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HISTORY MODULATES DISTRACTORS 2 

Abstract 45 

To find important objects, we must focus on our goals, ignore distractions, and take our 46 

changing environment into account. This is formalized in models of visual search whereby 47 

goal-driven, stimulus-driven and history-driven factors are integrated into a priority map 48 

that guides attention. Stimulus history robustly influences where attention is allocated 49 

even when the physical stimulus is the same: when a salient distractor is repeated over 50 

time, it captures attention less effectively. A key open question is how we come to ignore 51 

salient distractors when they are repeated. Goal-driven accounts propose that we use an 52 

active, expectation-driven mechanism to attenuate the distractor signal (e.g., predictive 53 

coding), whereas stimulus-driven accounts propose that the distractor signal is attenuated 54 

due to passive changes to neural activity and inter-item competition (e.g., adaptation). To 55 

test these competing accounts, we measured item-specific fMRI responses in human 56 

visual cortex during a visual search task where trial history was manipulated (colors 57 

unpredictably switched or were repeated). Consistent with a stimulus-driven account of 58 

history-based distractor suppression, we found that repeated singleton distractors were 59 

suppressed starting in V1, and distractor suppression did not increase in later visual 60 

areas. In contrast, we observed signatures of goal-driven target enhancement that were 61 

absent in V1, increased across visual areas, and were not modulated by stimulus history. 62 

Our data suggest that stimulus history does not alter goal-driven expectations, but rather 63 

modulates canonically stimulus-driven sensory responses to contribute to a temporally-64 

integrated representation of priority.  65 

 66 
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Significance Statement 75 

Visual search refers to our ability to find what we are looking for in a cluttered visual world 76 

(e.g., finding your keys). To perform visual search, we must integrate information about 77 

our goals (e.g., ‘find the red key-chain’), the environment (e.g., salient items capture your 78 

attention), and changes to the environment (i.e., stimulus history). Although stimulus 79 

history impacts behavior, the neural mechanisms that mediate history-driven effects 80 

remain debated. Here, we leveraged fMRI and multivariate analysis techniques to 81 

measure history-driven changes to the neural representation of items during visual 82 

search. We found that stimulus history influenced the representation of a salient ‘pop-out’ 83 

distractor starting in V1, suggesting that stimulus history operates via modulations in early 84 

sensory processing rather than goal-driven expectations.  85 

 86 
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Introduction 105 

At any moment we can selectively attend only a small fraction of available 106 

perceptual inputs, so we need to select a subset of information and discard irrelevant 107 

information. This capacity limit poses a significant computational challenge, particularly 108 

given that perceptual inputs constantly change as we move through the world. Given our 109 

constantly changing surroundings, one particularly useful computational strategy is to 110 

discard information that stays the same over time. For example, when searching for sea 111 

glass at the beach, irrelevant but salient information (e.g., a red plastic bottle-cap) may 112 

grab our attention. But, if we repeatedly encounter the same irrelevant information (e.g., 113 

the beach is littered with red bottle-caps), then we can come to ignore initially salient 114 

distractors. Extensive evidence suggests that stimulus history robustly modulates 115 

behavior: An initially salient color distractor no longer captures our attention after we have 116 

seen it many times (Geyer et al., 2006; Vatterott and Vecera, 2012; Geng, 2014; Gaspelin 117 

et al., 2015, 2017; Wang and Theeuwes, 2018a; Failing et al., 2019a; Geng et al., 2019; 118 

Van Moorselaar and Slagter, 2020). Yet, debate persists as to how this history-driven 119 

behavioral modulation is achieved: Do we use an active, expectation-based mechanism 120 

to suppress the salient distractor signal when it is repeated (e.g., predictive coding), or, 121 

is the distractor signal passively attenuated because of changes to neural activity with 122 

repetition (e.g., adaptation)? Here, we leverage item-specific, neural estimates of priority, 123 

to test competing hypotheses of how stimulus history alters attentional priority.   124 

Models of visual search hypothesize that we integrate information about what is 125 

relevant (goal-driven or ‘top-down’ factors), what is salient given local image statistics 126 

(stimulus-driven or ‘bottom-up’ factors), and what has occurred in the past (history-driven 127 

factors) via an integrated, topographically organized “priority map” (Treisman and Gelade, 128 

1980; Wolfe, 1994; Itti and Koch, 2000; Fecteau and Munoz, 2006; Serences and Yantis, 129 

2006; Awh et al., 2012). Note, some work uses the terms ‘saliency’ and ‘priority’ 130 

interchangeably, whereas other work uses these terms to refer to distinct concepts. Here, 131 

we use ‘priority’ to refer to the integration of goal-driven and stimulus-driven task factors, 132 

and ‘saliency’ to refer to strictly image-computable, stimulus-driven task factors (Serences 133 

and Yantis, 2006). Although both stimulus-driven and goal-driven information is 134 
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represented to some extent in many cortical regions (Silver et al., 2005; Serences and 135 

Yantis, 2006, 2007; Saproo and Serences, 2010; Bogler et al., 2011; Sprague and 136 

Serences, 2013; Sprague et al., 2018b), areas of parietal cortex (e.g., LIP, IPS) are 137 

hypothesized to be ideal candidates for integrating information about stimulus-driven 138 

sensory inputs from occipital cortex and information about goals from pre-frontal cortex 139 

(Ipata et al., 2006, 2009; Bisley and Mirpour, 2019; Theeuwes, 2019). 140 

History-driven effects have only recently been added to models of visual search, 141 

in part because these effects do not wholly fit within a ‘goal-driven’ versus ‘stimulus-142 

driven’ dichotomous framework (Awh et al., 2012; Geng, 2014; Le Pelley et al., 2016; 143 

Geng et al., 2019; Van Moorselaar and Slagter, 2020). Rather, history-driven effects rely 144 

on both current sensory input and prior experiences. Thus, debate persists about whether 145 

stimulus history influences attentional priority by co-opting elements of stimulus-driven 146 

computations, goal-driven computations, or another pathway altogether (Gaspelin et al., 147 

2015; Gaspelin and Luck, 2018; Wang and Theeuwes, 2018b; Geng et al., 2019; 148 

Theeuwes, 2019; Van Moorselaar and Slagter, 2020).  149 

Goal-driven accounts propose that we exploit voluntary selection mechanisms to 150 

incorporate information about history-driven task factors into priority maps. Earlier work 151 

has shown how voluntary attention may be used to enhance the target item relative to the 152 

other distractor items: when looking for a particular target, one may form a “template” of 153 

that feature and use this template to voluntarily up-regulate relevant portions of the visual 154 

field (Pashler and Shiu, 1999; Downing, 2000; Soto et al., 2005; Olivers et al., 2006; 155 

Carlisle et al., 2011; Beck et al., 2012). Similar voluntary selection mechanisms might 156 

likewise be used to suppress a distractor signal when it is repeated, either directly or 157 

indirectly. First, distractor suppression could arise indirectly because of predictive coding 158 

and biased competition (Desimone and Duncan, 1995; Spratling, 2008; Summerfield and 159 

de Lange, 2014). In this account of history-driven distractor suppression, participants 160 

could use their expectations about the upcoming, repeated stimulus futures to more 161 

strongly enhance the target and, consequently, the competing distractor would be 162 

automatically suppressed due to inter-item competition (Spratling, 2008). Second, 163 

distractor suppression could arise directly, via a top-down suppression signal for a 164 
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specific feature. This direct suppression signal is sometimes referred to as a “negative 165 

search template” (Arita et al., 2012; Moher and Egeth, 2012; Reeder et al., 2017; Conci 166 

et al., 2019, but see: Beck and Hollingworth, 2015; Becker et al., 2015). Critically, in either 167 

the direct or indirect case, we would expect to observe a similar neural signature at the 168 

level of population codes measured with fMRI for both of these goal-driven accounts. 169 

