species. 368 

 369 

Only a few studies have attempted to compare cortical representations of natural stimuli between 370 

humans and other animals, and these studies have typically found similar representations in 371 

auditory cortex. Studies of speech phonemes in ferrets (Mesgarani et al., 2008) and macaques 372 

(Steinschneider et al., 2013) have replicated many neural phenomena observed in humans 373 

(Mesgarani et al., 2014). A recent fMRI study found that maps of spectrotemporal modulation 374 

tuning, measured using natural sounds, are coarsely similar between humans and macaques, 375 

although slow temporal modulations which are prominent in speech were better decoded in 376 

humans compared with macaques (Erb et al., 2019), potentially analogous to prior findings of 377 

enhanced cochlear frequency tuning for behaviorally relevant sound frequencies (Bruns and 378 

Schmieszek, 1980; Köppl et al., 1993). Thus, prior work has revealed quantitative differences in 379 

the extent and resolution of neural tuning for different acoustic frequencies and modulation rates. 380 

But it has remained unclear whether there are qualitative differences in how natural sounds are 381 

represented across species.  382 

 383 

Our study demonstrates that human non-primary regions exhibit a form of higher-order acoustic 384 

selectivity that is almost completely absent in ferrets. Ferret cortical responses to natural and 385 

spectrotemporally matched synthetic sounds were closely matched throughout their auditory 386 

cortex, and the small differences that we observed were scattered throughout primary and non-387 

primary regions (Fig 4E), unlike the pattern observed in humans. As a consequence, the 388 

differences that we observed between natural and synthetic sounds in humans were not 389 

predictable from cortical responses in ferrets (Fig S6C), even though we could predict responses 390 

to synthetic sounds across species (Fig S6B&E). This higher-order selectivity is unlikely to be 391 

explained by explicit semantic knowledge about speech or music, since similar responses are 392 

observed for foreign speech (Norman-Haignere et al., 2015; Norman-Haignere and McDermott, 393 

2018) and music selectivity is robust in listeners without musical training (Boebinger et al., 2020). 394 

These results suggest that humans develop or have evolved a higher-order stage of acoustic 395 

analysis, potentially specific to speech and music, that cannot be explained by standard frequency 396 

and modulation statistics and is largely absent from the ferret brain. This specificity for speech 397 

and music could be due to their acoustic complexity, and/or their behavioral relevance, as 398 

discussed further below. 399 

 400 

By comparison, our study suggests that there is a substantial amount of cross-species overlap in 401 

the cortical representation of frequency and modulation features. Both humans and ferrets 402 

exhibited tonotopically organized selectivity for different frequencies. But this frequency selectivity 403 

only accounted for a relatively small fraction of the voxel response to natural sounds (Fig 2E), 404 

even in primary auditory cortex, which emphasizes the importance of modulation tuning in 405 

explaining cortical responses in both humans and ferrets. Like humans, ferrets showed spatially 406 

organized selectivity for different temporal and spectral modulation rates, that coarsely mimicked 407 

the types of selectivity we have previously observed in humans, replicating prior findings (Erb et 408 

al., 2019). And this selectivity was sufficiently similar that we could quantitatively predict response 409 

patterns to the synthetic sounds across species. These results do not imply that frequency and 410 

modulation tuning is identical across species, but do suggest that the organization is qualitatively 411 

similar.  412 
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 413 

Our results also do not imply that ferrets lack higher-order acoustic representations. Indeed, we 414 

found that ferrets’ spontaneous movements robustly discriminated between natural and synthetic 415 

ferret vocalizations, demonstrating behavioral sensitivity to the features which distinguish these 416 

sound sets, and this sensitivity was greater for ferret vocalizations than for either speech or music. 417 

But the manner in which species-relevant higher-order features are represented is likely distinct 418 

between humans and ferrets. For example, it is also possible that selectivity for higher-order 419 

features is more distributed in ferret auditory cortex, which is consistent with our finding that 420 

differences between natural and synthetic sounds are weak, distributed throughout primary and 421 

non-primary regions, and show a mix of enhanced and suppressive responses (Fig 4E), unlike 422 

the strong, selective, and localized responses observed in human non-primary regions. 423 

 424 

Our findings are broadly consistent with a recent study that showed differences in responses to 425 

simple tone and noise stimuli between humans and macaques (Norman-Haignere et al., 2019). 426 

This study found that selective responses to tones vs. noise were substantially larger in human 427 

auditory cortex, perhaps due to the importance of speech and music in humans where harmonic 428 

structure plays a central role. But the relationship of this finding to the coding of natural sounds 429 

remains unclear because the study was mostly limited to simple, artificial stimuli. Our study 430 

provides a much broader test of how the encoding of natural sounds differs between humans and 431 

ferrets. As a consequence, we were able to identify a substantial divergence in neural 432 

representations at a specific point in the cortical hierarchy.  433 

 434 

Methodological advances 435 

Our findings were enabled by a recently developed synthesis method, that makes it possible to 436 

synthesize sounds with spectrotemporal modulation statistics that are closely matched to those 437 

in natural sounds (Norman-Haignere and McDermott, 2018). Because the synthetics are 438 

otherwise unconstrained, they lack higher-order acoustic properties present in natural stimuli (e.g. 439 

syllabic structure; musical notes, harmonies and rhythms). Comparing neural responses to natural 440 

and spectrotemporally-matched synthetic sounds thus provides a way to isolate responses to 441 

higher-order properties of natural stimuli that cannot be accounted for by spectrotemporal 442 

modulations. This methodological advance was critical to differentiating human and ferret cortical 443 

responses. Indeed, when considering natural or synthetic sounds alone, we observed very similar 444 

responses between species. We even observed selective responses to speech compared with 445 

other natural sounds in the ferret auditory cortex, due to the fact that speech has a unique range 446 

of spectrotemporal modulations. Thus, if we had only tested natural sounds, we might have 447 

concluded that speech and music-selective responses in the human non-primary auditory cortex 448 

reflect the same types of acoustic representations present in ferrets.  449 

 450 

Our study illustrates the utility of wide-field imaging methods in comparing the brain organization 451 

of different species (Bimbard et al., 2018; Milham et al., 2018). Most animal physiology studies 452 

focus on measuring responses from single neurons or small clusters of neurons in a single brain 453 

region. While this approach is clearly essential to understanding the neural code at a fine grain, 454 

studying a single brain region can obscure larger-scale trends that are evident across the cortex. 455 

Indeed, if we had only measured responses in a single region of auditory cortex, we would have 456 

missed the most striking difference between humans and ferrets: the emergence of selective 457 

responses to natural sounds in non-primary regions of humans but not ferrets (Fig 2E). 458 

 459 

Functional ultrasound imaging provides a powerful way of studying large-scale functional 460 

organization in small animals such as ferrets, since it has much better spatial resolution than fMRI 461 

(Macé et al., 2011; Bimbard et al., 2018). Because fUS responses are noisy, prior studies, 462 

including those from our own lab, have only been able to characterize responses to a single 463 
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stimulus dimension, such as frequency, typically using a small stimulus set (Gesnik et al., 2017; 464 

Bimbard et al., 2018). Here, we developed a denoising method that made it possible to measure 465 

highly reliable responses to over a hundred stimuli in a single experiment. We were able to recover 466 

at least as many response dimensions as those detectable with fMRI and humans, and those 467 

response dimensions exhibited selectivity for a wide range of frequencies and modulation rates. 468 

Our study thus pushes the limits of what is possible using ultrasound imaging, and establishes 469 

fUS as an ideal method for studying the large-scale functional organization of the animal brain. 470 

