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HISTORY-DRIVEN MODULATIONS IN VISUAL CORTEX 2 

Abstract 45 

To find important objects, we must focus on our goals, ignore distractions, and take our 46 

changing environment into account. This is formalized in models of visual search whereby 47 

goal-driven, stimulus-driven and history-driven factors are integrated into a priority map 48 

that guides attention. History is invoked to explain behavioral effects that are neither 49 

wholly goal-driven nor stimulus-driven, but whether history likewise alters goal-driven 50 

and/or stimulus-driven signatures of neural priority is unknown. We measured fMRI 51 

responses in human visual cortex during a visual search task where trial history was 52 

manipulated (colors switched unpredictably or repeated). History had a near-constant 53 

impact on responses to singleton distractors, but not targets, from V1 through parietal 54 

cortex. In contrast, history-independent target enhancement was absent in V1 but 55 

increased across regions. Our data suggest that history does not alter goal-driven search 56 

templates, but rather modulates canonically stimulus-driven sensory responses to create 57 

a temporally-integrated representation of priority.  58 
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Introduction 59 

At any moment we can selectively attend only a small fraction of available 60 

perceptual inputs due to a limited processing capacity, and the world around us is 61 

constantly changing. When performing visual search, we thus need to enhance relevant 62 

information, discard irrelevant information, and keep track of our changing surroundings. 63 

For example, when searching for sea glass at the beach, irrelevant but salient information 64 

(e.g., a red plastic bottle-cap) may grab our attention. But, if we repeatedly encounter the 65 

same irrelevant information (e.g., the beach is littered with red bottle-caps), then we can 66 

learn to ignore initially salient distractors.  67 

Models of visual search hypothesize that we integrate information about what is 68 

relevant (goal-driven or ‘top-down’ factors), what is salient given local image statistics 69 

(stimulus-driven or ‘bottom-up’ factors), and what has occurred in the past (history-driven 70 

factors) via an integrated, topographically organized “priority map”1–6. Note, some work 71 

uses the terms ‘saliency’ and ‘priority’ interchangeably, whereas other work uses these 72 

terms to refer to distinct concepts. Here, we use ‘priority’ to refer to the integration of goal-73 

driven and stimulus-driven task factors, and ‘saliency’ to refer to strictly to image-74 

computable, stimulus-driven task factors4.  75 

Although both stimulus-driven and goal-driven information is represented to some 76 

extent in many cortical regions4,7–11, areas of parietal cortex (e.g., LIP, IPS) are 77 

hypothesized to be ideal candidates for integrating information about stimulus-driven 78 

sensory inputs from occipital cortex and information about goals from pre-frontal cortex12–79 
15. In contrast to goal-driven and stimulus-driven effects, history-driven effects have only 80 

recently been added to models of visual search, in part because these effects do not 81 

wholly fit within a ‘goal-driven’ versus ‘stimulus-driven’ dichotomous framework1,16–18. 82 

Rather, history-driven effects apparently rely upon the relationship between the current 83 

sensory input and knowledge of prior experiences. Much work has demonstrated how 84 

canonically ‘goal-driven’ and ‘stimulus-driven’ task manipulations alter neural activity in 85 

occipital and parietal cortex (i.e., selective attention7,10,11,19–25 and stimulus-driven 86 

salience maps3,26,27, respectively), but an open question is whether stimulus history 87 

influences attentional priority by co-opting elements of these computations.   88 
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Some accounts of history-driven effects predict that we exploit existing goal-driven 89 

selection mechanisms to incorporate information about history-driven task factors into 90 

priority maps. For example, when looking for a particular target, one may form a 91 

“template” of that feature and use this template to voluntarily up-regulate relevant portions 92 

of the visual field by co-opting goal-driven selective attention28–33. Thus, one possibility is 93 

that history-driven effects (e.g., repetition of target color) may strengthen the target 94 

template, and this increased goal-driven guidance would result in greater activation of the 95 

target position in a priority map. Likewise, if a particular distractor feature is repeated, one 96 

may form an analogous “negative template” for ignoring this feature34–37 (but see38,39). 97 

However, not all evidence supports the notion that history-driven effects can be 98 

implemented via goal-driven selective attention40–44. Rather, integrating history into 99 

priority may exploit canonically ‘stimulus-driven’ mechanisms that are encapsulated 100 

within local sensory circuits (e.g., modulation of stimulus-driven saliency maps via 101 

adaptation45,46, habituation42–44 and/or repetition suppression47,48). Of course, these 102 

possibilities are not mutually exclusive. For example, distractor and target processing 103 

seem to be differentially affected by history49–52. Therefore, it may be that history-driven 104 

changes to priority are reflected in a combination of traditionally ‘goal-driven’ and 105 

‘stimulus-driven’ neural signatures of priority. Alternatively, history-driven effects may also 106 

be coded via another pathway, such as via implicit and/or explicit learning of regularities 107 

within the medial-temporal lobe13,53,54.  108 

To test how stimulus history modulates priority, we measured neural activity via 109 

fMRI in human subjects performing a visual search task. If stimulus history influences 110 

search by altering the specificity of the goal-driven target template, then we would expect 111 

to see an enhanced representation of the target item’s position, and this effect should be 112 

most pronounced in regions that are also most influenced by goal-driven selective 113 

attention such as IPS0. However, if stimulus history influences search by influencing 114 

canonically stimulus-driven sensory activity, then we would expect to see a decreased 115 

representation of the salient distractor’s position, and this effect should be pronounced in 116 

areas most influenced by stimulus-driven salience such as V1.  We thus estimated the 117 

strength of target and distractor representations in a 4-item search array across 118 
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retinotopically-defined visual cortical regions. Critically, we manipulated trial history such 119 

that we could compare neural responses to physically identical displays (e.g., green 120 

target, red singleton distractor) as a function of trial history (i.e., whether the colors of 121 

preceding displays repeated or varied).  122 

 To preview the results, we found that trial history modulated model-based 123 

estimates of distractor suppression, but not target enhancement, in retinotopically-defined 124 

visual areas. Furthermore, we found that visual regions were differentially modulated by 125 

goal-driven target enhancement and by history-driven distractor suppression. Whereas 126 

goal-driven modulations to population codes (i.e., target enhancement) were absent in 127 