Specifically, we should observe that distractor suppression effects are greater in later 170 

visual areas (e.g., IPS0) than in earlier visual areas (e.g., V1), consistent with a goal-171 

driven signal (e.g., Silver et al., 2005; Sprague et al., 2018b). In the case of the predictive 172 

coding / biased competition model (Spratling, 2008), we would further predict that target 173 

enhancement and distractor suppression should be yoked, whereby greater distractor 174 

suppression will be accompanied by greater target enhancement as arrays are repeated.  175 

In contrast, stimulus-driven accounts instead suggest that history-driven distractor 176 

suppression can arise from passive changes to neural activity as stimuli are presented 177 

over time (Turatto and Pascucci, 2016; Turatto et al., 2018; Wang and Theeuwes, 2018a; 178 

Failing et al., 2019a; Won and Geng, 2020). For example, some work suggests that even 179 

passive, task-irrelevant exposure to a particular feature may be sufficient to alter 180 

attentional guidance and search behaviors (Engel and Furmanski, 2001; Grill-Spector and 181 

Malach, 2001; Gardner et al., 2005; Kristjansson et al., 2007; Turatto and Pascucci, 2016; 182 

Turatto et al., 2018; Won and Geng, 2020). Although the effects of adaptation for single 183 

stimuli are well understood, how adaptation affects saliency in multi-item displays has 184 

only recently been considered. Yet, emerging evidence suggests that altered firing rates 185 

from simple sensory adaptation effects could alter inter-item competition (Solomon and 186 

Kohn, 2014) which, in turn, could alter stimulus saliency and behavior (Treisman and 187 

Gelade, 1980; Wolfe, 1994; Itti and Koch, 2000; Li, 2002; Zhang et al., 2012).  188 

Here, we tackle the debate about history-driven distractor suppression from a new 189 

angle:  we measured neural activity via fMRI in human subjects performing a visual search 190 

task in order to estimate item-specific changes to neural priority across the visual stream. 191 

Critically, we manipulated trial history so that we could compare neural responses to 192 

physically identical displays (e.g., green target, red singleton distractor) as a function of 193 

trial history (i.e., whether the colors of preceding displays repeated or varied).  194 
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Materials and Methods 195 

Participants 196 

 Experiment 1a: MRI experiment. Healthy volunteers (n = 12; 9 female; mean age 197 

= 25.3 years [SD = 2.5, min = 21, max = 30]; all right-handed; normal or corrected-to-198 

normal visual acuity; normal color vision) participated in three ~2 hour sessions at the 199 

Keck Center for fMRI on the University of California San Diego (UCSD) campus, and were 200 

compensated $20/hr. Procedures were approved by the UCSD Institutional Review 201 

Board, and participants provided written informed consent. Sample size was determined 202 

by a power analysis on data from Sprague et al.(Sprague et al., 2018b) where achieved 203 

power (1-ß) to detect a within-subjects attention modulation using an inverted encoding 204 

model was 83% (across 10 ROIs) with n=8. We planned for n =11 to achieve estimated 205 

90% power (rounded up to n = 12 to satisfy our counter-balancing criteria).  206 

Experiment 1b: Behavior only. Healthy volunteers (n = 24; 21 female; mean age 207 

= 19.8 years [SD = 1.5, min = 18, max = 24]; normal or corrected-to-normal visual acuity; 208 

normal color vision; handedness not recorded) participated in one 1.5-hour experimental 209 

session in the Department of Psychology on the UCSD campus, and were compensated 210 

with course credit. There were no duplicate participants across experiments. Procedures 211 

were approved by the UCSD IRB, and all participants provided written informed consent. 212 

A sample size of 24 was chosen a priori based on published papers(Gaspelin et al., 2015). 213 

 214 

Session procedures 215 

Exp 1a, Retinotopy session. Participants completed one retinotopic mapping 216 

session prior to participation in the experimental sessions, following standard 217 

procedures(Engel et al., 1994; Swisher et al., 2007). Some participants had already 218 

completed a retinotopy session as part of prior studies in the lab; this session was used 219 

if available. Retinotopy data were used to identify retinotopic ROIs (V1-V3, V3AB, hV4, 220 

VO1, VO2, LO1, LO2, TO1, TO2, IPS0-4). During each session, participants viewed 221 

flickering checkerboards. On meridian mapping runs, a “bowtie” checkerboard alternated 222 

between the horizontal and vertical meridians. On polar angle mapping runs, a 223 

checkerboard wedge slowly rotated in a clockwise or counterclockwise direction. On 224 
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eccentricity mapping runs, a “donut” checkerboard began near fixation and its radius 225 

slowly expanded outward. A high-resolution anatomical scan was collected for functional 226 

alignment. Anatomical and functional retinotopy analyses were performed using custom 227 

code calling existing FreeSurfer and FSL functions. Functional retinotopy data were used 228 

to draw ROIs, but only voxels that were also visually responsive to experimental localizers 229 

(below) were analyzed further.   230 

Exp 1a, Main MRI session. Participants completed two experimental sessions. In 231 

each session, they completed 2 runs of the item position localizer, 4 runs of the spatial 232 

location localizer, and 8 runs of the search task (4 runs “color variable”, 4 runs “color 233 

constant”). When time allowed, extra localizer runs were collected. Some participants also 234 

took part in an unrelated study in which additional localizers were collected. Across the 235 

two sessions, participants completed 16 runs of visual search (M = 1,1152 trials, SD = 0), 236 

an average of 11.2 runs of the spatial location localizer (M = 1,072 trials, SD = 298, min 237 

= 768, max = 1,536), and an average of 4.3 item position localizer runs (M = 381 trials, 238 

SD = 43, min = 352, max = 440).   239 

Exp 1b. Participants completed 12 blocks of the search task (6 blocks “color 240 

variable”, 6 blocks “color constant”).  241 

 242 

Stimuli and task procedures 243 

Experiment 1a: MRI  244 

Stimuli were projected on a 21.5 x 16 cm screen mounted inside the scanner bore. 245 

The screen was viewed from a distance of ~47 cm through a mirror. Stimuli were 246 

generated in MATLAB (2017b, The MathWorks, Natick, MA) with the Psychophysics 247 

toolbox (Brainard, 1997; Pelli, 1997) on a laptop running Ubuntu. Responses were 248 

collected with a 4-button button box. Stimuli for each task are shown in Figure 1.  249 

 Item position localizer. Participants viewed reversing checkerboards (4 Hz 250 

flicker) which occupied the locations of the items in the search task (each item radius = 251 

2.5º placed on an imaginary circle 7º from fixation, with one item in each of the 4 252 

quadrants on the circle). Participants were shown items on 2 alternating diagonals (i.e., 253 

items in Quadrants 1 and 3 and then Quadrants 2 and 4) for 3 sec each. There were 88 254 
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stimulus presentations within each run. Participants were instructed to attend to both 255 

items, and to press a button if either item briefly dimmed. A brief (250 ms) dimming 256 

occurred on 1 of the 2 items for 25% of stimulus presentations.  257 

 Spatial location localizer. Participants viewed a reversing checkerboard wedge 258 