 471 

Assumptions and limitations 472 

The natural and synthetic sounds we tested were closely matched in their time-averaged cochlear 473 

frequency and modulation statistics, measured using a standard model of cochlear and cortical 474 

modulation tuning (Chi et al., 2005; Norman-Haignere and McDermott, 2018). We focused on 475 

time-averaged statistics because fMRI and fUS reflect time-averaged measures of neural activity, 476 

due to the temporally slow nature of hemodynamic responses. Thus, a similar response to natural 477 

and synthetic sounds indicates that the statistics being matched are sufficient to explain the voxel 478 

response. By contrast, a divergent voxel response indicates that the voxel responds to features 479 

of sound that are not captured by the model. 480 

 481 

While divergent responses by themselves do not demonstrate a higher-order response, there are 482 

several reasons to think that the selectivity we observed in human non-primary regions is due to 483 

higher-order tuning for natural sounds. First, the fact that differences between natural and 484 

synthetic sounds were much larger in non-primary regions clearly suggests that these differences 485 

are driven by higher-order processing above and beyond that present in primary auditory cortex, 486 

where spectrotemporal modulations appear to explain much of the voxel response. Second, the 487 

natural and synthetic sounds produced by our synthesis procedure are in practice closely matched 488 

on a wide variety on spectrotemporal filterbank models (Norman-Haignere and McDermott, 2018). 489 

As a consequence, highly divergent responses to natural and synthetic sounds, like those in non-490 

primary auditory cortex, rule out many such models. Third, the fact that responses were 491 

consistently stronger for natural vs. synthetic sounds suggests that these non-primary regions 492 

respond selectively to features in natural sounds that are not explicitly captured by 493 

spectrotemporal modulations and are thus absent from the synthetic sounds. 494 

 495 

As with any study, our conclusions are limited by the precision and coverage of our neural 496 

measurements. For example, fine-grained temporal codes, which have been suggested to play 497 

an important role in vocalization encoding (Schnupp et al., 2006), cannot be detected with fUS. 498 

However, we note that the resolution of fUS is substantially better than fMRI, particularly in the 499 

spatial dimension (voxel sizes were more than 1000 times smaller) and thus the species 500 

differences we observed are unlikely to be explained by differences in the resolution of fUS vs. 501 

fMRI. It is also possible that ferrets might show more prominent differences between natural and 502 

synthetic sounds outside of auditory cortex. But even if this were true, it would still demonstrate a 503 

clear species difference because humans show robust selectivity for natural sounds in non-504 

primary regions just outside of primary auditory cortex, while ferrets evidently do not.  505 

 506 

Possible nature and causes of differences in higher-order selectivity 507 

What features might non-primary human auditory cortex represent, given that spectrotemporal 508 

modulations do not explain all of the response? These regions are not highly sensitive to explicit 509 

semantic meaning or musical training (Overath et al., 2015; Boebinger et al., 2020), are located 510 

just beyond primary auditory cortex, and show evidence of having short integration periods on the 511 

scale of hundreds of milliseconds (Overath et al., 2015). Moreover, many of these regions show 512 

clear selectivity for speech or music (Leaver and Rauschecker, 2010; Norman-Haignere et al., 513 

2015). This pattern suggests that these regions might exhibit nonlinear tuning for short-term 514 
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temporal and spectral structure present in speech syllables or musical notes (e.g. harmonic 515 

structure, pitch contours, and local periodicity). This hypothesis is consistent with recent work 516 

showing sensitivity to phonotactics in non-primary regions of the superior temporal gyrus (Leonard 517 

et al., 2015; Brodbeck et al., 2018; Di Liberto et al., 2019), and with a recent study showing that 518 

deep neural networks trained to perform challenging speech and music tasks are better able to 519 

predict responses in non-primary regions of human auditory cortex (Kell et al., 2018).  520 

 521 

Why might speech and music have preferentially shaped higher-order acoustic representations in 522 

the human brain? Synthetic sounds with modulation statistics matched to common environmental 523 

sounds often sound perceptually similar to their natural counterparts, in contrast with speech and 524 

music where there is a marked perceptual difference (McDermott and Simoncelli, 2011; Norman-525 

Haignere and McDermott, 2018) (listen to examples here). This fact might explain why the neural 526 

differences that we observed between natural and synthetic sounds in humans are mostly limited 527 

to speech and music, but could also be due to the unique behavioral significance of speech and 528 

music to human hearing. This observation supports the idea that spectrotemporal statistics better 529 

capture perceptually relevant information in many environmental sounds. While ferret 530 

vocalizations clearly exhibit additional structure not captured by spectrotemporal modulations – 531 

since the animals showed clear behavioral sensitivity to the difference between natural vs. 532 

synthetic vocalizations – such structure may play a less-essential role in their everyday hearing 533 

compared with that present in speech and music in humans. Furthermore, other animals that 534 

depend more on higher-order acoustic representations might show more human-like selectivity in 535 

non-primary regions. For example, marmosets have a relatively complex vocal repertoire 536 

(Agamaite et al., 2015) and depend more heavily on vocalizations than many other species 537 

(Eliades and Miller, 2017), and thus might exhibit more prominent selectivity for higher-order 538 

properties in their calls. It may also be possible to experimentally enhance selectivity for higher-539 

order properties via extensive exposure and training, particularly at an early age of development 540 

(Polley et al., 2006; Srihasam et al., 2014). All of these questions could be addressed in future 541 

work using the methods developed here. 542 

 543 

 544 

  545 
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Methods 546 

 547 

Animal preparation 548 

Experiments were performed in two head-fixed awake ferrets (A and T), across one or both 549 

hemispheres (Study 1: Aleft, Aright, Tleft, Tright; Study 2: Aleft, Tleft, and Tright). Ferret A was a mother 550 

(had one litter of pups), while ferret T was a virgin. Experiments were approved by the French 551 

Ministry of Agriculture (protocol authorization: 21022) and strictly comply with the European 552 

directives on the protection of animals used for scientific purposes (2010/63/EU). Animal 553 

preparation and fUS imaging were performed as in Bimbard et al. (2018). Briefly, a metal headpost 554 

was surgically implanted on the skull under anaesthesia. After recovery from surgery, a 555 

craniotomy was performed over auditory cortex and then sealed with an ultrasound-transparent 556 

Polymethylpentene  (TPX™) cover, embedded in an implant of dental cement. Animals could then 557 

recover for one week, with unrestricted access to food, water and environmental enrichment. 558 

Imaging windows were maintained across weeks with appropriate interventions when tissue and 559 

bone regrowth were shadowing brain areas of interest.  560 

 561 

Ultrasound imaging 562 

fUS data are collected as a series of 2D images or ‘slices’. Slices were collected in the coronal 563 

plane and were spaced 0.4 mm apart. The slice plane was varied across sessions in order to 564 

cover the region-of-interest which included both primary and non-primary regions of auditory 565 

cortex. One or two sessions were performed on each day of recording. The resolution of each 566 

voxel was 0.1 x 0.1 x ~0.4 mm (the latter dimension, called elevation, being slightly dependent on 567 

the depth of the voxel). The overall voxel volume (0.004 mm3) was more than a thousand times 568 

smaller than the voxel volume used in our human study (which was either 8 or 17.64 mm3 569 

depending on the subjects/paradigm), which helps to account for their smaller brain.  570 

 571 

A separate “Power Doppler” image/slice was acquired every second. Each of these images was 572 

computed by first collecting 300 sub-images or ‘frames’ in a short 600 ms time interval (500 Hz 573 

sampling rate). Those 300 frames were then filtered to discard global tissue motion from the signal 574 

(Demené et al., 2015) (the first 55 principal components were discarded because they mainly 575 

reflect motion; see Demené et al., 2015 for details). The blood signal energy also known as Power 576 