V1 and were amplified across the visual hierarchy, history-driven effects were robust in 128 

V1 and across all other examined ROIs. Overall, the data suggest a dissociation between 129 

canonical ‘goal-driven’ mechanisms of attentional priority and ‘history-driven’ effects on 130 

distractor processing. We discuss our findings in the context of ‘stimulus-driven’ saliency 131 

models of V1, whereby history-driven task factors may directly modify priority within 132 

canonically stimulus-driven saliency maps, which integrate neural activity across trials as 133 

well as within a given trial, without the need for a ‘goal-driven’ template of the incidentally 134 

repeated information.  135 

Results 136 

Behavior 137 

Subjects performed a variant of the additional singleton search task55 (Figure 1A) 138 

in which they searched for a target (diamond) among non-targets (circles). On each trial, 139 

the participant reported via button-press the orientation of the line inside the diamond 140 

target (vertical or horizontal). On 66.67% of trials, one of the non-targets was uniquely 141 

colored (“singleton distractor present”, e.g., one red distractor, two green non-targets, and 142 

one green target item). Behavioral capture was quantified as slowed response times 143 

(RTs) when the distractor was present versus absent. In addition to examining the basic 144 

capture effect, a key goal of this work was to examine modulation of capture by trial 145 

history56–58. Prior work has shown that participants can learn to suppress a distractor (i.e., 146 

no RT difference for singleton distractor present versus absent trials) when the same 147 

distractor color or distractor location is repeated over many trials56–58.  Building on this 148 
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work, we included two key task conditions in a counterbalanced, block-wise fashion to 149 

manipulate trial history and behavioral capture while using identical stimulus arrays (e.g., 150 

green target, red distractor). In the color constant condition (Figure 1A), the array colors 151 

stayed constant throughout the block (e.g., green target, green non-target items, red 152 

distractor). In the color variable condition (Figure 1B), the array colors randomly varied 153 

from trial to trial. Based on prior work, we expected robust capture in the color variable 154 

condition, and little or no capture in the color constant condition56–58. 155 

 156 

 157 
Figure 1. Visual search task stimuli. On each trial, participants viewed a 4-item array 158 
and reported the orientation of the line inside the diamond-shaped target (horizontal or 159 
vertical). (A) In the color constant condition, colors of targets and singleton distractors 160 
were fixed throughout the run. (B) In the color variable condition, colors of targets and 161 
singleton distractors swapped randomly from trial to trial.  162 
 163 

Replicating prior work, we found significant behavioral capture that was modulated 164 

by trial history40,41,50,56–59. In our MRI sample (Exp 1a), we observed significant behavioral 165 

capture in the color variable condition, with longer RT’s for distractor present versus 166 

distractor absent trials (M = 32.8 ms, SD = 25.5 ms, p = .001, d = 1.28), but capture was 167 

not significant in the color constant condition (M = 10.8 ms, SD = 18.5 ms, p = .07, d = 168 

.59). Importantly, capture was significantly larger for color variable vs. color constant runs 169 

(p = .009, d = .91). We replicated this pattern of findings in the behavior-only experiment 170 

(Exp. 1b), with robust capture for ‘color variable’ (p < 1 x 10-5, d = 1.31), no significant 171 

capture for ‘color constant’ (p = .1, d = .32), and larger capture for color variable vs.  172 

constant (p = .002, d = .71). Participants in both experiments were accurate overall 173 

(>90%), and there was no evidence of a speed-accuracy trade-off (Analysis S1).   174 
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 In addition to the key modulation of capture as a function of stimulus history, we 175 

also replicated prior findings that the degree of capture is significantly modulated by the 176 

physical distance between the target and the distractor41,49,60,61, with larger capture for 177 

distractors nearer the target (Figure 2E-F). We ran a repeated measures ANOVA 178 

including both experiments (n=36). Including Experiment as a factor revealed no 179 

experiment main effects or interactions (p > .2), so the two experiments were combined 180 

for further analyses of the behavioral data (although Figure 2 shows data from the two 181 

experiments separately). There was a significant effect of Condition (larger capture for 182 

color variable than color constant), p < 1x10-4, a main effect of Distance (larger capture 183 

for 90° than 180°), p = .037, η2p = .12, and an interaction between Condition and Distance 184 

(greater distance effect in the color variable condition), p = .014, η2p = .16. 185 

 186 

 187 
Figure 2. Behavioral capture during the visual search task. (A) In the main MRI 188 
Experiment (Exp 1a), participants were significantly captured by the salient singleton 189 
distractor in the color variable condition, but not in the color constant condition. (B) This 190 
pattern replicated in the behavior-only experiment (Exp 1b). (C-D) Capture costs (RT 191 
Difference for distractor present – absent trials) were significantly larger in the color 192 
variable than in the color constant condition in Exp 1a (C) and Exp 1b (D). (E-F) Capture 193 
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costs (RT Difference for distractor present – absent trials) were significantly modulated 194 
by the distance between the target and distractor in the color variable condition both in 195 
Exp 1a (E) and Exp 1b (F). Violin plot shading shows range and distribution of the data; 196 
dots represent single subjects; black error bars indicate ±1 SEM. 197 
 198 

fMRI results: Model estimates of spatial position in the independent mapping task 199 