(flicker = 4 Hz; white & black checkerboards) at one of 24 positions. Checkerboard 259 

positions were equally spaced along a circle with radius = 7º, and wedges were non-260 

overlapping (i.e., each wedge’s width along the circle filled a 15º arc and was ~5º of visual 261 

angle in height). The wedge stayed at one position for 3 sec, then moved to a different 262 

position (with the constraint that back-to-back positions must be in different quadrants). 263 

There were 96 wedge presentations within each run. Participants were instructed to 264 

attend to the fixation point; if the fixation point’s color changed (increase or decrease in 265 

brightness), they pressed a button on the button box. A total of 20 fixation point color 266 

changes occurred throughout each run; changes to the fixation cross happened at 267 

random times with respect to wedge stimulus onsets. We chose to have participants 268 

attend fixation, rather than the stimulus position, during the localizer task to reduce 269 

contamination of eye movements on any observed decoding effects (Mostert et al., 2018). 270 

Generally, systematic eye movement biases are absent or greatly attenuated when 271 

participants attend fixation and ignore the peripheral stimulus. With this cross-task training 272 

and testing scheme, we would expect that decoding should impaired for all 4 items if 273 

participants moved their eyes in the visual search task. Thus, this training-testing scheme 274 

protects against the possibility that item-specific target enhancement or distractor 275 

suppression effects could be driven by eye movements to a particular item in the display.  276 

 Search task. Participants performed a variant of the additional singleton search 277 

task (Theeuwes, 1992). On each trial, participants saw a search array containing 4 items 278 

(item colors were red, RGB = 255,0,0, or green, RGB = 0,255,0, and presented on a black 279 

background, RGB = 0,0,0). The items (2.4º radius) were placed on an imaginary circle 7º 280 

from fixation with 1 item in each visual quadrant (i.e., 45º, 135º, 225º & 315º). Participants 281 

fixated a small, gray dot (.2º) throughout each run. Participants searched for a “target” 282 

(the diamond-shaped item) among distractor items and reported the orientation of the 283 

small line inside (line size = .08º x .94º; orientation = horizontal or vertical) by pressing 284 
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one of two buttons. Non-singleton distractors, ‘non-targets’, had the same color as the 285 

shape-defined target (e.g., green circles). A “singleton distractor” was present on 66.67% 286 

of trials, and was a color singleton (e.g., red circle). Stimuli are illustrated in Figure 1. 287 

Note, throughout the manuscript, we will use the word “distractor” to refer to the color-288 

singleton distractors, whereas non-singleton distractors will be referred to simply as “non-289 

targets”. Target location (quadrant 1-4), distractor location relative to the target (-90º, 290 

+90º, or +180º), distractor presence (66.67% present), and the orientation of the line 291 

inside the target (horizontal or vertical) were fully counterbalanced within each run, for a 292 

total of 72 trials per run. Search set size was held constant at 4 items. The search array 293 

was presented for 2 sec followed by a blank inter-trial interval (equal probability of 2, 3.2, 294 

5, or 8 sec).  295 

 We manipulated the degree to which participants were behaviorally captured by 296 

the distractor by changing trial history. In “color variable” runs, the colors of targets and 297 

distractors swapped unpredictably. In “color constant” runs, the colors of targets and 298 

distractors were fixed throughout the run (e.g., the targets and non-singleton distractors 299 

were always green and the singleton distractor was always red). Based on prior work 300 

(Vatterott and Vecera, 2012; Gaspelin et al., 2017), we expected to observe robust 301 

behavioral capture by the singleton distractor in the color variable runs and no behavioral 302 

capture in the color constant runs.  303 

Run types were blocked and partially counterbalanced within and across sessions, 304 

such that the order of the 2 conditions would be balanced across the 2 sessions for each 305 

participant. For example, if in Session 1 a participant first received 4 color variable runs 306 

followed by 4 color constant runs (red), then in Session 2 they would first receive 4 color 307 

constant runs (green) followed by 4 color variable runs.  308 

 309 

Experiment 1b: Behavior 310 

Participants performed the same additional singleton search task described above. 311 

Participants viewed the stimuli on CRT monitors (39 x 29.5 cm) from a distance of ~52 312 

cm. Stimulus parameters (size, color) and trial timing were matched to the fMRI 313 

experiment. Each experimental block contained a total of 48 search trials. Participants 314 
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performed a total of 12 blocks of trials (6 color variable, 3 color constant with red targets, 315 

3 color constant with green targets). The color constant and color variable conditions were 316 

blocked and counterbalanced across participants (half of participants received the color 317 

variable condition first).  318 

 319 

Magnetic resonance imaging acquisition parameters 320 

Scans were performed on a General Electric Discovery MR750 3.0T scanner at 321 

the Keck Center for Functional Magnetic Resonance Imaging on the UCSD campus. 322 

High-resolution (1mm3 isotropic) anatomical images were collected as part of the 323 

retinotopy session. Most participants’ (10 of 12) anatomical images were collected with 324 

an Invivo 8-channel head coil; 2 participants’ anatomical images were collected with a 325 

Nova Medical 32-channel head coil (NMSC075-32-3GE-MR750). GE’s “Phased array 326 

Uniformity Enhancement” (PURE) method was applied to anatomical data acquired using 327 

the 32-channel coil in an attempt to correct inhomogeneities in the signal intensity. 328 

Functional echo-planar imaging (EPI) data were collected with the Nova 32 channel coil 329 

using the GE multiband EPI sequence, using nine axial slices per band and a multiband 330 

factor of eight (total slices = 72; 2 mm3 isotropic; 0 mm gap; matrix = 104 × 104; field of 331 

view = 20.8 cm; repetition time/echo time (TR/ TE) = 800/35 ms, flip angle = 52°; in-plane 332 

acceleration = 1). The initial 16 TRs in each run served as reference images for the 333 

transformation from k-space to image space. Un-aliasing and image reconstruction 334 

procedures were performed on local servers and on Amazon Web Service servers using 335 

code adapted from the Stanford Center for Cognitive and Neurobiological Imaging (CNI). 336 

Forward and reverse phase-encoding directions were used during the acquisition of two 337 

short (17 sec) “top-up” datasets. From these images, susceptibility-induced off-resonance 338 

fields were estimated (Andersson et al., 2003) and used to correct signal distortion 339 

inherent in EPI sequences, using FSL top-up (Smith et al., 2004; Jenkinson et al., 2012). 340 

 341 

Pre-processing 342 

Pre-processing of imaging data closely followed published lab procedures 343 

(Rademaker et al., 2019) using FreeSurfer and FSL. We performed cortical surface gray-344 
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white matter volumetric segmentation of the high-resolution anatomical volume from the 345 

retinotopy session using FreeSurfer’s “recon-all” procedures (Dale et al., 1999). The first 346 

volume of the first functional run from each scanning session was coregistered to this 347 

common T1-weighted anatomical image. To align data from all sessions to the same 348 

functional space, we created transformation matrices with FreeSurfer’s registration tools 349 

(Greve and Fischl, 2009), and used these matrices to transform each four-dimensional 350 

functional volume using FSL’s FLIRT (Jenkinson and Smith, 2001; Jenkinson et al., 351 

2002). After cross-session alignment, motion correction was performed using FSL’s 352 

McFLIRT (no spatial smoothing, 12 degrees of freedom). Voxelwise signal time-series 353 

were normalized via Z-scoring on a run-by-run basis. Analyses after preprocessing were 354 

performed using custom scripts in MATLAB 2018A.  355 

 356 

fMRI analyses: Inverted encoding model  357 

Voxel selection for Decoding ROIs.  We defined visual ROI’s using data from 358 

the retinotopy session following published lab procedures (Sprague and Serences, 2013; 359 