Doppler was computed for each voxel by summing the squared magnitudes across the 300 577 

frames separately for each pixel (Macé et al., 2011). Power Doppler is known to be proportional 578 

to blood volume (Macé et al., 2011).  579 

 580 

Each of the 300 frames was itself computed from 11 tilted plane wave emissions (-10° to 10° with 581 

2° steps) fired at a pulse repetition frequency of 5500 Hz. Frames were reconstructed from these 582 

plane wave emissions using an in-house, GPU-parallelized delay-and-sum beamforming 583 

algorithm (Macé et al., 2011).  584 

 585 

Stimuli for Experiment I 586 

We tested 40 natural sounds: 36 sounds from our prior experiment plus 4 ferret vocalizations (fight 587 

call, pup call, fear vocalization, and play call). Each natural sound was 10 seconds in duration. 588 

For each natural sound, we synthesized four synthetic sounds, matched on a different set of 589 

acoustic statistics of increasing complexity: cochlear, temporal modulation, spectral modulation, 590 

and spectrotemporal modulation. The modulation-matched synthetics were also matched in their 591 

cochlear statistics to ensure that differences between cochlear and modulation-matched sounds 592 

must be due to the addition of modulation statistics. The natural and synthetic sounds were 593 

identical to those in our prior paper, except for the four additional ferret vocalizations, which were 594 

synthesized using the same algorithm. We briefly review the algorithm below. 595 

 596 
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Cochlear statistics were measured from a cochleagram representation of sound, computed by 597 

convolving the sound waveform with filters designed to mimic the pseudo-logarithmic frequency 598 

resolution of cochlear responses (McDermott and Simoncelli, 2011). The cochleagram for each 599 

sound was composed of the compressed envelopes of these filter responses (compression is 600 

designed to mimic the effects of cochlear amplification at low sound levels). Modulation statistics 601 

were measured from filtered cochleagrams, computed by convolving each cochleagram in time 602 

and frequency with a filter designed to highlight modulations at a particular temporal rate and/or 603 

spectral scale (Chi et al., 2005). The temporal and spectral modulation filters were only modulated 604 

in time or frequency, respectively. There were 9 temporal filters (best rates: 0.5, 1, 2, 4, 8, 16, 32, 605 

64, and 128 Hz) and 6 spectral filters (best scales: 0.25, 0.5, 1, 2, 4, 8 cycles per octave). 606 

Spectrotemporal filters were created by taking the outer-product of all pairs of temporal and 607 

spectral filters in the 2D fourier domain, which results in oriented gabor-like filters.  608 

 609 

Our synthesis algorithm matches time-averaged statistics of the cochleagrams and filtered 610 

cochleagrams via a histogram-matching procedure that implicitly matches all time-averaged 611 

statistics of the responses (separately for each frequency channel of the cochleagrams and 612 

filtered cochleagrams). This choice is motivated by the fact that both fMRI and fUS reflect time-613 

averaged measures of neural activity, because the temporal resolution of hemodynamic changes 614 

is much slower than the underlying neuronal activity. As a consequence, if the fMRI or fUS 615 

response is driven by a particular set of acoustic features, we would expect two sounds with 616 

similar time-averaged statistics for those features to yield a similar response. We can therefore 617 

think of the natural and synthetic sounds as being matched under a particular model of the fMRI 618 

or fUS response (a more formal derivation of this idea is given in Norman-Haignere et al., 2018).   619 

 620 

We note that the filters used to compute the cochleagram were designed to match the frequency 621 

resolution of the human cochlea, which is thought to be somewhat finer than the frequency 622 

resolution of the ferret cochlea (Walker et al., 2019). In general, synthesizing sounds from broader 623 

filters results in synthetics that differ slightly more from the originals. And thus if we had used 624 

cochlear filters designed to mimic the frequency tuning of the ferret cochlea, we would expect the 625 

cochlear-matched synthetic sounds to differ slightly more from the natural sounds. However, given 626 

that we already observed highly divergent responses to natural and cochlear-matched synthetic 627 

sounds in both species, it is unlikely that using broader cochlear filters would change our findings. 628 

In general, we have found the matching procedure is not highly sensitive to the details of the filters 629 

used. For example, we have found that sounds matched on the spectrotemporal filters used here 630 

and taken from Chi et al. (2005), are also well matched on filters with half the bandwidth, with 631 

phases that have been randomized, and with completely random filters (Norman-Haignere and 632 

McDermott, 2018).   633 

 634 

Stimuli for Experiment II 635 

Experiment II tested a larger set of 30 ferret vocalizations (5 fight calls, 17 single-pup calls, and 8 636 

multi-pup calls where the calls from different pups overlapped in time). The vocalizations 637 

consisted of recordings from several labs (our own, Stephen David’s and Andrew King’s 638 

laboratories). For comparison, we also tested 14 speech sounds and 16 music sounds, yielding 639 

60 natural sounds in total. For each natural sound, we created a synthetic sound matched on the 640 

full spectrotemporal model. We did not synthesize sounds for the sub-models (cochlear, temporal 641 

modulation, and spectral modulation), since our goal was to test if there were divergent responses 642 

to natural and synthetic ferret vocalizations for spectrotemporally-matched sounds, like those 643 

present in human non-primary auditory cortex for speech and music sounds.  644 

 645 

Procedure for presenting stimuli 646 
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Sounds were played through calibrated earphones (Sennheiser IE800 earphones, HDVA 600 647 

amplifier, 65 dB) while recording hemodynamic responses via fUS imaging. In our prior fMRI 648 

experiments in humans, we had to chop the 10 second stimuli into 2-second excerpts in order to 649 

present the sounds in between scan acquisitions, because MRI acquisitions produce a loud sound 650 

that would otherwise interfere with hearing the stimuli. Because fUS imaging produces no audible 651 

noise, we were able to present the entire 10 second sound without interruption. The experiment 652 

was composed of a series of 20-second trials, and fUS acquisitions were synchronized to trial 653 

onset. On each trial, a single 10-second sound was played, with 7 seconds of silence before the 654 

sound to establish a response baseline, and 3 seconds of post-stimulus silence to allow the 655 

response to return to baseline. There was a randomly chosen 3 to 5 second gap between each 656 

trial. Sounds were presented in random order, and each sound was repeated 4 times. 657 

 658 

Mapping of tonotopic organization with pure tones 659 

Tonotopic organization was assessed using previously described methods (Bimbard et al., 2018). 660 

In short, responses were measured to 2-second long pure tones from 5 different frequencies (602 661 

Hz, 1430 Hz, 3400 Hz, 8087 Hz, 19234 Hz). The tones were played in random order, with 20 662 

trials/frequency. Data was denoised using the same method described in Denoising Part I: 663 

Removing components outside of cortex. Tonotopic maps were created by determining the best 664 

frequency of each voxel, defined as the tone evoking the largest Power Doppler signal. We then 665 

used these functional landmarks in combination with brain and vascular anatomy to establish the 666 

borders between primary and non-primary areas in all hemispheres, as well as to compare them 667 

to those obtained with natural sounds (see Fig S4). 668 

 669 

Brain map display 670 

Views from above were obtained by computing the average of the variable of interest in each 671 

vertical column of voxels from the upper part of the manually defined cortical mask. 672 

 673 

Normalized Squared Error (NSE) maps 674 

Like fMRI, the response timecourse of each fUS voxel shows a gradual build-up of activity after a 675 

stimulus, due to the slow and gradual nature of blood flow changes. The shape of this response 676 

timecourse is similar across different sounds, but the magnitude varies (Fig 1C) (fMRI responses 677 

show the same pattern). We therefore measured the response magnitude of each voxel by 678 

averaging the response to each sound across time (from 3 to 11 seconds post-stimulus onset), 679 

yielding one number per sound. Responses were measured from denoised data. We describe the 680 

denoising procedure at the end of the Methods because it is more involved than our other 681 

analyses.   682 

 683 

We compared the response magnitude to natural and corresponding synthetic sounds using the 684 

normalized squared error (NSE), the same metric used in humans. The NSE takes a value of 0 if 685 

the response to natural and synthetic sounds is identical, and 1 if there is no correspondence 686 

between responses to natural and synthetic sounds. The NSE is defined as: 687 

 688 

     (1)                                                       𝑁𝑆𝐸 =
𝜇([𝒙 − 𝒚]2)