We opted for a multivariate model-based approach to estimate the amount of 200 

information encoded in voxel activation patterns about each of the 4 stimuli in the search 201 

array, as such multivariate approaches are more sensitive than just computing the 202 

univariate mean response across all voxels62–67. For example, item-specific information 203 

has been observed using multivariate methods even in the absence of univariate 204 

changes68,69 (but for univariate analyses of the present data, see Figure S1). We opted 205 

for an inverted encoding model (IEM) approach70,71, as opposed to Bayesian or other 206 

decoders72,73, because this approach allowed us to easily derive a separate estimate of 207 

the information encoded about each of the 4 simultaneously presented items from the 208 

search array in the main analysis70.  209 

In our key analyses of the fMRI data, we used an independent mapping task to 210 

train a model of spatial position from which we estimated the relative priority of all item 211 

positions within the visual search array. During the independent mapping task, observers 212 

viewed a flickering checkerboard wedge that was presented at 1 of 24 positions on an 213 

imaginary circle around fixation (Figure 3A). We first checked that we observed robust 214 

estimates of spatial position when training and testing within the independent mapping 215 

task (leave 1 run out, see section ‘Inverted Encoding Model’). We observed robust model-216 

based estimates of spatial position for all ROIs (Figure 3B). Parameters from the best-217 

fitting von Mises distribution to each region-of-interest (ROI) are depicted in Figure 3C 218 

(model fits are shown in Figure S2). There was an effect of ROI on precision such that 219 

spatial position was represented less precisely in later visual areas (p < 1x10-5, where 220 

precision is the concentration parameter κ of the best fitting von Mises, with higher values 221 

indicating a more precise function). There was also an effect of ROI on the amplitude and 222 

baseline measures of the model-based estimates of spatial position (p < 1x10-5), and all 223 

3 parameters significantly differed from zero across all ROIs (p < 1x10-5). These results, 224 
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particularly the observation of amplitudes greater than 0, confirmed that activation 225 

patterns in all examined regions encode information about spatial position.  226 

 227 

 228 
Figure 3. Single-item model estimates training and testing within the independent 229 
mapping task. (A) Independent mapping task used to train the model to estimate spatial 230 
position of 4 search array items. Participants viewed a flickering checkerboard which 231 
could appear at one of 24 positions around an imaginary circle. (B) Blue lines: Model 232 
estimates of viewed spatial position training and testing within the independent mapping 233 
task. Single-trial model estimates for each subject are aligned to 0 degrees and averaged. 234 
Black lines: Model estimates for shuffled training labels. Opaque lines = group average; 235 
semi-transparent lines = individual subjects. (C) Descriptive statistics for best fit von Mises 236 
parameters (precision [κ], amplitude, baseline) to model estimates in panel B. Error bars 237 
indicate ±1 SEM; the opaque line shows the group average; semi-transparent lines show 238 
individual subjects. 239 
 240 

Unlike the single item model estimates that were derived based on the 241 

independent mapping task (Figure 3), we could not fit a simple, uni-modal Gaussian 242 

function to model-based estimates derived from the search task data because 4 peaks in 243 

the model output were expected – one for each item in the search array. As such, we first 244 

conducted simulations to ensure that we would be able to measure putative changes to 245 

individual item representations (e.g. target enhancement, distractor suppression), despite 246 

multiple item representations contributing to the aggregate 4-item model estimates. To 247 

do so, we used data from the independent mapping task to generate predictions for 248 

observed model responses in a 4-item array. For each ROI, we took the 1-item model 249 
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response derived from the independent mapping task, replicated this model response 250 

four times (once at each of the four search array positions), and took the average of all 4 251 

shifted 1-item model response lines to generate a single 4-item model prediction. In 252 

addition, we systematically varied the strength of the simulated response to each item to 253 

ensure that we were able to recover a corresponding change in the item-specific 254 

responses estimated from the aggregate 4-item model estimate (Figure 4; Figure S3).  255 

These simulations revealed clearly separable peaks for all four items in early areas 256 

like V1, where spatial precision is high (Figure 4A-B, left panel). In contrast, identifying 257 

clear peaks in later areas like IPS0 was difficult when the response to all items was 258 

equivalent (Figure 4A-B, right panel). However, if one item evoked a larger or smaller 259 

response than the other items, as would be expected with target enhancement or 260 

distractor suppression, then clear and measurable changes to the aggregate 4-item 261 

model estimates emerged (Figure 4C). Further simulations showed that we could detect 262 

smaller changes to one item (e.g., distractor suppression) in the presence of larger 263 

changes to another item (e.g., target) by measuring the response amplitude at each 264 

expected item’s peak. In V1, this is clearly seen in the peak response to each item; in 265 

later areas such as IPS0, such changes manifest as a large central peak that is skewed 266 

by the neighboring items’ smaller changes (Figure 4D).  267 

We also used a general linear model (GLM) to estimate best-fitting gain factors for 268 

each of the 4 hypothesized item representations by fitting an aggregate function and 269 

allowing one parameter in the GLM to scale the response associated with each item. This 270 

is essentially the inverse of the simulations described above: For a given aggregate 271 

response (i.e., the response of each of the 24 spatial channels when shown a given 4-272 

item search array), we used a non-negative least squares solution74 to estimate the 273 

contribution of each of the 4 item positions (calculated from the 1-item localizer task) to 274 

the observed 4-item search array response (Figure 4E). This analysis yielded similar 275 

results to the simple approach of comparing the height at each expected item peak (e.g., 276 

Analysis S2-4). Thus, using either the raw amplitude at expected peaks or a GLM-based 277 

approach, we determined that we should be able to accurately characterize situations in 278 
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which there was no modulation of target and distractor responses as well as situations in 279 

which there was a significant modulation of target and/or distractor responses.  280 