Rademaker et al., 2019). From these retinotopically-derived ROI’s, we chose the subset 360 

of voxels that were spatially selective for the stimuli used in this task. We thresholded 361 

voxels using the independent mapping task data. We ran a one-way ANOVA with factor 362 

Quadrant on each voxel; significant voxels (p < .05 uncorrected) were retained for 363 

analysis. For the aggregate analyses, we a priori created an early visual cortex ROI (all 364 

spatially selective voxels from V1-V3) and a parietal cortex ROI (all spatially selective 365 

voxels from IPS0-3). For individual ROI analyses, we used all individual retinotopic ROIs 366 

for which there were a minimum of 90 spatially selective voxels per participant: V1, V2, 367 

V3, V3AB, hV4, and IPS0. 368 

Inverted Encoding Model. Following prior work (Brouwer and Heeger, 2009; 369 

Sprague and Serences, 2013), we used an inverted encoding model to estimate spatially-370 

selective tuning functions from multivariate, voxel-wise activity within each ROI. We 371 

assumed that each voxel’s activity reflects the weighted sum of 24 spatially selective 372 

channels, each tuned for a different angular location. These information channels are 373 

assumed to reflect the activity of underlying neuronal populations tuned to each location. 374 
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We modeled the response profile of each spatial channel as a half sinusoid raised to the 375 

24th power:  376 

R = sin(0.5θ),-, 377 

where θ is angular location (0–359°, centered on each of the 24 bins from the mapping 378 

task), and 𝑅 is the response of the spatial channel in arbitrary units.  379 

Independent training data B1 were used to estimate weights that approximate the 380 

relative contribution of the 24 spatial channels to the observed response at each voxel. 381 

Let B1 (m voxels × n1 observations) be the activity at each voxel for each measurement 382 

in the training set, C1 (k channels × n1 observations) be the predicted response of each 383 

spatial channel (determined by the basis functions) for each measurement, and W (m 384 

voxels × k channels) be a weight matrix that characterizes a linear mapping from “channel 385 

space” to “voxel space”.  The relationship between B1, C1, and W can be described by a 386 

general linear model: 387 
B0 = WC0 388 

We obtained the weight matrix through least-squares estimation: 389 

W3 = B0C045C0C046
70 390 

In the test stage, we inverted the model to transform the observed test data B2 (m voxels 391 

× n2 observations) into estimated channel responses, C2 (k channels × n2 observations), 392 

using the estimated weight matrix, W3 , that we obtained in the training phase: 393 

C,8 = 5W3 4W3 670W3 4B, 394 

Each estimated channel response function was then circularly shifted to a common center 395 

by aligning the estimated channel responses to the channel tuned for target location.  396 

Model training and testing. We trained the IEM using independent mapping task 397 

data and tested the model using single trial search-task data (average of 4 to 10 TR’s 398 

after search array onset). We then shifted and averaged the search task data so that like 399 

trials were aligned (e.g., rotate and average all trials with target-distractor distance of 90). 400 

To reduce idiosyncrasies of only having 1 test set, we iterated the analysis by leaving out 401 

1 block of training data and 1 block of test data, looping through all possible combinations 402 
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(e.g., for each 1 block of left out training data, we left out each possible block of test data 403 

on different runs of the loop).  404 

 405 

Results 406 

Behavior 407 

Subjects performed a variant of the additional singleton search task (Theeuwes, 408 

1992) (Figure 1A) in which they searched for a target (diamond) among non-targets 409 

(circles). On each trial, the participant reported via button-press the orientation of the line 410 

inside the diamond target (vertical or horizontal). On 66.67% of trials, one of the non-411 

targets was uniquely colored (“singleton distractor present”, e.g., one red distractor, two 412 

green non-targets, and one green target item). Behavioral capture was quantified as 413 

slowed response times (RTs) when the distractor was present versus absent. In addition 414 

to examining the basic capture effect, a key goal of this work was to examine modulation 415 

of capture by trial history (Vatterott and Vecera, 2012; Gaspelin et al., 2015, 2017). Prior 416 

work has shown that participants can learn to suppress a distractor (i.e., no RT difference 417 

for singleton distractor present versus absent trials) when the same distractor color or 418 

distractor location is repeated over many trials (Vatterott and Vecera, 2012; Gaspelin et 419 

al., 2015, 2017). Building on this work, we included two key task conditions in a 420 

counterbalanced, block-wise fashion to manipulate trial history and behavioral capture 421 

while using identical stimulus arrays (e.g., green target, red distractor). In the color 422 

constant condition (Figure 1A), the array colors stayed constant throughout the block 423 

(e.g., green target, green non-target items, red distractor). In the color variable condition 424 

(Figure 1B), the array colors randomly varied from trial to trial. Based on prior work, we 425 

expected robust capture in the color variable condition, and little or no capture in the color 426 

constant condition (Vatterott and Vecera, 2012; Gaspelin et al., 2015, 2017). 427 

 428 

 429 

 430 

 431 

 432 
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 433 
Figure 1. Visual search task stimuli. On each trial, participants viewed a 4-item array 434 
and reported the orientation of the line inside the diamond-shaped target (horizontal or 435 
vertical). (A) In the color constant condition, colors of targets and singleton distractors 436 
were fixed throughout the run. (B) In the color variable condition, colors of targets and 437 
singleton distractors swapped randomly from trial to trial. (C) An example trial with labels 438 
for the target, singleton distractor, and non-target items.  439 
 440 

Replicating prior work, we found significant behavioral capture that was modulated 441 

by trial history (Geyer et al., 2006; Vatterott and Vecera, 2012; Goschy et al., 2014; 442 

Gaspelin et al., 2015, 2017; Wang and Theeuwes, 2018a; Failing et al., 2019a). In our 443 

MRI sample (Exp 1a, Figure 2A & 2C), we observed significant behavioral capture in the 444 

color variable condition, with longer RT’s for distractor present versus distractor absent 445 

trials (M = 32.8 ms, SD = 25.5 ms, p = .001, d = 1.28), but capture was not significant in 446 

the color constant condition (M = 10.8 ms, SD = 18.5 ms, p = .07, d = .59). Importantly, 447 

capture was significantly larger for color variable vs. color constant runs (p = .009, d = 448 

.91). We replicated this pattern of findings in the behavior-only experiment (Exp. 1b, 449 

Figure 2B & 2D), with robust capture for ‘color variable’ (p < 1 x 10-5, d = 1.31), no 450 

significant capture for ‘color constant’ (p = .1, d = .32), and larger capture for color variable 451 

vs.  constant (p = .002, d = .71). Participants in both experiments were accurate overall 452 

(>90%), and there was no evidence of a speed-accuracy trade-off (Figure 2-1).   453 

 In addition to the key modulation of capture as a function of stimulus history, we 454 

also replicated prior findings that the degree of capture is significantly modulated by the 455 

physical distance between the target and the distractor (Mounts, 2000; Turatto and 456 

Galfano, 2001; Wang and Theeuwes, 2018a; Failing et al., 2019b), with larger capture for 457 

distractors nearer the target (Figure 2E-F). We ran a repeated measures ANOVA 458 
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including both experiments (n=36). Including Experiment as a factor revealed no 459 

experiment main effects or interactions (p > .2), so the two experiments were combined 460 

for further analyses of the behavioral data (although Figure 2 shows data from the two 461 

experiments separately). There was a significant effect of Condition (larger capture for 462 

color variable than color constant), p < 1x10-4, a main effect of Distance (larger capture 463 

for 90° than 180°), p = .037, η2p = .12, and an interaction between Condition and Distance 464 