𝜇(𝒙2) + 𝜇(𝒚2) − 2𝜇(𝒙)𝜇(𝒚)
 689 

 690 

where 𝒙 and 𝒚 are response vectors across the sounds being compared (i.e. natural and 691 

synthetic) and 𝜇(. ) indicates the vector mean. We noise-corrected the NSE using the test-retest 692 

reliability of the voxel responses (see Norman-Haignere et al., 2018 for details). However, we 693 

measured the NSE from denoised data, which was highly reliable, and our correction procedure 694 

thus only had a small effect on the resulting values. 695 

 696 
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Annular ROI analyses.  697 

We used the same annular ROI analyses from our prior paper to quantify the change in NSE 698 

values (or lack thereof) across the cortex. We binned voxels based on their distance to the center 699 

of primary auditory cortex, defined tonotopically. We used smaller bin sizes in ferrets (0.5 mm) 700 

than humans (5 mm) due to their smaller brains (results were not sensitive to the choice of bin 701 

size). Figure 2F plots the median NSE value in each bin, plotted separately for each human 702 

subject and for each hemisphere of each ferret. To statistically compare different models (e.g. 703 

cochlear vs. spectrotemporal), we averaged the NSE values across all bins and 704 

hemispheres/subjects separately for each model, bootstrapped the resulting statistics by 705 

resampling across the sound set (1000 times), and counted the fraction of samples that 706 

overlapped between models (multiplying by 2 to arrive at a two-sided p-value). To compare 707 

species, we measured the slope of the NSE vs. distance curve separately for each 708 

hemisphere/animal. We found that the slope in every hemisphere of every ferret was less than 709 

the slope of every hemisphere of every human subject, which is significant with a sign test (p < 710 

0.01; for each ferret hemisphere there were 8 human subjects to compare with). 711 

 712 

Component analyses 713 

To investigate the organization of fUS responses to the sound set, we applied the same voxel 714 

decomposition used in our prior work in humans to identify a small number of component response 715 

patterns that explained a large fraction of the response variation. Like all factorization methods, 716 

each voxel is modeled as the weighted sum of a set of canonical response patterns that are 717 

shared across voxels. The decomposition algorithm is similar to standard algorithms for 718 

independent component analysis (ICA) in that it identifies components that have a non-Gaussian 719 

distribution of weights across voxels by minimizing the entropy of the weights (the Gaussian 720 

distribution has the highest entropy of any distribution with fixed variance). This optimization 721 

criterion is motivated by the fact that independent variables become more Gaussian when they 722 

are linearly mixed, and non-Gaussianity thus provides a statistical signature that can be used to 723 

unmix the latent variables. Our algorithm differs from standard algorithms for ICA in that it 724 

estimates entropy using a histogram, which is effective if there are many voxels, as is the case 725 

with fMRI and fUS (40882 fUS voxels for experiment I, 38366 fUS voxels for experiment II). 726 

 727 

We applied our analyses to the denoised response timecourse of each voxel across all sounds 728 

(each column of the data matrix contained the concatenated response timecourse of one voxel 729 

across all sounds). Our main analysis was performed on voxels concatenated across both animals 730 

tested. The results however were similar when the analysis was performed on data from each 731 

animal. The number of components was determined via a cross-validation procedure described 732 

in the section on denoising.  733 

 734 

We examined the inferred components by plotting and comparing their response profiles to the 735 

natural and synthetic sounds, as well as plotting their anatomical weights in the brain. We also 736 

correlated the response profiles across all sounds with measures of cochlear and spectrotemporal 737 

modulation energy. Cochlear energy was computed by averaging the cochleagram for each sound 738 

across time. Spectrotemporal modulation energy was calculated by measuring the strength of 739 

modulations in the filtered cochleagrams (which highlight modulations at a particular temporal rate 740 

and/or spectral scale). Modulation strength was computed as the standard deviation across time 741 

of each frequency channel of the filtered cochleagram. The channel-specific energies were then 742 

averaged across frequency, yielding one number per sound and spectrotemporal modulation rate.  743 

 744 

We used a permutation test across the sound set to assess the significance of correlations with 745 

frequency and modulation features. Specifically, we measured the maximum correlation across 746 

all frequencies and all modulation rates tested, and we compared these values with those from a 747 
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null distribution computed by permuting the correspondence across sounds between the features 748 

and the component responses (1000 permutations). We counted the fraction of samples that 749 

overlapped the null distribution and multiplied by two in order to arrive at a two-sided p-value. For 750 

every component, we found that correlations with frequency and modulation features were 751 

significant (p < 0.01). 752 

 753 

Predicting human components from ferret responses 754 

To quantify which component response patterns were shared across species, we tried to linearly 755 

predict components across species (Fig S6/S7). Each component was defined by its average 756 

response to the 36 natural and corresponding synthetic sounds, matched on the full 757 

spectrotemporal model. We attempted to predict each human component from all of the ferret 758 

components and vice versa, using cross-validated ridge regression (9 folds). The ridge parameter 759 

was chosen using nested cross-validation within the training set (also 9 folds; testing a wide range 760 

from 2-100 to 2100). Each fold contained pairs of corresponding natural and synthetic sound, so that 761 

there would be no overlap between the train and test sounds. 762 

 763 

For each component, we separately measured how well we could predict the response to 764 

synthetic sounds (Fig S6B/S7A) – which isolates selectivity for frequency and modulation 765 

statistics present in natural sounds – as well as how well we could predict the difference between 766 

responses to natural vs. synthetic sounds (Fig S6C/FigS7B) – which isolates selectivity for 767 

features in natural sounds that are not explained by frequency and modulation statistics. We 768 

quantified prediction accuracy using the noise-corrected NSE, and we used (1 − 𝑁𝑆𝐸). ^2 as a 769 

measure of explained variance. This choice is motivated by the fact (1 − 𝑁𝑆𝐸) is equivalent to the 770 

Pearson correlation for signals with equal mean and variance and thus (1 − 𝑁𝑆𝐸). ^2 is analogous 771 

to the squared Pearson correlation, which is a standard measure of explained variance.  772 

 773 

We multiplied these explained variance estimates by the total response variance of each 774 

component for either synthetic sounds or for the difference between natural and synthetic sounds 775 

(Fig S6D/Fig S7C shows the total variance alongside the fraction of that total variance explained 776 

by the cross-species prediction). We noise-corrected the total variance using the equation below: 777 

 778 

 779 

     (2)                                                           
𝑣𝑎𝑟(𝑟1 + 𝑟2) − 𝑣𝑎𝑟(𝑟1 − 𝑟2)

4
 780 

 781 

where 𝑟1 and 𝑟2 are two independent response measurements. Below we give a brief derivation 782 

of this equation, where 𝑟1 and 𝑟2 are expressed as the sum of a shared signal (𝑠) that is repeated 783 

across measurements plus independent noise (𝑛1 and 𝑛2) which is not. This derivation utilizes the 784 

fact that the variance of independent signals that are summed or subtracted is equal to the sum 785 

of their respective variances.   786 

 787 

     (3)                  
𝑣𝑎𝑟(𝑟1 + 𝑟2) − 𝑣𝑎𝑟(𝑟1 − 𝑟2)