 281 

 282 
Figure 4. Generating predictions for 4-item model estimates by averaging single-283 
item model estimates from the independent mapping task. (A) Average from the 284 
independent mapping task plotted at 4 hypothetical item locations. Here, these 4 “items” 285 
are represented with equal priority. (B) Hypothetical observed response when measuring 286 
a single trial containing the 4 items presented simultaneously. This line is the average of 287 
all lines in Panel A. (C) The same as panels A and B, but with the item at position 0 288 
assigned a higher response amplitude than the other three items. (D) The same panels 289 
as A and B, but with both an enhanced item at position 0 and a suppressed item at position 290 
-90. (E) Actual IEM model output for 4-item search arrays in V2 (Target plotted at 0, 291 
distractor plotted at -90). To estimate the strength of each of the 4 underlying item 292 
representations, one can simply measure the height (a.u.) at expected item peaks (i.e., -293 
180, -90, 0, and 90). Alternatively, one may use a non-negative least squares solution to 294 
estimate weights for a regressor for each of the 4 item positions. Each regressor is the 1-295 
item IEM output from the independent mapping task within the same region (e.g., V2), 296 
shifted to the appropriate item location. (F) Example IEM output and best-fitting non-297 
negative least squares solution with 4 item regressors.  298 
 299 

Analysis of search array locations in V1, V2, V3, V3AB, hV4, and IPS0. 300 

 Given that we can assess differential responses associated with each of the 4 301 

items in the search array (Figure 4), we next tested whether goal- and history-driven 302 

modulations were differentially represented across the visual stream by performing an 303 

analysis of history-driven effects on target and distractor processing across visual ROIs 304 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 2, 2020. ; https://doi.org/10.1101/2020.09.30.321729doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.30.321729


HISTORY-DRIVEN MODULATIONS IN VISUAL CORTEX 12 

(Figure 5). These six ROIs (V1, V2, V3, V3AB, hV4 and IPS0) were chosen for each 305 

participant having at least 90 spatially selective voxels as determined by the localizer 306 

data. Here, we focus on history-driven effects on target processing and distractor 307 

processing for the arrays where behavioral and neural distractor competition effects were 308 

greatest (target-distractor separation +/-90°, see Figure 2E,F). Full ANOVA results and 309 

additional plots are shown for individuals ROIs with both array 90° and 180° 310 

configurations in Figure S7-8 and Analysis S5.  311 

 312 

 313 
Figure 5. Dissociable effects of stimulus history on target enhancement and 314 
distractor suppression. (A) Model responses for individual ROIs as a function of task 315 
condition (Arrays with target-distractor distance +/-90). Purple and green lines (Shaded 316 
error bars = 1 SEM) show the output of the inverted encoding model in the color constant 317 
and color variable conditions, respectively. Target enhancement can be seen as the 318 
greater height at position 0; history-driven distractor suppression can be seen as the lower 319 
height at position -90 for the purple vs. green line. Background panels at -180°, -90°, 0° 320 
and +90° show the positions of the 4 search array items (blue = target (T), pink = distractor 321 
(D), green = non-target 1(N1), orange = non-target 2 (N2), (B) Target amplitude as a 322 
function of ROI and task condition. There was no effect of task condition on target 323 
amplitude, but a significant increase in target amplitude across ROIs. Violin plot shading 324 
shows range and distribution of the data; dots represent single subjects; black error bars 325 
indicate ±1 SEM. (C) Distractor amplitude as a function of ROI and task condition. There 326 
was a significant effect of task condition on distractor amplitude, and this history-driven 327 
effect did not interact with ROI.   328 
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 329 

 We found evidence for within-display target enhancement (i.e., enhancement of 330 

the target over other positions), but we did not find evidence for history-driven 331 

modulations of target enhancement. Overall target enhancement was significant in all 332 

ROIs (all p’s < .001) except for V1 (p’s > .12), and target enhancement significantly 333 

increased across ROIs (p < .001) as shown in Figure 6A-B. There was, however, no 334 

meaningful effect of history on target amplitude as revealed by a repeated-measures 335 

ANOVA testing the main effect of history and the interaction between history and ROI on 336 

target processing (p = .35, η2p = .08; p = .64, η2p = .04 for main effect and interaction 337 

respectively). This pattern was the same whether we used raw amplitude values or we 338 

used values from the GLM (no effect of history, p = .28, no interaction of history and ROI, 339 

p = .51). 340 

 In contrast, history had a significant effect on distractor amplitude such that 341 

distractor amplitudes were significantly attenuated in the color constant condition relative 342 

to the color variable condition. A repeated-measures ANOVA revealed a main effect of 343 

history (p = .007, η2p = .50) and no interaction between history and ROI (p = .44, η2p = 344 

.08), indicating that the effect of history on distractor processing was similar throughout 345 

the examined ROIs. Though the ANOVA suggests that history effects were of a similar 346 

magnitude across all examined ROIs, a post-hoc simple main effects analysis showed 347 

that the effect was individually significant only in V1 (p < .001) and V3 (p < .01). This 348 

general pattern was the same whether we used raw amplitude values or else used values 349 

from the GLM approach (main effect of history, p = .01, η2p = .47, no interaction of history 350 

and ROI, p = .87, η2p = .03). 351 

 Finally, we examined changes in non-target responses. For “non-target 1” (the item 352 

neighboring the target on the side opposite the distractor), there was an overall history 353 

related modulation (color constant > color variable, p = .016, η2p = .42) that did not interact 354 

with ROI (p = .76, η2p = .03). Similar general effects on non-target processing have been 355 

observed recently51 and may reflect a bias of attention away from the distractor such that 356 

attention may ‘overshoot’ the target because of the reduction in signal at the distractor 357 

location. The effect of history on “non-target 1” responses likewise was similar though of 358 
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borderline significance in the GLM analysis (color constant > color variable, p = .049, η2p 359 