(greater distance effect in the color variable condition), p = .014, η2p = .16. 465 

 466 

 467 
Figure 2. Behavioral capture during the visual search task. (A) In the main MRI 468 
Experiment (Exp 1a), participants were significantly captured by the salient singleton 469 
distractor in the color variable condition, but not in the color constant condition. (B) This 470 
pattern replicated in the behavior-only experiment (Exp 1b). (C-D) Capture costs (RT 471 
Difference for distractor present – absent trials) were significantly larger in the color 472 
variable than in the color constant condition in Exp 1a (C) and Exp 1b (D). (E-F) Capture 473 
costs (RT Difference for distractor present – absent trials) were significantly modulated 474 
by the distance between the target and distractor in the color variable condition both in 475 
Exp 1a (E) and Exp 1b (F). Violin plot shading shows range and distribution of the data; 476 
dots represent single subjects; black error bars indicate ±1 SEM. Asterisks depict 477 
significance for uncorrected post-hoc comparisons between adjacent bars within each 478 
experiment, * p < .05, ** p < .01, *** p < .001.  479 
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fMRI results: Model estimates of spatial position in the independent mapping task 480 

We opted for a multivariate model-based approach to estimate the amount of 481 

information encoded in voxel activation patterns about each of the 4 stimuli in the search 482 

array, as such multivariate approaches are more sensitive than just computing the 483 

univariate mean response across all voxels (Cox and Savoy, 2003; Haynes and Rees, 484 

2005; Kamitani and Tong, 2005; Norman et al., 2006; Serences and Saproo, 2012; Tong 485 

and Pratte, 2012). For example, item-specific information has been observed using 486 

multivariate methods even in the absence of univariate changes (Lewis-Peacock and 487 

Postle, 2012; Emrich et al., 2013) (but for univariate analyses of the present data, see 488 

extended data Figure 3-1). We opted for an inverted encoding model (IEM) approach 489 

(Sprague et al., 2018a, 2019), as opposed to Bayesian or other decoders (van Bergen et 490 

al., 2015; van Bergen and Jehee, 2019), because this approach allowed us to easily 491 

derive a separate estimate of the information encoded about each of the 4 simultaneously 492 

presented items from the search array in the main analysis (Sprague et al., 2019). For 493 

further discussion of IEM model assumptions and best practices, see: (Sprague et al., 494 

2018a, 2019). 495 

In our key analyses of the fMRI data, we used an independent mapping task to 496 

train a model of spatial position from which we estimated the relative priority of all item 497 

positions within the visual search array. During the independent mapping task, observers 498 

viewed a flickering checkerboard wedge that was presented at 1 of 24 positions on an 499 

imaginary circle around fixation (Figure 3A). We first checked that we observed robust 500 

estimates of spatial position when training and testing within the independent mapping 501 

task (leave 1 run out, see section ‘Inverted Encoding Model’). We observed robust model-502 

based estimates of spatial position for all ROIs (Figure 3B). Parameters from the best-503 

fitting von Mises distribution to each region-of-interest (ROI) are depicted in Figure 3C 504 

(model fits, linear classifier results, and von Mises parameters for shuffled data are shown 505 

in extended data Figure 3-2). There was an effect of ROI on precision such that spatial 506 

position was represented less precisely in later visual areas (p < 1x10-5, where precision 507 

is the concentration parameter κ of the best fitting von Mises, with higher values indicating 508 

a more precise function). There was also an effect of ROI on the amplitude and baseline 509 
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measures of the model-based estimates of spatial position (p < 1x10-5), and all 3 510 

parameters significantly differed from zero across all ROIs (p < 1x10-5). These results, 511 

particularly the observation of amplitudes greater than 0, confirmed that activation 512 

patterns in all examined regions encode information about spatial position.  513 

 514 

 515 
Figure 3. Single-item model estimates training and testing within the independent 516 
mapping task. (A) Independent mapping task used to train the model to estimate spatial 517 
position of 4 search array items. Participants viewed a flickering checkerboard which 518 
could appear at one of 24 positions around an imaginary circle. (B) Blue lines: Model 519 
estimates of viewed spatial position training and testing within the independent mapping 520 
task. Single-trial model estimates for each subject are aligned to 0 degrees and averaged. 521 
Black lines: Model estimates for shuffled training labels. Opaque lines = group average; 522 
semi-transparent lines = individual subjects. (C) Descriptive statistics for best fit von Mises 523 
parameters (precision [κ], amplitude, baseline) to model estimates in panel B. Error bars 524 
indicate ±1 SEM; the opaque line shows the group average; semi-transparent lines show 525 
individual subjects. 526 
 527 

Unlike the single item model estimates that were derived based on the 528 

independent mapping task (Figure 3), we could not fit a simple, uni-modal Gaussian 529 

function to model-based estimates derived from the search task data because 4 peaks in 530 

the model output were expected – one for each item in the search array. As such, we first 531 

conducted simulations to ensure that we would be able to measure putative changes to 532 

individual item representations (e.g. target enhancement, distractor suppression), despite 533 

multiple item representations contributing to the aggregate 4-item model estimates. To 534 
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do so, we used data from the independent mapping task to generate predictions for 535 

observed model responses in a 4-item array. For each ROI, we took the 1-item model 536 

response derived from the independent mapping task, replicated this model response 537 

four times (once at each of the four search array positions), and took the average of all 4 538 

shifted 1-item model response lines to generate a single 4-item model prediction. In 539 

addition, we systematically varied the strength of the simulated response to each item to 540 

ensure that we were able to recover a corresponding change in the item-specific 541 

responses estimated from the aggregate 4-item model estimate (Figure 4; extended data 542 

Figure 4-1).  543 

These simulations revealed clearly separable peaks for all four items in early areas 544 

like V1, where spatial precision is high (Figure 4A-B, left panel). In contrast, identifying 545 

clear peaks in later areas like IPS0 was difficult when the response to all items was 546 

equivalent (Figure 4A-B, right panel). However, if one item evoked a larger or smaller 547 

response than the other items, as would be expected with target enhancement or 548 

distractor suppression, then clear and measurable changes to the aggregate 4-item 549 

model estimates emerged (Figure 4C). Further simulations showed that we could detect 550 

smaller changes to one item (e.g., distractor suppression) in the presence of larger 551 

changes to another item (e.g., target) by measuring the response amplitude at each 552 

expected item’s peak. In V1, this is clearly seen in the peak response to each item; in 553 

later areas such as IPS0, such changes manifest as a large central peak that is skewed 554 

by the neighboring items’ smaller changes (Figure 4D).  555 

We also used a general linear model (GLM) to estimate best-fitting gain factors for 556 

each of the 4 hypothesized item representations by fitting an aggregate function and 557 

allowing one parameter in the GLM to scale the response associated with each item. This 558 

is essentially the inverse of the simulations described above: For a given aggregate 559 

response (i.e., the response of each of the 24 spatial channels when shown a given 4-560 

item search array), we used a non-negative least squares solution(Lawson and Hanson, 561 

