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Abstract

The feasibility of non-invasive axonal diameter quantification with diffu-

sion MRI is a strongly debated topic due to the neuroscientific potential of

such information and its relevance for the axonal signal transmission speed. It

has been shown that under ideal conditions, the minimal diameter producing

detectable signal decay is bigger than most human axons in the brain, even

using the strongest currently available MRI systems. We show that resolving

the simplest situations including multiple diameters is unfeasible even with

diameters much bigger than the diameter limit. Additionally, the recently

proposed effective diameter resulting from fitting a single value over a distri-

bution is almost exclusively influenced by the biggest axons. We show how

impractical this metric is for comparing different distributions. Overall, axon

diameters cannot be quantified by diffusion MRI in any relevant way.

1 Introduction1

In-vivo estimation of axon diameters has been an important goal of many researchers2

since the inception of diffusion MRI. As the diameter of a myelinated axon is one3

of the main determiner of its signal transmission velocity [24, 13], the availability of4

this structural information would greatly facilitate description and functional mod-5

eling of the brain communication pathways on an individual basis [26]. Detailed6

knowledge of tract specific axonal diameters would provide insight into detailed and7

mechanistic relationships between brain structure and important aspects of brain8

function, including development and learning. The capacity of dMRI to nonin-9

vasively probe cellular and axonal boundaries at the micrometer level seemed a10

promising method to pursue this aim.11
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The impact of restricted incoherent motion of water molecules on diffusion weighted12

NMR signals has already been described in the early days of MR spectroscopy13

[20, 29]. However, these models only describe the diffusion process happening in14

the perpendicular cross-section of the axon. Using them to approximate axonal15

diameters requires prior knowledge of the tissue orientations, an equal diameter16

of all axons in the probed volume, as well as the absence of extra-axonal signals.17

A common strategy to bring it to the in-vivo 3D acquisition setting has been to18

combine one or many cylindrical compartments, describing the intra-axonal diffu-19

sion, with additional compartments describing the extra-axonal Gaussian diffusion20

process [4, 5, 2, 10].21

Despite the tremendous overestimation of axonal diameters arising from the use22

of multi compartment models [15] compared to electron microscopy ground truth23

[1, 18], these models are still seen as promising by a part of the community. This24

dilemma can be attributed to the fact that the relative trend of fitted diameters was25

argued to be somewhat plausible across the different parts of the corpus callosum26

[15] and that multi-compartment models in dMRI are difficult to fit reliably as they27

are essentially weighted sums of exponential functions.28

Recent work highlighted an unavoidable sensitivity issue for detecting axon di-29

ameters of realistic size in the human brain, even with the latest high-end MRI30

systems [21]. It proposes an “axon diameter limit” (dmin) which corresponds to the31

smallest diameter that can be differentiated from a stick of diameter zero for given32

sequence parameters under ideal conditions. This dmin is computed from the most33

generous setting and is therefore a lower bound on the unbiased smallest diameter34

detectable for data deviating from the idealized case of diffusion signal arising only35

from parallel cylinders of equal diameter. The diameter limit suggests that previous36

“trends” in the estimated diameters are not supported by the measured data. In-37

deed, not only is the expected signal decay for restricted diffusion in realistic human38

axons size very small, it is also insensitive to changes in the gradient spacing (∆),39

which is typically the parameter been varied when the “small-big-small diameter40

trend” of the corpus callosum is observed. The large signal decay observed could41

be caused by noise, errors in the compartment separation or by other types of time-42

dependent diffusion such as diffusion signal from the extra-axonal compartment,43

which is sensitive to ∆.44

In this work, we employ extensive simulations of restricted diffusion MRI mea-45

surements under optimal conditions to concretely showcase the limitations of axon46

diameter mapping. We first show the sensitivity of MR signals to axon diameters.47

Secondly, we show the axon diameter limit in action in the case of fitting a single48

diameter. We then show the unresolvability of extending from single diameters to49

estimations of distributions of axonal diameters. Finally, we highlight the difficulty50

of interpreting a single diameter fitted over a distribution (so-called effective di-51

ameter [8, 30]), even with a complete understanding of the averaging mechanisms52