= .31). We found no effect of history on the other non-target (“non-target 2”) which 360 

occupied the spatial position 180 degrees from the target item (p >= .61).  361 

Finally, additional analyses on larger, aggregate ROIs (V1-V3, IPS0-3) yield 362 

convergent results and also demonstrate how distractor suppression effects were absent 363 

for arrays where the target and distractor did not compete with each other (target-364 

distractor separation +/- 180°), consistent with our separate analysis of each ROI (Figure 365 

6) and prior behavioral and neural findings41,49,51,60 (Analysis S2-4, Figures S4-6). 366 

 367 

Discussion 368 

To find what we are looking for, we must integrate information about stimulus 369 

relevance, salience, and history. While the impact of stimulus relevance and salience on 370 

topographically organized population codes have been thoroughly investigated, stimulus 371 

history is not thought to be a wholly goal-driven or stimulus-driven process as history 372 

effects depend on interactions between the current stimulus drive (‘bottom-up’ factor) and 373 

the current internal state of the visual system (‘top-down’ factor). To address this 374 

ambiguity and to better understand how history impacts visual processing, we tested 375 

whether history-driven changes to attentional priority operate in a manner akin to 376 

canonically goal-driven and/or to stimulus-driven signatures of priority. To do so, we 377 

estimated population-level neural responses evoked by 4-item search arrays across 378 

retinotopically-defined areas of occipital and parietal cortex. We found that stimulus 379 

history did not modulate the specificity of goal-driven target templates, as goal-driven 380 

target enhancement was unaffected by stimulus history. Instead, we found that stimulus 381 

history attenuated responses related to distractors throughout the visual hierarchy. These 382 

results suggest that stimulus history may influence visual search performance via local 383 

competitive interactions within early sensory cortex (i.e., V1). 384 

Traditional models of image-computable salience propose that local image 385 

statistics determine competitive interactions that give rise to 2D spatial salience maps 386 

within V126,27, and these models do not typically account for the effects of stimulus history. 387 

However, recent work suggests that neural adaptation – which is linked to the history of 388 
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prior stimuli – in a subset of tuned neurons may alter stimulus-driven competitive 389 

dynamics (e.g., divisive normalization75) within early visual cortex76. Thus, to 390 

accommodate our observation of history-driven distractor suppression within existing 391 

saliency models, we propose that stimulus-driven evoked responses may be integrated 392 

over a longer, multi-trial duration (as opposed to just within a single image; Figure 6)77–79. 393 

In the context of models of visual search, this might be comprised of a series of 2D spatial 394 

maps that together form a temporally integrated 3D salience map (i.e., salience is 395 

computed based on current and prior physical stimulus properties). Consistent with the 396 

notion of a 3D salience map, recent behavioral and neural evidence suggests a role for 397 

priming and habituation in visual search behaviors42–44,50,80 (also see81).  398 

 399 
Figure 6. Simplified cartoon illustration of local-image versus temporal-integration 400 
salience for a simple image with one feature and location. (A) In 2-D salience 401 
computations, stimulus-driven stimulus drive is determined locally within a given image 402 
without respect to prior images. Sequence 1 is 4 different trials, and on each trial the 403 
same stimulus is shown (Blue-Blue-Blue-Blue). Sequence 2 is 4 different trials, but the 404 
final trial is a different color from the preceding trials (Green-Green-Green-Blue). The final 405 
trial (Blue) is physically identical for the two sequences. So, the final stimuli (trial n in each 406 
sequence) have identical 2-D salience. Assuming that we chose equiluminant green and 407 
blue values, then each “frame” in the sequence likewise has approximately the same 408 
image-computable salience, as shown by the uniform-sized square pulses in the cartoon. 409 
(B) Alternatively, stimulus-driven salience maps may better be conceived of as reflecting 410 
a temporally-integrated 3-D salience map, as early sensory neurons adapt to ongoing 411 
stimulus features. In Sequence 1 (Blue-Blue-Blue-Blue), the activity of neurons that are 412 
maximally responsive to blue wanes due to adaptation. In Sequence 2 the activity of 413 
neurons maximally responsive to green wanes over the first 3 trials, but the final stimulus 414 
elicits a robust response from the non-adapted blue-preferring neurons. Thus, temporally-415 
integrated salience for the trial n in each sequence differs across the two sequences even 416 
though the stimuli are physically identical.  417 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 2, 2020. ; https://doi.org/10.1101/2020.09.30.321729doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.30.321729


HISTORY-DRIVEN MODULATIONS IN VISUAL CORTEX 16 

Consistent with a temporally-integrated salience account of history-driven 418 

distractor suppression, we observed history-driven modulations only with sufficient 419 

competition (i.e., targets and distractors were closer together) and we observed robust 420 

history-driven modulations in V1 in the absence of goal-driven modulations. In line with 421 

our findings, prior behavioral work has shown that incidental repetitions of distractor, but 422 

not target, features and locations modulate search performance49,50. Likewise, prior work 423 

has shown a rapid suppression of distractor-evoked neural responses56,57,82–86 and that 424 

the likelihood of distraction results in anticipatory changes to distractor, but not target, 425 

locations51,87,88. However, the proposed temporally-integrated salience account does not 426 

capture all history-driven effects. In our task, the repeated distractor features were purely 427 

visual in nature, and thus history effects might be mediated entirely via local circuit 428 

dynamics (i.e., the adaptation account described above). In contrast, other studies have 429 