1974) to estimate the contribution of each of the 4 item positions (calculated from the 1-562 

item localizer task) to the observed 4-item search array response (Figure 4E). This 563 

analysis yielded similar results to the simple approach of comparing the height at each 564 
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expected item peak (extended data Figure 5-4). Thus, using either the raw amplitude at 565 

expected peaks or a GLM-based approach, we determined that we should be able to 566 

accurately characterize situations in which there was no modulation of target and 567 

distractor responses as well as situations in which there was a significant modulation of 568 

target and/or distractor responses.  569 

 570 

 571 
Figure 4. Generating predictions for 4-item model estimates by averaging single-572 
item model estimates from the independent mapping task. (A) Average from the 573 
independent mapping task plotted at 4 hypothetical item locations. Here, these 4 “items” 574 
are represented with equal priority. (B) Hypothetical observed response when measuring 575 
a single trial containing the 4 items presented simultaneously. This line is the average of 576 
all lines in Panel A. (C) The same as panels A and B, but with the item at position 0 577 
assigned a higher response amplitude than the other three items. (D) The same panels 578 
as A and B, but with both an enhanced item at position 0 and a suppressed item at position 579 
-90. (E) Actual IEM model output for 4-item search arrays in V2 (Target plotted at 0, 580 
distractor plotted at -90). To estimate the strength of each of the 4 underlying item 581 
representations, one can simply measure the height (a.u.) at expected item peaks (i.e., -582 
180, -90, 0, and 90). Alternatively, one may use a non-negative least squares solution to 583 
estimate weights for a regressor for each of the 4 item positions. Each regressor is the 1-584 
item IEM output from the independent mapping task within the same region (e.g., V2), 585 
shifted to the appropriate item location. (F) Example IEM output and best-fitting non-586 
negative least squares solution with 4 item regressors.  587 
 588 

 589 

 590 
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Analysis of search array locations in V1, V2, V3, V3AB, hV4, and IPS0. 591 

 Given that we can assess differential responses associated with each of the 4 592 

items in the search array (Figure 4), we next tested whether goal- and history-driven 593 

modulations were differentially represented across the visual stream by performing an 594 

analysis of history-driven effects on target and distractor processing across visual ROIs 595 

(Figure 5). These six ROIs (V1, V2, V3, V3AB, hV4 and IPS0) were chosen for each 596 

participant having at least 90 spatially selective voxels as determined by the localizer 597 

data. Here, we focus on history-driven effects on target processing and distractor 598 

processing for the arrays where behavioral and neural distractor competition effects were 599 

greatest (target-distractor separation +/-90°, see Figure 2E,F). Full ANOVA results and 600 

additional plots are shown for individuals ROIs with both array 90° and 180° 601 

configurations in extended data Figures 5-4 and 5-5.   602 

 603 

 604 

 605 

 606 

 607 

 608 

 609 

 610 

 611 

 612 

 613 

 614 

 615 

 616 

 617 

 618 

 619 

 620 
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 621 
Figure 5. Dissociable effects of stimulus history on target enhancement and 622 
distractor suppression. (A) Model responses for individual ROIs as a function of task 623 
condition (Arrays with target-distractor distance +/-90). Purple and green lines (Shaded 624 
error bars = 1 SEM) show the output of the inverted encoding model in the color constant 625 
and color variable conditions, respectively. Background panels at -180°, -90°, 0° and +90° 626 
show the positions of the 4 search array items (blue = target (T), pink = distractor (D), 627 
green = non-target 1(N1), orange = non-target 2 (N2). Target enhancement can be seen 628 
as the greater height at position 0: The IEM peak at the blue bar is higher than the IEM 629 
peak at the orange, pink, and green bars. History-driven distractor suppression can be 630 
seen as the lower height at position -90 for the color constant vs. color variable conditions: 631 
The IEM peak at the pink bar is higher for the green line than for the purple line. (B) Target 632 
amplitude as a function of ROI and task condition. There was no effect of task condition 633 
on target amplitude, but a significant increase in target amplitude across ROIs. Violin plot 634 
shading shows range and distribution of the data; dots represent single subjects; black 635 
error bars indicate ±1 SEM. (C) Distractor amplitude as a function of ROI and task 636 
condition. There was a significant effect of task condition on distractor amplitude, and this 637 
history-driven effect did not interact with ROI.   638 
 639 

 We found evidence for within-display target enhancement (i.e., enhancement of 640 

the target over other positions), but we did not find evidence for history-driven 641 

modulations of target enhancement. Overall target enhancement was significant in all 642 

ROIs (all p’s < .001) except for V1 (p’s > .12), and target enhancement significantly 643 

increased across ROIs (p < .001) as shown in Figure 5A-B. There was, however, no 644 

meaningful effect of history on target amplitude as revealed by a repeated-measures 645 
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ANOVA testing the main effect of history and the interaction between history and ROI on 646 

target processing (p = .35, η2p = .08; p = .64, η2p = .04 for main effect and interaction 647 

respectively). This pattern was the same whether we used raw amplitude values or we 648 

used values from the GLM (no effect of history, p = .28, no interaction of history and ROI, 649 

p = .51). 650 

 In contrast, history had a significant effect on distractor amplitude such that 651 

distractor amplitudes were significantly attenuated in the color constant condition relative 652 

to the color variable condition. A repeated-measures ANOVA revealed a main effect of 653 

history (p = .007, η2p = .50) and no interaction between history and ROI (p = .44, η2p = 654 

.08), indicating that the effect of history on distractor processing was similar throughout 655 

the examined ROIs. Though the ANOVA suggests that history effects were of a similar 656 

magnitude across all examined ROIs, a post-hoc simple main effects analysis showed 657 

that the effect was individually significant only in V1 (p < .001) and V3 (p < .01). This 658 

general pattern was the same whether we used raw amplitude values or else used values 659 

from the GLM approach (main effect of history, p = .01, η2p = .47, no interaction of history 660 

and ROI, p = .87, η2p = .03). 661 

 Finally, we examined changes in non-target responses. For “non-target 1” (the item 662 

neighboring the target on the side opposite the distractor), there was an overall history 663 

related modulation (color constant > color variable, p = .016, η2p = .42) that did not interact 664 

with ROI (p = .76, η2p = .03). Similar general effects on non-target processing have been 665 

observed recently (Won et al., 2020) and may reflect a bias of attention away from the 666 

distractor such that attention may ‘overshoot’ the target because of the reduction in signal 667 

at the distractor location. The effect of history on “non-target 1” responses likewise was 668 

similar though of borderline significance in the GLM analysis (color constant > color 669 

variable, p = .049, η2p = .31). We found no effect of history on the other non-target (“non-670 

target 2”) which occupied the spatial position 180 degrees from the target item (p >= .61).  671 

Finally, additional analyses on larger, aggregate ROIs (V1-V3, IPS0-3) yield 672 

convergent results and also demonstrate how distractor suppression effects were absent 673 

for arrays where the target and distractor did not compete with each other (target-674 

distractor separation +/- 180°), consistent with our separate analysis of each ROI (Figure 675 
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6) and prior behavioral and neural findings (Turatto and Galfano, 2001; Wang and 676 

Theeuwes, 2018a; Failing et al., 2019b; Won et al., 2020) (extended data Figures 5-1, 5-677 