2

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 3, 2020. ; https://doi.org/10.1101/2020.10.01.320507doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.01.320507
http://creativecommons.org/licenses/by-nc/4.0/


projecting the distribution on this single value.53

2 Methods54

2.1 Relevant parameters55

Throughout this work, we used numerical simulations to showcase the sensitivity56

of dMRI to axon diameters. It is therefore crucial to use realistic values for the57

various physical parameters. We describe each parameter, their realistic ranges,58

and our default choices. Particularly, we are concerned with the order of magnitude59

of the quantities and their scaling behavior (see eq. 3). For completion, we provide60

scripts to recompute any quantity, figure or experiment, for any choice of parameters61

(https://github.com/mpaquette/axDiamFig).62

Axon (cylinder) diameter d: The smaller the diameter, the smaller is the maxi-63

mal displacement of the water molecules, as we assumes impermeable axonal walls.64

This restricted water diffusion perpendicular to the axon will induced a small signal65

change proportional to the mean squared displacement inside the circular cross-66

section. Prior results from histological assessments show that human axons in the67

white matter of the brain have diameters in the order of 1 µm [1, 18]. Typical distri-68

butions of diameters tend to peak around 0.5-1.0 µm with maximum axon diameters69

around 2.5-5 µm (see fig 4). Informally, the minimum sensitivity required to properly70

qualify such distributions has to be smaller than the peak of the distribution.71

Unrestricted diffusivity of the medium D0: The lower the diffusivity is, the more72

time it takes for the diffusion process to saturate inside of the restricted compart-73

ment. The literature reports diffusivity values between 1.5 µm2/ms and 2.7 µm2/ms74

for the in-vivo intra-axonal water compartment [31, 12]. In the case of post-mortem75

measurements, both the reduced tissue temperature and the fixation process reduce76

the tissue diffusivity [23]. Reported values for post-mortem diffusivities are around77

1/3 - 1/4 of that of in-vivo [14]. In our simulations we assume the following diffu-78

sivities: D0,in−vivo = 2 µm2/ms (2× 10−9 m2/s), and D0,post−mortem = 0.66 µm2/ms79

(0.66× 10−9 m2/s).80

Diffusion gradient magnitude G: The strength of diffusion gradient hardware varies81

among the different types of MRI scanners. Typical clinical scanners tend to have82

weaker gradients (Gmax = 40 mT/m), while gradient coils in preclinical small-bore83

scanners can produce magnetic field gradients as strong as 1500 mT/m. For human84

in-vivo measurements, the Siemens Connectom MRI scanner (Siemens Healthineers,85

Erlangen, Germany) is the system which produces by far the strongest diffusion86

gradients (Gmax = 300 mT/m). In our simulations we use G = 300 mT/m, as one of87

the goals associated with the development of this specific MRI system was to enable88

in-vivo axon diameter estimation.89

Diffusion gradient duration δ: In the relevant regimes for human axon diameter es-90
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timation, the duration of the diffusion gradient pulse δ is the parameter probing the91

time-dependent diffusivity of restricted diffusion. Indeed, with a shortest achiev-92

able gradient duration around 5 ms on a human MRI system, we are well into the93

regime where the gradient duration is comparable with the saturation time of the94

restricted compartment. In this regime, longer gradient pulses increase sensitivity95

(see sec. A.1). We limit the simulations to δmax = 40 ms as longer pulses are im-96

practical, as they increase the echo times of the acquisition, resulting in additional97

signal losses.98

Diffusion gradient separation ∆: In the relevant regimes for human axon diameter99

estimation, the diffusion process is already saturated during the gradient application100

and varying the separation of the diffusion gradient pulses ∆ provides no extra101

sensitivity to restricted diffusion (see sec. A.1 and fig. 7). Therefore, to maximize102

signal, we use ∆ = δ. In practice, varying ∆ could still be necessary for multi-103

compartment models where it is necessary to disentangle intra- and extra-axonal104

signal contributions.105

Signal to noise ratio SNR: Ultimately, the SNR is the key parameter upon which106

“sensitivity” is defined. Throughout the simulations represented in this study, we107

corrupt signals with Gaussian noise (for simplicity and to produce a best case sce-108

nario), i.e. Snoisy = Snoiseless+ ε where ε ∼ N (0, σ2). Since we only look at idealized109

diffusion effects, our signals have value of 1 at the b0 (no diffusion gradient applied),110

and therefore the SNR is defined as SNR = σ−1. For comparison, the SNR of the111

b0 in the corpus callosum for a single in-vivo volume on the Connectom system112

with echo time of 70 ms, repetition time 7500 ms and resolution 1.8 mm isotropic113

is around 20. We showcase results for SNR = 30 and some results for SNR = 300,114

which correspond to 100 averages of a high quality Connectom acquisition, or pa-115

rameter estimations. Some diameter estimation approaches use aggregated fitting116

strategies such as ROI averaging or averaging along a tractography streamline path117