examined history-driven effects for more abstract features like reward10,19,89–95 (but also 430 

see96,97), which may require an intermediary pathway such as the medial-temporal lobe13 431 

or dopaminergic midbrain structures89,98.  432 

In addition to implicating early visual cortex in representing history-driven task 433 

factors during visual search, we also replicated prior findings that the locations of attended 434 

items (here, search targets) are prioritized relative to other item locations in both visual 435 

and parietal cortex7,8,10. These target-related modulations are consistent with the broad 436 

involvement of visually-responsive regions in representing goal-driven priority during 437 

visual search19,25. For example, recent studies manipulated  the salience (contrast) and 438 

relevance (attended or unattended) of items and found that salience and relevance were 439 

both represented, to varying degrees, across the visual hierarchy8,20. Notably, however, 440 

here we found that target prioritization was absent in V1, whereas prior work has found 441 

robust effects of attention in V17,10,11,21–24,99,100. This difference may reflect task 442 

differences — much prior work found attention-related gains in V1 when spatial attention 443 

was cued in advance or a single target was shown, whereas visual search arrays provide 444 

visual drive at many competing locations and spatial attention is deployed only after array 445 

onset. In addition, our work suggests that further work may be needed to unconfound 446 

history effects and attention effects in the study of spatial attention, as much early work 447 
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on univariate attention effects has employed blocked designs where the same location is 448 

attended for many trials in a row21,22,24,99,100.  449 

Although our work suggests that stimulus history modulates representations of 450 

distractor but not target processing in visual cortex, there are some potential limitations 451 

to the current design that suggest avenues for future work. First, because we measured 452 

only location, we could not directly measure suppression of the distractor color40. 453 

However, as the spatial position of the distractor was completely unpredictable, our 454 

results do strongly imply that the distractor color was suppressed. Likewise, most theories 455 

of visual search hypothesize that space is the critical binding medium through which 456 

feature and goal maps are integrated3,5,6, and recent work suggests that location is 457 

spontaneously encoded even when only non-spatial features such as color are task-458 

relevant101. Second, it is possible that history may modulate both distractor- and target-459 

processing in other circumstances not tested here. That is, perhaps the target template 460 

‘diamond’ in our task was sufficiently useful such that adding feature information to this 461 

template (e.g., ‘red diamond’ rather than ‘diamond’) did not confer a behavioral advantage 462 

(but see102). Finally, the time-course of MRI (sampling every 800 ms) is slower than shifts 463 

of spatial attention to the search target (< 500 ms)103. Although the history-driven effects 464 

that we observed in visual cortex are consistent with the rapid distractor suppression 465 

effects observed in EEG82,83, we cannot definitively say on the basis of these data that 466 

the observed history-driven effects occurred rapidly and directly within visual cortex 467 

versus via recurrent feedback from later visual areas. Nonetheless, the present work is 468 

consistent with and provides critical initial evidence for such a model.  469 

 470 

Methods 471 

Participants 472 

 Experiment 1a: MRI experiment. Healthy volunteers (n = 12; 9 female; mean age 473 

= 25.3 years [SD = 2.5, min = 21, max = 30]; all right-handed; normal or corrected-to-474 

normal visual acuity; normal color vision) participated in three ~2 hour sessions at the 475 

Keck Center for fMRI on the University of California San Diego (UCSD) campus, and were 476 

compensated $20/hr. Procedures were approved by the UCSD Institutional Review 477 
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Board, and participants provided written informed consent. Sample size was determined 478 

by a power analysis on data from Sprague et al.8 where achieved power (1-ß) to detect a 479 

within-subjects attention modulation using an inverted encoding model was 83% (across 480 

10 ROIs) with n=8. We planned for n =11 to achieve estimated 90% power (rounded up 481 

to n = 12 to satisfy our counter-balancing criteria).  482 

Experiment 1b: Behavior only. Healthy volunteers (n = 24; 21 female; mean age 483 

= 19.8 years [SD = 1.5, min = 18, max = 24]; normal or corrected-to-normal visual acuity; 484 

normal color vision; handedness not recorded) participated in one 1.5-hour experimental 485 

session in the Department of Psychology on the UCSD campus, and were compensated 486 

with course credit. Procedures were approved by the UCSD IRB, and all participants 487 

provided written informed consent. A sample size of 24 was chosen a priori based on 488 

published papers56. 489 

 490 

Session procedures 491 

Exp 1a, Retinotopy session. Participants completed one retinotopic mapping 492 

session prior to participation in the experimental sessions, following standard 493 

procedures104,105. Some participants had already completed a retinotopy session as part 494 

of prior studies in the lab; this session was used if available. Retinotopy data were used 495 

to identify retinotopic ROIs (V1-V3, V3AB, hV4, VO1, VO2, LO1, LO2, TO1, TO2, IPS0-496 

4). During each session, participants viewed flickering checkerboards. On meridian 497 

mapping runs, a “bowtie” checkerboard alternated between the horizontal and vertical 498 

meridians. On polar angle mapping runs, a checkerboard wedge slowly rotated in a 499 

clockwise or counterclockwise direction. On eccentricity mapping runs, a “donut” 500 

checkerboard began near fixation and its radius slowly expanded outward. A high-501 

resolution anatomical scan was collected for functional alignment. Anatomical and 502 

functional retinotopy analyses were performed using custom code caling existing 503 

FreeSurfer and FSL functions. Functional retinotopy data were used to draw ROIs, but 504 

only voxels that were also visually responsive to experimental localizers (below) were 505 

analyzed further.   506 
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Exp 1a, Main MRI session. Participants completed two experimental sessions. In 507 

each session, they completed 2 runs of the item position localizer, 4 runs of the spatial 508 

location localizer, and 8 runs of the search task (4 runs “color variable”, 4 runs “color 509 

constant”). When time allowed, extra localizer runs were collected. Some participants also 510 

took part in an unrelated study in which additional localizers were collected. 511 