2, and 5-3). 678 

 679 

Discussion 680 

To find what we are looking for, we must integrate information about stimulus 681 

relevance, salience, and history. While the impact of stimulus relevance and salience on 682 

topographically organized population codes have been thoroughly investigated, stimulus 683 

history is not thought to be a wholly goal-driven or stimulus-driven process. Rather, history 684 

effects may depend on interactions between the current stimulus drive (‘bottom-up’ factor) 685 

and the current internal state of the visual system (‘top-down’ factor). To address this 686 

ambiguity and to better understand how history impacts visual processing, we tested 687 

whether history-driven changes to attentional priority operate in a manner akin to 688 

canonically goal-driven and/or to stimulus-driven signatures of priority. To do so, we 689 

estimated population-level neural responses evoked by 4-item search arrays across 690 

retinotopically-defined areas of occipital and parietal cortex. We found that stimulus 691 

history did not modulate the specificity of goal-driven target templates, as goal-driven 692 

target enhancement was unaffected by stimulus history. Instead, we found that stimulus 693 

history attenuated responses related to distractors throughout the visual hierarchy. These 694 

results suggest that stimulus history may influence visual search performance via local 695 

competitive interactions within early sensory cortex (i.e., V1), consistent with the V1 696 

salience map hypothesis. Further, we argue that these early competitive interactions 697 

cannot be explained by goal-driven predictive coding models.  698 

 699 

Proposed model: Adaptation alters a stimulus-driven salience map in V1 700 

Models of image-computable salience propose that local image statistics 701 

determine competitive interactions that give rise to 2D spatial salience maps within V1 702 

(Li, 2002; Zhang et al., 2012) or after integrating feature maps at a later stage of 703 

processing (e.g., Treisman and Gelade, 1980; Wolfe, 1994; Itti and Koch, 2000; Carmi 704 

and Itti, 2006), and these models do not typically account for the long-term effects of 705 
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stimulus history. Note, many existing saliency models do account for short -term changes 706 

to stimuli by coding for dynamic image factors such as motion velocity and flicker (i.e., 707 

luminance onset or offset) across movie frames (~30 ms per frame), (Itti and Koch, 2000; 708 

Carmi and Itti, 2006). However, these dynamic feature maps cannot explain history 709 

effects that build up over the course of many trials and persist across blank inter-trial 710 

intervals. Rather, an additional mechanism is needed to integrate stimulus information 711 

over a longer duration. Recent work suggests that neural adaptation – which is linked to 712 

the history of prior stimuli – in a subset of tuned neurons may alter stimulus-driven 713 

competitive dynamics (e.g., divisive normalization, Carandini and Heeger, 2012) within 714 

early visual cortex (Solomon and Kohn, 2014). Thus, to accommodate our observation of 715 

history-driven distractor suppression within existing saliency models, we propose that 716 

stimulus-driven evoked responses in V1 may be integrated over a longer, multi-trial 717 

duration (as opposed to just within a single image; Figure 6) (Karni and Sagi, 1991; 718 

Schwartz et al., 2002; Jehee et al., 2012). In the context of models of visual search, this 719 

might be comprised of a series of 2D spatial maps that together form a temporally 720 

integrated 3D salience map (i.e., salience is computed based on current and prior 721 

physical stimulus properties). Consistent with the notion of a 3D salience map, recent 722 

behavioral and neural evidence suggests a role for priming and habituation in visual 723 

search behaviors (Geyer et al., 2006; Feldmann-Wüstefeld and Schubö, 2016; Turatto 724 

and Pascucci, 2016; Turatto et al., 2018; Won and Geng, 2020, also see: Reavis et al., 725 

2016), even when the adapting stimuli are task-irrelevant.  726 

 727 

 728 
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729 
Figure 6. Simplified cartoon illustration of local-image versus temporal-integration 730 
salience for a simple image with one feature and location. (A) In 2-D salience 731 
computations, stimulus-driven stimulus drive is determined locally within a given image 732 
without respect to prior images. Sequence 1 is 4 different trials, and on each trial the 733 
same stimulus is shown (Blue-Blue-Blue-Blue). Sequence 2 is 4 different trials, but the 734 
final trial is a different color from the preceding trials (Green-Green-Green-Blue). The final 735 
trial (Blue) is physically identical for the two sequences. So, the final stimuli (trial n in each 736 
sequence) have identical 2-D salience. Assuming that we chose equiluminant green and 737 
blue values, then each “frame” in the sequence likewise has approximately the same 738 
image-computable salience, as shown by the uniform-sized square pulses in the cartoon. 739 
Alternatively, stimulus-driven salience maps may better be conceived of as reflecting a 740 
temporally-integrated 3-D salience map, as early sensory neurons adapt to ongoing 741 
stimulus features. In Sequence 1 (Blue-Blue-Blue-Blue), the activity of neurons that are 742 
maximally responsive to blue wanes due to adaptation. In Sequence 2 the activity of 743 
neurons maximally responsive to green wanes over the first 3 trials, but the final stimulus 744 
elicits a robust response from the non-adapted blue-preferring neurons. Thus, temporally-745 
integrated salience for the trial n in each sequence differs across the two sequences even 746 
though the stimuli are physically identical. (B) Most studies of predictive coding and 747 
adaptation consider changes to neural activity for a single item. Here, we illustrate how 748 
adaptation can have consequences for stimulus-driven saliency that arises from inter-749 
item competition within multi-item arrays (e.g., Itti and Koch, 2000). Top: For the first 750 
presentation of the array, all neurons respond strongly, leading to classic inter-item 751 
competition effects that yield high distractor saliency. Bottom: With repeated 752 
presentations and adaptation, overall activity and inter-item competition is weakened, 753 
yielding a relative attenuation of the distractor.  754 
 755 

Consistent with a temporally-integrated V1 saliency account of history-driven 756 

distractor suppression, we observed history-driven modulations only with sufficient 757 

competition (i.e., targets and distractors were closer together) and we observed robust 758 

history-driven modulations in V1 in the absence of goal-driven modulations. In line with 759 

our findings, prior behavioral work has shown that incidental repetitions of distractor, but 760 
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not target, features and locations modulate search performance (Geyer et al., 2006; 761 

Failing et al., 2019b). Likewise, prior work has shown a rapid suppression of distractor-762 

evoked neural responses (Hickey et al., 2009; Zhang and Luck, 2009; Sawaki and Luck, 763 

2010; Gaspar and McDonald, 2014; Moher et al., 2014; Gaspelin et al., 2015, 2017) and 764 

that the likelihood of distraction results in anticipatory changes to distractor, but not target, 765 

locations (Serences et al., 2004; Heuer and Schubö, 2019; Won et al., 2020). However, 766 

the proposed temporally-integrated salience account does not capture all history-driven 767 

effects. In our task, the repeated distractor features were purely visual in nature, and thus 768 

history effects might be mediated entirely via local circuit dynamics (i.e., the adaptation 769 

account described above). In contrast, other studies have examined history-driven effects 770 

for more abstract features like reward (Mazer and Gallant, 2003; Serences, 2008; Saproo 771 

and Serences, 2010; Stanisor et al., 2013; Chelazzi et al., 2014; Hickey and Peelen, 2015; 772 

MacLean and Giesbrecht, 2015; Itthipuripat et al., 2019; Kim and Anderson, 2019) (but 773 

also see: Maunsell, 2004; Anderson and Kim, 2019), which may require an intermediary 774 

pathway such as the medial-temporal lobe (Theeuwes, 2019) or dopaminergic midbrain 775 

structures (Hickey and Peelen, 2015, 2017).  776 

 777 

Implications for predictive coding theories of visual processing 778 

 Much of the debate about history-driven changes to visual search has been 779 

separated from the predictive coding literature, but these two ideas are highly intertwined. 780 

Predictive coding theories propose that incoming visual information is compared to 781 

expected visual information at later stages of processing (Rao and Ballard, 1999; Friston, 782 