4
=

𝑣𝑎𝑟([𝑠 + 𝑛1] + [𝑠 + 𝑛2]) − 𝑣𝑎𝑟([𝑠 + 𝑛1] − [𝑠 + 𝑛2])

4
 788 

                                                                                    =
𝑣𝑎𝑟(2𝑠 + 𝑛1 + 𝑛2) − 𝑣𝑎𝑟(𝑛1 − 𝑛2)

4
 789 

=
4𝑣𝑎𝑟(𝑠)

4
 790 

= 𝑣𝑎𝑟(𝑠) 791 

 792 

The two independent measurements used for noise correction were derived from different human 793 

or ferret subjects. The measurements were computed by attempting to predict group components 794 
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from each individual subject using the same cross-validated regression procedure described 795 

above. The two measurements in ferrets came from the two animals tested (A and T). And the 796 

two measurements in humans came from averaging across two non-overlapping sets of subjects 797 

(4 in each group; groups chosen to have similar SNR).  798 

 799 

For this analysis, the components were normalized so that the RMS magnitude of their weights 800 

was equal. As a consequence, components that explained more response variance also had 801 

larger response magnitudes. We also adjusted the total variance across all components to equal 802 

1. 803 

 804 

Comparing the similarity of natural and synthetic sounds from different categories. We 805 

computed maps showing the average difference between natural and synthetic sounds from 806 

different categories (Fig 4E). So that the scale of the differences could be compared across  807 

species, we divided the measured differences by the standard deviation of each voxel’s response 808 

across all sounds. We also separately measured the NSE for sounds from different categories 809 

(Fig 4F,G). The normalization term in the NSE equation (denominator of equation 1) was 810 

averaged across all sounds in order to ensure that the normalization was the same for all 811 

sounds/categories and thus that we were not inadvertently normalizing-away meaningful 812 

differences between the sounds/categories.  813 

 814 

Denoising Part I: Removing components outside of cortex 815 

Ultrasound responses in awake animals are noisy, which has limited its usage to mapping simple 816 

stimulus dimensions (e.g. frequency) where a single stimulus can be repeated many times 817 

(Bimbard et al., 2018). To overcome this issue, we developed a denoising procedure that 818 

substantially increased the reliability of the voxel responses (Fig S9). The procedure had two 819 

parts. The first part, which is described in this section, removed prominent signals outside of 820 

cortex, which are likely to reflect movement or other sources of noise. The second part enhanced 821 

reliable signals. Code implementing the denoising procedures will be made available upon 822 

publication. 823 

 824 

We separated voxels into those inside and outside of cortex, since responses outside of the cortex 825 

by definition do not contain stimulus-driven cortical responses, but do contain sources of noise 826 

like motion. We then used canonical correlation analysis (CCA) to find a set of response 827 

timecourses that were robustly present both inside and outside of cortex, since such timecourses 828 

are both likely to reflect noise and likely to distort the responses-of-interest. We projected-out the 829 

top 20 canonical components (CCs) from the data set, which we found scrubbed the data of 830 

motion-related signals (Fig S9A; motion described below).  831 

 832 

This analysis was complicated by one key fact: the animals reliably moved more during the 833 

presentation of some sounds (Fig 4C). Thus, noise-induced activity outside-of-cortex is likely to 834 

be correlated with sound-driven neural responses inside-of-cortex, and removing CCs will thus 835 

remove both noise and genuine sound-driven activity. To overcome this issue, we took advantage 836 

of the fact that sound-driven responses will by definition be reliable across repeated presentations 837 

of the same sound, while motion-induced activity will vary from trial-to-trial for the same sound. 838 

We thus found canonical components where the residual activity after removing trial-averaged 839 

responses was shared between responses inside and outside of cortex, and we then removed 840 

the contribution of these components from the data. We give a detailed description and motivation 841 

of this procedure in the Appendix, and show the results of a simple simulation demonstrating its 842 

efficacy.     843 

 844 
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To assess the effect of this procedure on our fUS data, we measured how well it removed signals 845 

that were correlated with motion (Fig S9A). Motion was measured using a video recording of the 846 

animals’ face. We measured the motion energy in the video as the average absolute deviation 847 

across adjacent frames, summed across all pixels. We correlated this motion timecourse with the 848 

residual timecourse of every voxel after subtracting off trial-averaged activity. Figure S9A plots 849 

the mean absolute correlation value across voxels as a function of the number of canonical 850 

components removed (motion can induce both increased and decreased fUS signal and thus it 851 

was necessary to take the absolute value of the correlation before averaging). We found that 852 

removing the top 20 CCs substantially reduced motion correlations.  853 

 854 

We also found that removing the top 20 CCs removed the spatial striping in the voxel responses, 855 

which is a stereotyped feature of motion due to the interaction between motion and blood vessels. 856 

To illustrate this effect, Figure S9B shows the average difference between responses to natural 857 

vs. synthetic sounds in Experiment II (vocalization experiment). Before denoising, this difference 858 

map shows a clear striping pattern likely due to the fact that the animals moved more during the 859 

presentation of the natural vs. synthetic sounds. The denoising procedure largely eliminated this 860 

striping pattern. 861 

 862 

Denoising Part II: Enhancing signal using DSS 863 

After removing components likely to be driven by noise, we applied a second procedure designed 864 

to enhance reliable components in the data. Our procedure is a variant of a method that is often 865 

referred to as “denoising source separation” (DSS) or “joint decorrelation” (de Cheveigné and 866 

Parra, 2014). In contrast with principal component analysis (PCA), which finds components that 867 

have high variance, DSS emphasizes components that have high variance after applying a 868 

“biasing” operation that is designed to enhance some aspect of the data. The procedure begins 869 

by whitening the data such that all response dimensions have equal variance, the biasing 870 

operation is applied, and PCA is then used to extract the components with highest variance after 871 

biasing. In our case, we biased the data to enhance response components that were reliable 872 

across stimulus repetitions and across the slices from all animals. We note that unlike fMRI, data 873 

from different slices come from different sessions. As a consequence, the noise from different 874 

slices will be independent. Thus, any response components that are consistent across slices and 875 

animals are likely to reflect true, stimulus-driven responses. 876 

 877 

The input to our analysis was a set of matrices. Each matrix contained data from a single stimulus 878 

repetition and slice. Only voxels from inside of cortex were analyzed. Each column of each matrix 879 

contained the response timecourse of one voxel to all of the sounds (concatenated), denoised 880 

using the procedure described in Part I. The response of each voxel was converted to units of 881 

percent signal change (the same units used for fMRI analyses) by subtracting and dividing by the 882 

pre-stimulus period (also known as percent Cerebral Blood Volume or %CBV in the fUS literature).  883 

 884 

Our analysis involved five steps: 885 

 886 

1. We whitened each matrix individually.  887 

 888 

2. We averaged the whitened response timecourses across repetitions, thus enhancing 889 

responses that are reliable across repetitions.  890 

 891 

3. We concatenated the repetition-averaged matrices for all slices across the voxel dimension, 892 

thus boosting signal that is shared across slices and animals. 893 

 894 
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4. We extracted the top N principal components (PCs) with the highest variance from the 895 

concatenated data matrix. The number of components was selected using cross-validation 896 

(described below). Because the matrices for each individual repetition and slice have been 897 

whitened, the PCs extracted in this step will not reflect the components with highest variance, but 898 

will instead reflect the components that are the most reliable across repetitions and across 899 

slices/animals. We thus refer to these components as “reliable components” (𝑅).  900 

 901 

5. We then projected the data onto the top N reliable components (𝑅): 902 

 903 

     (4)                                                            𝐷𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑑 = 𝑅𝑅+𝐷 904 