[11, 7, 6, 3] to increase the nominal SNR. Obviously, these aggregated strategies118

make strong assumptions on tissue composition and orientation homogeneity in a119

region or along the entire pathway. It is unclear if the SNR gains of such strate-120

gies outweigh the biases from neighboring voxel tissue inhomogeneity and averaging121

errors as these methods still suffer from diameter overestimation [6].122

2.2 dMRI signal sensitivity to diameter123

Diffusion MRI contrast is related to the bulk displacement of the water molecules124

during the diffusion encoding, which causes the measured signal decay. Inside re-125

stricted compartments such as the cross-section of a cylinder, the maximal displace-126

ment is capped by the boundary, potentially producing much smaller signal decays127

than produced by free diffusion. These restricted diffusion processes can be classified128

into different time regimes. On short time scales, the bulk of water molecules has129
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not yet interacted with the boundary, and therefore behaves as in free diffusion. In130

the long time regime, most molecules have significantly interacted with the bound-131

ary and their position at any given time doesn’t correlate with their initial position132

inside the cross section of the axon; the signal as reach maximal decay.133

The general signal decay formula for a cylinder for a Pulsed Gradient Spin Echo134

(PGSE) diffusion sequence [27] was first described by Neuman [20] and then ex-135

tended by Van Gelderen [29] to account for cases where ∆ 6= δ (eq. 1). For the136

parameter ranges described in sec. 2.1, the Neuman long time limit (eq. 2) produce137

almost indistinguishable results. In this work, we use eq. 1 truncated to 50 terms to138

generate and fit signals arising from restricted diffusion.139

ln(E) = −2γ2G2

∞∑
m=1

[
2D0α

2
mδ − 2 + 2e−D0α2

mδ

D2
0α

6
m((d

2
)2α2

m − 1)
+

2e−D0α2
m∆ − e−D0α2

m(∆−δ) − e−D0α2
m(∆+δ)

D2
0α

6
m((d

2
)2α2

m − 1)

] (1)

where E is the normalized diffusion signal, γ is the proton gyromagnetic ratio, G is140

the diffusion gradient amplitude, D0 is the unrestricted diffusivity in the cylinder,141

∆ is the diffusion gradient separation, δ is the diffusion gradient duration, d is the142

diameter of the cylinder, J ′(·) is the derivative of the Bessel function of the first143

kind and αm is the mth root of the equation J ′1
(
α · d

2

)
= 0.144

E = exp

(
− 7

1536

γ2G2

D0

d4

(
2δ − 99

448

d2

D0

))
(2)

For realistic acquisition and biological relevant parameter values (see sec 2.1),145

the diffusion process falls into the long time regime and the expected signal decays146

is small compared to noise amplitude at typical SNR. Using eq. 1, we simulated the147

expected MR signal decay for a multitude of combinations and we report the decay148

percentage values in Table 1. To cover a wide range of biological, experimental149

and instrumental parameters, we simulated restricted diffusion MRI signals using150

(i) both in-vivo and post-mortem diffusivities, (ii) clinical gradient systems and151

high-end Connectom gradients, and (iii) small to large human axons diameter.152

Our simulations indicated that dMRI is not very sensitive to the axonal diam-153

eter in realistic situations. For example, using optimal in-vivo setting (Connectom154

strength gradients, very long diffusion pulse and in-vivo diffusivity) for an axon di-155

ameter of 1 micrometer the process only produces a “contrast” of 0.12% signal decay156

which is equal to one standard deviation of Gaussian noise with SNR ≈ 833. To be157

able to statistically identify this signal decay, we would typically need a decay to be158

at least bigger than ∼ 2 standard deviation of the noise, depending on the choice159

of the significance level. To reach such a low noise level would require SNR ≈ 1666.160
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Hence, for realistic SNRs, small diameters cannot be differentiated from the noise161

level in the image.162

Acquisition parameters In-vivo (D0 = 2.0 µm2/ms)