2005; Summerfield and de Lange, 2014; Spratling, 2017). Efficient, predictive coding is 783 

achieved via an iterative updating process whereby error units detect deviations from 784 

what is expected and inhibit expected information in the prediction units at an earlier stage 785 

of processing. Here, we consider whether an expectation-driven predictive coding 786 

account, whereby top-down expectations about the upcoming stimulus influence neural 787 

processing, could likewise explain the pattern of results that we have observed. We note 788 

that the term “predictive coding” has been used in a wide variety of ways in the literature 789 

(Spratling, 2017), some of which are entirely stimulus-driven (e.g., within the retina; 790 
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Srinivasan et al., 1982). Here, we are concerned with considering versions of predictive 791 

coding whereby top-down expectations influence stimulus processing.  792 

A fundamental tension has long been noted in the literature: Predictive coding 793 

models primarily explain how expected information becomes attenuated, and thus have 794 

difficulty explaining signal enhancement related to attention (e.g., Luck et al., 1997; Hupé 795 

et al., 1998; Kastner and Ungerleider, 2000). Many predictive coding models implement 796 

error-driven feedback as inhibitory signaling from the next adjacent visual area (e.g., V3 797 

to V2). To explain top-down attentional prioritization effects, predictive coding models 798 

must be modified, as has been done in the Predictive Coding/ Biased Competition 799 

(PC/BC) model (Spratling, 2008). In this model, an additional top-down attention 800 

component is added, and the error and prediction units are shifted such that error-driven 801 

feedback is excitatory. These changes to the model allow for biased competition effects 802 

to arise within a predictive coding framework.   803 

 Although the PC/BC model variants can predict biased competition effects in 804 

attention, such models critically predict that target enhancement and distractor 805 

suppression effects will be yoked, as both effects arise from feedback from the next higher 806 

level of visual processing. Thus, for existing predictive coding models to explain our 807 

results, we should have observed that the emergence of history-driven distractor 808 

suppression paralleled top-down target enhancement. In contrast, we found diverging 809 

target enhancement and history-driven distractor suppression effects: whereas target 810 

enhancement was absent in V1 and increased across the visual stream, history-driven 811 

distractor suppression emerged in V1. Thus, we propose that history-driven distractor 812 

suppression is best explained by ‘bottom-up’ inter-trial priming arising from adaptation 813 

within V1 (Westerberg et al., 2019).   814 

Furthermore, we argue that it is important to differentiate between “bottom-up” and 815 

“top-down” expectational effects, analogous to recent arguments that it is critical to 816 

differentiate between potential confounds of attention and expectation (Summerfield and 817 

de Lange, 2014; Rungratsameetaweemana and Serences, 2019). We define ‘top-down’ 818 

expectations as those that can be updated flexibly and on a rapid time scale (e.g., over 819 

the course of a few trials). In contrast, we define ‘bottom-up’ expectations as those that 820 
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are ingrained over a very long time-scale and tied to particular stimuli. For example, early 821 

ideas about predictive coding emerged from studies of the retina: By exploiting long-term 822 

‘expectations’ that naturalistic stimuli are correlated in space and time, coding within the 823 

retina can be highly efficient (Srinivasan et al., 1982; Rao and Ballard, 1999). 824 

Making a distinction between ‘bottom-up’ and top-down’ expectations can explain 825 

prior results that run counter to some predictive coding models. Specifically, Maljkovic 826 

and Nakayama’s (1994) priming of pop-out experiments demonstrated that RT costs are 827 

incurred by switching stimuli even when the stimulus switch is expected. When a stimulus 828 

is predictable and repeated (e.g., 0% probability of a color switch), participants are faster 829 

than when a stimulus is unpredictable and switches color (e.g., 50% probability of a color 830 

switch. If expectations can attenuate the cost of switching colors, then participants should 831 

likewise be faster in a predictable, 100% switch condition than in the unpredictable 50% 832 

switch condition. In contrast to this prediction, Maljkovic & Nakayama found that 833 

participants were slower in the 100% switch condition: Participants apparently were 834 

unable to use their expectations to overcome bottom-up stimulus-driven priming effects. 835 

 836 

Goal-driven attention effects 837 

In addition to implicating early visual cortex in representing history-driven task 838 

factors during visual search, we also replicated prior findings that the locations of attended 839 

items (here, search targets) are prioritized relative to other item locations in both visual 840 

and parietal cortex (Saproo and Serences, 2010; Sprague and Serences, 2013; Sprague 841 

et al., 2018b). These target-related modulations are consistent with the broad involvement 842 

of visually-responsive regions in representing goal-driven priority during visual search 843 

(Mazer and Gallant, 2003; Ogawa and Komatsu, 2006). For example, recent studies 844 

manipulated  the salience (contrast) and relevance (attended or unattended) of items and 845 

found that salience and relevance were both represented, to varying degrees, across the 846 

visual hierarchy (Poltoratski et al., 2017; Sprague et al., 2018b). Notably, however, here 847 

we found that target prioritization was absent in V1, whereas prior work has found robust 848 

effects of attention in V1 (Motter, 1993; Kastner, 1998; Tootell et al., 1998; Gandhi et al., 849 

1999; Kastner et al., 1999; Somers et al., 1999; Serences and Yantis, 2007; Saproo and 850 
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Serences, 2010; Sprague and Serences, 2013). This difference may reflect task 851 

differences — much prior work found attention-related gains in V1 when spatial attention 852 

was cued in advance or a single target was shown, whereas visual search arrays provide 853 

visual drive at many competing locations and spatial attention is deployed only after array 854 

onset. As such, further work may be needed to unconfound history effects and attention 855 

effects in the study of spatial attention, as much early work on univariate attention effects 856 

has employed blocked designs where the same location is attended for many trials in a 857 

row (Kastner, 1998; Tootell et al., 1998; Gandhi et al., 1999; Kastner et al., 1999; Somers 858 

et al., 1999).  859 

 860 

Future directions 861 

Although our work suggests that stimulus history modulates representations of 862 

distractor but not target processing in visual cortex, there are some potential limitations 863 

to the current design that suggest avenues for future work. First, because we measured 864 

only location, we could not directly measure suppression of the distractor color (Failing et 865 

al., 2019a). However, as the spatial position of the distractor was completely 866 

unpredictable, our results do strongly imply that the distractor color was suppressed. 867 

Likewise, most theories of visual search hypothesize that space is the critical binding 868 

medium through which feature and goal maps are integrated (Treisman and Gelade, 869 

1980; Wolfe, 1994; Itti and Koch, 2000), and recent work suggests that location is 870 

spontaneously encoded even when only non-spatial features such as color are task-871 

relevant (Foster et al., 2017a). Second, it is possible that history may modulate both 872 

distractor- and target-processing in other circumstances not tested here. That is, perhaps 873 

the target template ‘diamond’ in our task was sufficiently useful such that adding feature 874 

information to this template (e.g., ‘red diamond’ rather than ‘diamond’) did not confer a 875 

behavioral advantage (but see: Maljkovic and Nakayama, 1994). Finally, the time-course 876 

of MRI (sampling every 800 ms) is slower than shifts of spatial attention to the search 877 

target (< 500 ms) (Foster et al., 2017b). Although the history-driven effects that we 878 

observed in visual cortex are consistent with the rapid distractor suppression effects 879 

observed in EEG (Sawaki and Luck, 2010; Gaspar and McDonald, 2014), we cannot 880 
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definitively say on the basis of these data that the observed history-driven effects 881 

occurred rapidly and directly within visual cortex versus via recurrent feedback from later 882 

visual areas. Nonetheless, the present work is consistent with and provides critical initial 883 

evidence for such a model. 884 
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