Exp 1b. Participants completed 12 blocks of the search task (6 blocks “color 512 

variable”, 6 blocks “color constant”).  513 

 514 

Stimuli and task procedures 515 

Experiment 1a: MRI  516 

Stimuli were projected on a 21.5 x 16 cm screen mounted inside the scanner bore. 517 

The screen was viewed from a distance of ~47 cm through a mirror. Stimuli were 518 

generated in MATLAB (2017b, The MathWorks, Natick, MA) with the Psychophysics 519 

toolbox 106,107 on a laptop running Ubuntu. Responses were collected with a 4-button 520 

button box. Stimuli for each task are shown in Figure 1.  521 

 Item position localizer. Participants viewed reversing checkerboards (4 Hz 522 

flicker) which occupied the locations of the items in the search task (each item radius = 523 

2.5º placed on an imaginary circle 7º from fixation, with one item in each of the 4 524 

quadrants on the circle). Participants were shown items on 2 alternating diagonals (i.e., 525 

items in Quadrants 1 and 3 and then Quadrants 2 and 4) for 3 sec each. There were 88 526 

stimulus presentations within each run. Participants were instructed to attend to both 527 

items, and to press a button if either item briefly dimmed. A brief (250 ms) dimming 528 

occurred on 1 of the 2 items for 25% of stimulus presentations.  529 

 Spatial location localizer. Participants viewed a reversing checkerboard wedge 530 

(flicker = 4 Hz; white & black checkerboards) at one of 24 positions. Checkerboard 531 

positions were equally spaced along a circle with radius = 7º, and wedges were non-532 

overlapping (i.e., each wedge’s width along the circle filled a 15º arc and was ~5º of visual 533 

angle in height). The wedge stayed at one position for 3 sec, then moved to a different 534 

position (with the constraint that back-to-back positions must be in different quadrants). 535 

There were 96 wedge presentations within each run. Participants were instructed to 536 
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attend to the fixation point; if the fixation point’s color changed (increase or decrease in 537 

brightness), they pressed a button on the button box. A total of 20 fixation point color 538 

changes occurred throughout each run; changes to the fixation cross happened at 539 

random times with respect to wedge stimulus onsets.  540 

 Search task. Participants performed a variant of the additional singleton search 541 

task (Theeuwes, 1992). On each trial, participants saw a search array containing 4 items 542 

(item colors were red, RGB = 255,0,0, or green, RGB = 0,255,0, and presented on a black 543 

background, RGB = 0,0,0). The items (2.4º radius) were placed on an imaginary circle 7º 544 

from fixation with 1 item in each visual quadrant (i.e., 45º, 135º, 225º & 315º). Participants 545 

fixated a small, gray dot (.2º) throughout each run. Participants searched for a “target” 546 

(the diamond-shaped item) among distractor items and reported the orientation of the 547 

small line inside (line size = .08º x .94º; orientation = horizontal or vertical) by pressing 548 

one of two buttons. Non-singleton distractors, ‘non-targets’, had the same color as the 549 

shape-defined target (e.g., green circles). A “singleton distractor” was present on 66.67% 550 

of trials, and was a color singleton (e.g., red circle). Stimuli are illustrated in Figure 1. 551 

Target location (quadrant 1-4), distractor location relative to the target (-90º, +90º, or 552 

+180º), distractor presence (66.67% present), and the orientation of the line inside the 553 

target (horizontal or vertical) were fully counterbalanced within each run, for a total of 72 554 

trials per run. Search set size was held constant at 4 items. The search array was 555 

presented for 2 sec followed by a blank inter-trial interval (equal probability of 2, 3.2, 5, or 556 

8 sec).  557 

 We manipulated the degree to which participants were behaviorally captured by 558 

the distractor by changing trial history. In “color variable” runs, the colors of targets and 559 

distractors swapped unpredictably. In “color constant” runs, the colors of targets and 560 

distractors were fixed throughout the run (e.g., the targets and non-singleton distractors 561 

were always green and the singleton distractor was always red). Based on prior work 57,58, 562 

we expected to observe robust behavioral capture by the singleton distractor in the color 563 

variable runs and no behavioral capture in the color constant runs.  564 

Run types were blocked and partially counterbalanced within and across sessions, 565 

such that the order of the 2 conditions would be balanced across the 2 sessions for each 566 
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participant. For example, if in Session 1 a participant first received 4 color variable runs 567 

followed by 4 color constant runs (red), then in Session 2 they would first receive 4 color 568 

constant runs (green) followed by 4 color variable runs.  569 

 570 

Experiment 1b: Behavior 571 

Participants performed the same additional singleton search task described above. 572 

Participants viewed the stimuli on CRT monitors (39 x 29.5 cm) from a distance of ~52 573 

cm. Stimulus parameters (size, color) and trial timing were matched to the fMRI 574 

experiment. Each experimental block contained a total of 48 search trials. Participants 575 

performed a total of 12 blocks of trials (6 color variable, 3 color constant with red targets, 576 

3 color constant with green targets). The color constant and color variable conditions were 577 

blocked and counterbalanced across participants (half of participants received the color 578 

variable condition first).  579 

 580 

Magnetic resonance imaging acquisition parameters 581 

Scans were performed on a General Electric Discovery MR750 3.0T scanner at 582 

the Keck Center for Functional Magnetic Resonance Imaging on the UCSD campus. 583 

High-resolution (1mm3 isotropic) anatomical images were collected as part of the 584 

retinotopy session. Most participants’ (10 of 12) anatomical images were collected with 585 

an Invivo 8-channel head coil; 2 participants’ anatomical images were collected with a 586 