 905 

where 𝐷 is the denoised response matrix from Part I. 906 

 907 

We used cross-validation to test the efficacy of this denoising procedure and select the number 908 

of components (Fig S2).  909 

 910 

The analysis involved the following steps: 911 

 912 

1. We divided the sound set into training (75%) and test (25%) sounds. Each set contained 913 

corresponding natural and synthetic sounds so that there would be no overlap between train and 914 

test sets. We attempted to balance the train and test sets across categories, such that each split 915 

had the same number of sounds from each category.  916 

 917 

2. Using responses to just the train sounds (𝐷𝑡𝑟𝑎𝑖𝑛), we computed reliable components (𝑅𝑡𝑟𝑎𝑖𝑛) 918 

using the procedure just described (steps 1-4). 919 

 920 

3. We calculated voxel weights for these components: 921 

 922 

     (5)                                                                               𝑊 = 𝑅𝑡𝑟𝑎𝑖𝑛
+ 𝐷𝑡𝑟𝑎𝑖𝑛 923 

 924 

4. We used this weight matrix, which was derived entirely from train data, to denoise responses 925 

to the test sounds: 926 

 927 

     (6)                                                       𝐷𝑡𝑒𝑠𝑡−𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑑 = 𝑅𝑡𝑒𝑠𝑡𝑊 928 

     (7)                                                                        𝑅𝑡𝑒𝑠𝑡 = 𝐷𝑡𝑒𝑠𝑡𝑊+ 929 

 930 

To evaluate whether the denoising procedure improved predictions, we measured responses to 931 

the test sound set using two independent splits of data (odd or even repetitions). We then 932 

correlated the responses across the two splits either before or after denoising.  933 

 934 

Figure S2A plots the split-half correlation of each voxel before vs. after denoising for every voxel 935 

in cortex (using an 8-component model). For this analysis, we either denoised one split of data 936 

(blue dots) or both splits of data (green dots). Denoising one split provides a fairer test of whether 937 

the denoising procedure enhances SNR, while denoising both splits demonstrates the overall 938 

boost in reliability. We also plot the upper bound on the split-half correlation when denoising one 939 

split of data (black line), which is given by the square root of the split-half reliability of the original 940 

data. We found that our denoising procedure substantially increased reliability with the denoised-941 

correlations remaining close to the upper bound. When denoising both splits, the split-half 942 

correlations were close to 1, indicating a highly reliable response.  943 

 944 
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Figure S2B plots a map in one animal of the split-half correlations when denoising one split of 945 

data along with a map of the upper bound. As is evident, the denoised correlations remain close 946 

to the upper bound throughout primary and non-primary auditory cortex.  947 

 948 

Figure S2C shows the median split-half correlation across voxels as a function of the number of 949 

components. Performance was best using ~8 components in both experiments.  950 

  951 
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 1058 
Table S1: List of sounds used in both experiments. 1059 

Names of sounds used in Experiments I and II, grouped by category at both fine and coarse 1060 

scales.   1061 
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 1062 

 1063 

 1064 
Figure S1. Dissimilarity maps for all hemispheres and animals. Same format as Figure 2E.  1065 
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 1066 
Figure S2. The effect of enhancing reliable signal using a procedure similar to “DSS” (see 1067 

Denoising Part II in Methods) (de Cheveigné and Parra, 2014). A, Voxel responses were denoised 1068 

by projecting their timecourse onto components that were reliably present across repetitions, 1069 

slices and animals. This figure plots the test-retest correlation across independent splits of data 1070 

before (x-axis) and after (y-axis) denoising (data from Experiment I). Each dot corresponds to a 1071 

single voxel. We denoised either one split of data (blue dots) or both splits of data (green dots). 1072 

Denoising one split provides a fairer test of whether the denoising procedure enhances SNR. 1073 

Denoising both splits shows the overall effect on response reliability. The theoretical upper-bound 1074 

for denoising one split of data is shown by the black line. The denoising procedure substantially 1075 

increased data reliability, with the one-split correlations hugging the upper-bound. This plot shows 1076 

results from an 8-component model. B, This figure plots split-half correlations for denoised data 1077 

(one split) as a map (upper panel), along with a map showing the upper bound (right). Denoised 1078 

correlations were close to their upper bound throughout auditory cortex. C, This figure plots the 1079 

median denoised correlation across voxels (one split) as a function of the number of components 1080 

used in the denoising procedure. Gray line plots the upper bound. Shaded areas correspond to 1081 

95% confidence interval, computed via bootstrapping across the sound set. Results are shown 1082 

for both Experiments I (left) and II (right). Predictions were near their maximum using ~8 1083 

components in both experiments (the 8-component mark is shown by the vertical dashed line).  1084 
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Figure S3. Results from all 8 ferret components. Same format as Figure 3, except for panel 1087 

B, which plots the temporal response of the components. Black line shows the average across all 1088 

natural sounds. Colored lines correspond to major categories (see Table S1): speech (green), 1089 

music (blue), vocalizations (pink) and other sounds (brown). Note that the temporal shape varies 1090 

across components, but is very similar across sounds/categories within a component, which is 1091 

why we summarized component responses by their time-averaged response to each sound.   1092 
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 1093 

 1094 
Figure S4. Component weight maps from all hemispheres and ferrets. Weight maps are 1095 

plotted for the same three components shown in Figure 3, but showing maps from all 1096 

hemispheres of all ferrets tested.  For reference, tonotopic maps measured with pure tones are 1097 

also displayed for the corresponding hemispheres (top row).  1098 
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 1099 

 1100 

 1101 
Figure S5. Human components. This figure shows the anatomy and response properties of the 1102 

six human components inferred in prior work (Norman-Haignere et al., 2015; Norman-Haignere 1103 

and McDermott, 2018). Same format as Figure 3, which plots ferret components. Weight maps 1104 

(panel A) plot group-averaged maps across subjects.  1105 

  1106 
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 1107 
Figure S6. Predicting human component responses from ferrets. This figure plots the results 1108 

of trying to predict the six human components inferred from our prior work (Norman-Haignere et 1109 

al., 2015; Norman-Haignere and McDermott, 2018) from the eight ferret components inferred here 1110 

(see Fig S7 for the reverse). A, For reference, the response of the six human components to 1111 

natural and spectrotemporally matched synthetic sounds is re-plotted here. Components h1-h4 1112 

produced similar responses to natural and synthetic sounds, and had weights that clustered in 1113 

and around primary auditory cortex (Fig S5). Components h5 and h6 responded selectively to 1114 

natural speech and natural music, respectively, and had weights that clustered in non-primary 1115 

regions. B, This panel plots the measured response of each human component to 1116 

spectrotemporally matched synthetic sounds, along with the predicted response from ferrets. C, 1117 

This panel plots the difference between responses to natural and spectrotemporally-matched 1118 

synthetic sounds along with the predicted difference from the ferret components. D, Plots the total 1119 

response variance (white bars) of each human component to synthetic sounds (left) and to the 1120 
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difference between natural and synthetic sounds (right) along with the fraction of that total 1121 

response variance predictable from ferrets (gray bars) (all variance measures are noise-1122 

corrected). Error bars show the 95% confidence interval, computed via bootstrapping across the 1123 

sound set. E, Same as D, but averaged across components. 1124 

 1125 

  1126 
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 1127 
Figure S7. Results of predicting ferret components from human components. Same format 1128 

as Fig S6B-E. 1129 

  1130 
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 1131 
Figure S8. Results of Experiment II from other hemispheres. A-C, Same format as Fig 4C-E, 1132 

except that in panel A the vocalizations are split into sub-categories: fight calls, single pup calls, 1133 

multiple pup calls. Movement amplitude is shown for each animal separately. D, This panel shows 1134 

the distribution of NSE values for all pairs of natural and synthetic sounds (median across all 1135 

voxels), grouped by category. The numerator in the NSE calculation is simply the squared error 1136 

for that sound pair, and the denominator is computed in the normal way using responses to all 1137 

sounds (equation 1). Dots show individual sound pairs and box-plots show the median, central 1138 

50% and central 92% (whiskers) of the distribution.  1139 
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 1140 
Figure S9. The effect of removing outside-of-cortex components on motion correlations. 1141 

Voxel responses were denoised by removing components from outside of cortex, which are likely 1142 

to reflect artifacts like motion (see Denoising Part I in Methods). A, Effect of removing components 1143 

from outside of cortex on correlations with movement. We measured the correlation of each 1144 

voxel’s response with movement, measured from a video recording of the animal’s face (absolute 1145 

deviation between adjacent frames). Each line shows the average absolute correlation across 1146 

voxels for a single recording session / slice. Correlation values are plotted as a function of the 1147 

number of removed components. Motion correlations were substantially reduced by removing the 1148 

top 20 components (vertical dotted line). B, The average difference between responses to natural 1149 

vs synthetic sounds for an example slice before and after removing the top 20 out-of-cortex 1150 

components. Motion induces a stereotyped “striping” pattern due to its effect on blood vessels, 1151 

which is evident in the map computed from raw data, likely because ferrets moved substantially 1152 

more during natural vs. synthetic sounds (particular for ferret vocalizations; Figure 4C). The 1153 

striping pattern is largely removed by the denoising procedure. 1154 
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Appendix: Recentered CCA 1155 

 1156 

Derivation. The goal of the denoising procedure described in Part I was to remove artifactual 1157 

components that were present both inside and outside of cortex, since such components are both 1158 

likely to be artifactual and likely to distort the responses-of-interest. The key complication was that 1159 

motion-induced artifacts are likely to be correlated with true sound-driven neural activity because 1160 

the animals reliably moved more during the presentation of some sounds. To deal with this issue, 1161 

we used the fact that motion will vary from trial-to-trial for repeated presentations of the same 1162 

sound, while sound-driven responses by definition will not. Here, we give a more formal derivation 1163 

of our procedure. We refer to our method as “recentered CCA” (rCCA) for reasons that will 1164 

become clear below. 1165 

 1166 

We represent the data for each voxel as an unrolled vector (𝒅𝒗) that contains its response 1167 

timecourse across all sounds and repetitions. We assume these voxel responses are 1168 

contaminated by a set of K artifactual component timecourses {𝒂𝒌}. We thus model each voxel 1169 

as a weighted sum of these artifactual components plus a sound-driven response timecourse (𝒔𝒗): 1170 

 1171 

     (8)                                                                       𝒅𝒗 = ∑ 𝒂𝒌

𝐾

𝑘

𝑤𝑘,𝑣 + 𝒔𝒗 1172 

 1173 

Actual voxel responses are also corrupted by voxel-specific noise, which would add an additional 1174 

error term to the above equation. In practice, the error term has no effect on our derivation so we 1175 

omit it for simplicity (we verified our analysis was robust to voxel-specific noise using simulations, 1176 

which are described below).  1177 

 1178 

To denoise our data, we need to estimate the artifactual timecourses {𝒂𝒌} and their weights (𝑤𝑘,𝑣) 1179 

so that we can subtract them out. If the artifactual components {𝒂𝒌} were uncorrelated with the 1180 

sound-driven responses (𝒔𝒗) we could estimate them by performing CCA on voxel responses from 1181 

inside and outside of cortex, since only the artifacts would be correlated. However, we expect 1182 

sound-driven responses to be correlated with motion artifacts, and the components inferred by 1183 

CCA will thus reflect a mixture of sound-driven and artifactual activity. 1184 

 1185 

To overcome this problem, we first subtract-out the average response of each voxel across 1186 

repeated presentations of the same sound (𝒅̇𝒗). This “recentering” operation removes sound-1187 

driven activity, which by definition is the same across repeated presentations of the same sound:  1188 

 1189 

     (9)                                                                       𝒅̇𝒗 = ∑ 𝒂̇𝒌

𝑁

𝑘

𝑤𝑘,𝑣 1190 

 1191 

where the dot above a variable indicates its response after recentering (not its time derivative). 1192 

Because sound-driven responses have been eliminated, applying CCA to the recentered voxel 1193 

responses should yield an estimate of the recentered artifacts (𝒂̇𝒌) and their weights (𝑤𝑘,𝑣) (note 1194 

that CCA actually yields a set of components that span a similar subspace as the artifactual 1195 

components, which is equivalent from the perspective of denoising). To simplify notation in the 1196 

equations below, we assume this estimate is exact (i.e. CCA exactly returns 𝒂̇𝒌 and 𝑤𝑘,𝑣). 1197 

 1198 

Since the weights (𝑤𝑘,𝑗) are the same for original (𝒅𝒗) and recentered (𝒅̇𝒗) data, we are halfway 1199 

done. All that is left is to estimate the original artifact components before recentering (𝒂𝒌), which 1200 

can be done using the original data before recentering (𝒅𝒗). o see this, first note that canonical 1201 
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components are by construction a linear projection of the data used to compute them, and thus, 1202 

we can write: 1203 

     (10)                                                                       𝒂̇𝒌 =  ∑ 𝒅̇𝒗𝛽𝑘,𝑣

𝑉

𝑣

 1204 

 1205 

We can use the reconstruction weights (𝛽𝑘,𝑣) in the above equation to get an estimate of the 1206 

original artifactual components by applying them to the original data before recentering:  1207 

 1208 

     (11)                                                                       𝒂𝒌 ≈  ∑ 𝒅𝒗𝛽𝑘,𝑣

𝑉

𝑣

 1209 

 1210 

To see this, we expand the above equation: 1211 

 1212 

     (12)                                                       ∑ 𝒅𝒗𝛽𝑘,𝑗

𝑉

𝑣

= ∑ (∑ 𝒂𝒌′

𝑁

𝑘′

𝑤𝑘′,𝑣 + 𝒔𝒗) 𝛽𝑘,𝑣

𝑉

𝑣

 1213 

     (13)                                                                            = ∑ 𝒂𝒌′

𝑁

𝑘′

∑ 𝑤𝑘′,𝑣𝛽𝑘,𝑣

𝑽

𝒗

+ ∑ 𝒔𝒗𝛽𝑘,𝑣

𝑽

𝒗

 1214 

 1215 

The first term in the above equation exactly equals 𝒂𝒌 because 𝑤𝑘′,𝑣 and 𝛽𝑘,𝑣 are by construction 1216 

pseudoinverses of each other (i.e. ∑ 𝑤𝑘′,𝑣𝛽𝑘,𝑣
𝑽
𝒗  is 1 when 𝑘′ = 𝑘 and 0 otherwise). The second 1217 

term can be made small by estimating and applying reconstruction weights using only data from 1218 

outside of cortex, where sound-driven responses are weak. 1219 

 1220 

We thus have a procedure for estimating both the original artifactual responses (𝒂𝒌) and their 1221 

weights (𝑤𝑘,𝑗), and can denoise our data by simply subtracting them out: 1222 

 1223 

     (14)                                                                           𝒅𝒗 − ∑ 𝒂𝒌

𝐾

𝑘

𝑤𝑘,𝑣 1224 

 1225 

Procedure. We now give the specific steps used to implement the above procedure using matrix 1226 

notation. The inputs to the analysis were two matrices (𝐷𝑖𝑛, 𝐷𝑜𝑢𝑡), each of which contained voxel 1227 

responses from inside and outside of cortex. Each column of each matrix contained the response 1228 

timecourse of a single voxel, concatenated across all sounds and repetitions (i.e. 𝒅𝒗 in the above 1229 

derivation). We also computed recentered data matrices (𝐷̇𝑖𝑛, 𝐷̇𝑜𝑢𝑡) by subtracting out trial-1230 

averaged activity (i.e. 𝒅̇𝒗). 1231 

 1232 

CCA can be performed by whitening each input matrix individually, concatenating the whitened 1233 

data matrices, and then computing the principal components of the concatenated matrices (de 1234 