Nova Medical 32-channel head coil (NMSC075-32-3GE-MR750). GE’s “Phased array 587 

Uniformity Enhancement” (PURE) method was applied to anatomical data acquired using 588 

the 32-channel coil in an attempt to correct inhomogeneities in the signal intensity. 589 

Functional echo-planar imaging (EPI) data were collected with the Nova 32 channel coil 590 

using the GE multiband EPI sequence, using nine axial slices per band and a multiband 591 

factor of eight (total slices = 72; 2 mm3 isotropic; 0 mm gap; matrix = 104 × 104; field of 592 

view = 20.8 cm; repetition time/echo time (TR/ TE) = 800/35 ms, flip angle = 52°; in-plane 593 

acceleration = 1). The initial 16 TRs in each run served as reference images for the 594 

transformation from k-space to image space. Un-aliasing and image reconstruction 595 

procedures were performed on local servers and on Amazon Web Service servers using 596 
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code adapted from the Stanford Center for Cognitive and Neurobiological Imaging (CNI). 597 

Forward and reverse phase-encoding directions were used during the acquisition of two 598 

short (17 sec) “top-up” datasets. From these images, susceptibility-induced off-resonance 599 

fields were estimated 108 and used to correct signal distortion inherent in EPI sequences, 600 

using FSL top-up 109,110. 601 

 602 

Pre-processing 603 

Pre-processing of imaging data closely followed published lab procedures111 using 604 

FreeSurfer and FSL. We performed cortical surface gray-white matter volumetric 605 

segmentation of the high-resolution anatomical volume from the retinotopy session using 606 

FreeSurfer’s “recon-all” procedures112. The first volume of the first functional run from 607 

each scanning session was coregistered to this common T1-weighted anatomical image. 608 

To align data from all sessions to the same functional space, we created transformation 609 

matrices with FreeSurfer’s registration tools113, and used these matrices to transform 610 

each four-dimensional functional volume using FSL’s FLIRT114,115. After cross-session 611 

alignment, motion correction was performed using FSL’s McFLIRT (no spatial smoothing, 612 

12 degrees of freedom). Voxelwise signal time-series were normalized via Z-scoring on 613 

a run-by-run basis. Analyses after preprocessing were performed using custom scripts in 614 

MATLAB 2018A.  615 

 616 

fMRI analyses: Inverted encoding model  617 

Voxel selection for Decoding ROIs.  We defined visual ROI’s using data from 618 

the retinotopy session following published lab procedures7,111. From these retinotopically-619 

derived ROI’s, we chose the subset of voxels that were spatially selective for the stimuli 620 

used in this task. We thresholded voxels using the independent mapping task data. We 621 

ran a one-way ANOVA with factor Quadrant on each voxel; significant voxels (p < .05 622 

uncorrected) were retained for analysis. For the aggregate analyses, we a priori created 623 

an early visual cortex ROI (all spatially selective voxels from V1-V3) and a parietal cortex 624 

ROI (all spatially selective voxels from IPS0-3). For individual ROI analyses, we used all 625 
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individual retinotopic ROIs for which there were a minimum of 90 spatially selective voxels 626 

per participant: V1, V2, V3, V3AB, hV4, and IPS0. 627 

Inverted Encoding Model. Following prior work7,116, we used an inverted 628 

encoding model to estimate spatially-selective tuning functions from multivariate, voxel-629 

wise activity within each ROI. We assumed that each voxel’s activity reflects the weighted 630 

sum of 24 spatially selective channels, each tuned for a different angular location. These 631 

information channels are assumed to reflect the activity of underlying neuronal 632 

populations tuned to each location. We modeled the response profile of each spatial 633 

channel as a half sinusoid raised to the 24th power:  634 

R = sin(0.5θ),-, 635 

where θ is angular location (0–359°, centered on each of the 24 bins from the mapping 636 

task), and 𝑅 is the response of the spatial channel in arbitrary units.  637 

Independent training data B1 were used to estimate weights that approximate the 638 

relative contribution of the 24 spatial channels to the observed response at each voxel. 639 

Let B1 (m voxels × n1 observations) be the activity at each voxel for each measurement 640 

in the training set, C1 (k channels × n1 observations) be the predicted response of each 641 

spatial channel (determined by the basis functions) for each measurement, and W (m 642 

voxels × k channels) be a weight matrix that characterizes a linear mapping from “channel 643 

space” to “voxel space”.  The relationship between B1, C1, and W can be described by a 644 

general linear model: 645 
B0 = WC0 646 

We obtained the weight matrix through least-squares estimation: 647 

W3 = B0C045C0C046
70 648 

In the test stage, we inverted the model to transform the observed test data B2 (m voxels 649 

× n2 observations) into estimated channel responses, C2 (k channels × n2 observations), 650 

using the estimated weight matrix, W3 , that we obtained in the training phase: 651 

C,8 = 5W3 4W3 670W3 4B, 652 

Each estimated channel response function was then circularly shifted to a common center 653 

by aligning the estimated channel responses to the channel tuned for target location.  654 
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Model training and testing. We trained the IEM using independent mapping task 655 

data and tested the model using single trial search-task data (average of 4 to 10 TR’s 656 

after search array onset). We then shifted and averaged the search task data so that like 657 

trials were aligned (e.g., rotate and average all trials with target-distractor distance of 90). 658 

To reduce idiosyncrasies of only having 1 test set, we iterated the analysis by leaving out 659 

1 block of training data and 1 block of test data, looping through all possible combinations 660 

(e.g., for each 1 block of left out training data, we left out each possible block of test data 661 

on different runs of the loop).  662 
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