Cheveigné et al., 2019). Our procedure is an elaborated version of this basic design: 1235 

 1236 

1. The recentered data matrices were reduced in dimensionality and whitened. We implemented 1237 

this step using the singular value decomposition (SVD), which factors the data matrix as the 1238 

product of two orthonormal matrices (𝑈 and 𝑉), scaled by a diagonal matrix of singular values (𝑆): 1239 

 1240 

     (15)                                                                        𝐷̇𝑖𝑛 = 𝑈̇𝑖𝑛𝑆̇𝑖𝑛𝑉̇𝑖𝑛 1241 

     (16)                                                                      𝐷̇𝑜𝑢𝑡 = 𝑈̇𝑜𝑢𝑡𝑆̇𝑜𝑢𝑡𝑉̇𝑜𝑢𝑡 1242 
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 3 

 1243 

The reduced and whitened data was given by selecting the top 250 components and removing 1244 

the diagonal S matrix:  1245 

 1246 

     (17)                                                          𝐷̇𝑖𝑛−𝑤ℎ𝑖𝑡𝑒 = 𝑈̇𝑖𝑛[: ,1: 250]𝑉̇𝑖𝑛[1: 250, : ] 1247 

     (18)                                                        𝐷̇𝑜𝑢𝑡−𝑤ℎ𝑖𝑡𝑒 = 𝑈̇𝑜𝑢𝑡[: ,1: 250]𝑉̇𝑜𝑢𝑡[1: 250, : ] 1248 

 1249 

2. We concatenated the whitened data matrices from inside and outside of cortex across the voxel 1250 

dimension: 1251 

 1252 

     (19)                                                                     𝐷̇𝑐𝑎𝑡 = [𝐷̇𝑖𝑛−𝑤ℎ𝑖𝑡𝑒 , 𝐷̇𝑜𝑢𝑡−𝑤ℎ𝑖𝑡𝑒] 1253 

 1254 

3. We computed the top N principal components from the concatenated matrix using the SVD:  1255 

 1256 

     (20)                                                                     𝐷̇𝑐𝑎𝑡 = 𝑈̇𝐶𝐶𝑆̇𝐶𝐶𝑉̇𝑐𝑐 1257 

 1258 

𝑈̇𝐶𝐶 contains the timecourses of the canonical components (CCs), ordered by variance, which 1259 

provide an estimate of the artifactual components after recentering (i.e. 𝒂̇𝒌). The corresponding 1260 

weights (i.e. 𝑤𝑘,𝑣) for voxels inside of cortex were computed by projecting the recentered data 1261 

onto 𝑈̇𝐶𝐶: 1262 

 1263 

     (21)                                                                       𝑊in =  𝑈̇𝑐𝑐
+ 𝐷̇𝑖𝑛 1264 

 1265 

where + indicates the matrix pseudo-inverse.  1266 

 1267 

4. The original artifactual components before recentering (i.e. 𝒂𝒌) were estimated by learning a 1268 

set of reconstruction weights (Β) using recentered data from outside of cortex, and then applying 1269 

these weights to the original data before recentering: 1270 

 1271 

     (22)                                                                           Β = 𝐷̇𝑜𝑢𝑡
+ 𝑈̇𝑐𝑐 1272 

     (23)                                                                       𝑈𝑐𝑐 = 𝐷𝑜𝑢𝑡Β 1273 

 1274 

𝑈𝑐𝑐 is an estimate of the artifactual components before recentering (i.e. 𝒂𝒌). 1275 

 1276 

5. Finally, we subtracted out the contribution of the artifactual components to each voxel inside of 1277 

cortex, estimated by simply multiplying the component responses and weights: 1278 

 1279 

     (24)                                                           𝐷𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑑 =  𝐷𝑖𝑛 − 𝑈𝑐𝑐𝑊𝑖𝑛  1280 

 1281 

 1282 

Simulation. We created a simple simulation to test our method. We simulated 1000 voxel 1283 

responses, both inside and outside of cortex, using equation 8. For voxels outside of cortex, we 1284 

set the sound-driven responses to 0. We also added voxel-specific noise to make the denoising 1285 

task more realistic/difficult (sampled from a Gaussian). Results were very similar across a variety 1286 

of noise levels. 1287 

 1288 

To induce correlations between the artifactual (𝒂𝒌) and sound-driven responses (𝒔𝒗), we forced 1289 

them to share a subspace. Specifically, we computed the sound-driven responses as a weighted 1290 

sum of a set of 10 component timecourses (results did not depend on this parameter), thus forcing 1291 

the responses to be low-dimensional, as we found to be the case: 1292 

 1293 
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     (25)                                                                     𝒔𝒗 = ∑ 𝒖𝒋

10

𝑗=1

𝑚𝑗,𝑣 1294 

 1295 

The artifactual timecourses were then computed as a weighted sum of these same 10 1296 

components timecourses plus a timecourse that was unique to each artifactual component: 1297 

 1298 

     (26)                                                                     𝒂𝒌 =  𝑝 ∑ 𝒖𝒋

10

𝑗=1

𝑛𝑗,𝑘 + (1 − 𝑝)𝒃𝒌 1299 

 1300 

where 𝑝 controls the strength of the dependence between the sound-driven and artifactual 1301 

components with a value of 1 indicating complete dependence and 0 indicating no dependence. 1302 

All of responses and weights (𝒖𝒋, 𝒃𝒌, 𝑚𝑗,𝑣, 𝑛𝑗,𝑘) were sampled from a unit-variance Gaussian. 1303 

Sound-driven responses were constrained to be the same across repetitions by sampling the 1304 

latent timecourses 𝒖𝒋 once per sound, and then simply repeating the sampled values across 1305 

repetitions. In contrast, a unique 𝒃𝒌 was sampled for every repetition of every sound to account 1306 

for the fact that the artifacts like motion will vary from trial-to-trial. We sampled 20 artifactual 1307 

timecourses using equation 26. 1308 

 1309 

We applied both standard CCA and our modified rCCA method to the simulated data. We 1310 

measured the median NSE between the true and estimated sound-driven responses (𝒔𝒗), 1311 

computed using the two methods as a function of the strength of the dependence (𝑝) between 1312 

sound-driven and artifactual timecourses (Fig A1A). For comparison, we also plot the NSE for 1313 

raw voxels (i.e. before any denoising) as well as the minimum possible NSE (noise floor) given 1314 

the voxel-specific noise (which cannot possibly be removed using CCA or rCCA). When the 1315 

dependence is low, both CCA and rCCA yield similarly good results, as expected. As the 1316 

dependence increases, CCA performs substantially worse, while rCCA continues to perform well 1317 

up until the point when the dependence becomes so strong that sound-driven and artifactual 1318 

timecourses are nearly indistinguishable. Results were not highly sensitive to the number of 1319 

components removed as long as the number of removed components was equal to or greater 1320 

than the number of artifactual components (Figure A1B).  1321 
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 1322 
Figure A1: Simulation results. A. Median NSE across simulated voxels between the true and 1323 

estimated sound-driven responses (𝒔𝒗), computed using raw/undenoised data (light green line), 1324 
standard CCA (dark green line), and recentered CCA (red line). Results are shown as a function of 1325 
the strength of the dependence (𝑝) between sound-driven and artifactual timecourses. The minimum 1326 
possible NSE (noise floor) given the level of voxel-specific noise is also shown. B. Same as panel A, 1327 
but showing results as a function of the number of components removed for a fixed value of 𝑝 (set to 1328 
0.5). 1329 

 1330 
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