δ = ∆ (ms) G (mT/m) d = 0.5 µm d = 1.0 µm d = 2.0 µm

10 40 3.2× 10−5 5.2× 10−4 8.1× 10−3

40 40 1.3× 10−4 2.1× 10−3 3.3× 10−2

10 300 1.8× 10−3 2.9× 10−2 4.6× 10−1

40 300 7.3× 10−3 1.2× 10−1 1.8

Acquisition parameters Post-mortem (D0 = 0.66 µm2/ms)

δ = ∆ (ms) G (mT/m) d = 0.5 µm d = 1.0 µm d = 2.0 µm

10 40 9.8× 10−5 1.6× 10−3 2.4× 10−2

40 40 3.9× 10−4 6.3× 10−3 9.9× 10−2

10 300 5.5× 10−3 8.7× 10−2 1.3

40 300 2.2× 10−2 3.5× 10−1 5.4

Table 1: MR signal decay (in percent) for various diffusivities, acquisition param-

eters and axon diameters. We note that if we have SNR = 30, a noise realization

of one standard deviation has a magnitude 3.3% signal decay. This showcases the

difficulty of detecting and differentiating the signal decay caused by different di-

ameter. For the post-mortem case, using the somewhat big d = 1 µm and strong

Connectom-like acquisition (G = 300 mT/m), we are expecting a signal decay of

0.35%. To be able to statistically identify this signal decay, we would typically need

a decay to be at least bigger than ∼ 2 standard deviation of the noise (depending

on choice of significance level), which would require SNR ≈ 570.

2.3 Axon diameter limit163

To formalize the notion of sensitivity into a workable form using signal decay and164

SNR, Nilsson et al. [21] introduced the diameter resolution limit (dmin). It is defined165

as the smallest diameter such that the MR signal decay can be statistically differen-166

tiated from no decay (in the limiting case d → 0) for a given signal-to-noise ratio167

(SNR) and choice of significance level for the Z-test (α). The decay limit is given168

by σ̄ = Z1−α/SNR. We use eq. 3 to find dmin corresponding to the decay limit. We169

use α = 0.05 (Z1−0.05 = 1.645) for the entirety of this work.170

dmin =

(
768

7

σ̄D0

γ2δG2

)1/4

(3)

Practically, the main implications of this framework are governed by the ex-171

ponents of the individual parameters. We can see for instance that halving the172

diameter limit requires 4-fold increase in gradient strength or 16-fold increase in173
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SNR (∼ 256 repetitions averaged). Table 2 showcases some values of dmin for in-174

vivo and post-mortem diffusivities, a long gradient pulse, various gradient strengths175

(clinical, Connectom, and small-bore preclinical) for various SNRs. We see that176

even in the idealized case [21], we obtain dmin = 2.56 µm for the in-vivo Connectom177

case at realistic SNR, falling quite short of our minimum target of around 1 µm.178

At SNR = 164 (∼ 5 times higher than baseline, ∼ 25 averages), we have 1.77 µm.179

In this example, we need tissue with low post-mortem diffusivity and ultra-strong180

gradients of the strongest preclinical scanner (G = 1500 mT/m) to reach the initial181

goal of dmin ≤ 1 µm, showcasing the practical limitations arising from the fourth182

root scaling in eq. 3.183

Parameters SNR

D0 (µm2/m) δ = ∆ (ms) G (mT/m) 164 65.6 32.8

2.0 40 40 4.69 5.89 7.01

2.0 40 300 1.71 2.15 2.56

2.0 40 1500 0.77 0.96 1.14

0.66 40 40 3.55 4.47 5.31

0.66 40 300 1.30 1.63 1.94

0.66 40 1500 0.58 0.73 0.87

Table 2: Values of dmin (µm) (eq. 3) for various parameters at significance level α =

0.05 (i.e. signal decay stronger than 1.645 standard deviations of noise distribution).

The selected SNRs (164, 65.6, 32.8) correspond to minimum detectable signal decays

of 1%, 2.5% and 5%.

To visualise the impact of dmin, we plot the spread of recovered diameters in fig. 1.184

For each diameter between 0.1 µm and 5 µm, we generated 10000 noisy restricted185

signals and added Gaussian noise with SNR 30 and 300. The signals are generated186

for realistic in-vivo settings (D0 = 2 µm2/ms) with a Connectom-like acquisition187

(single “direction/average”, G = 300 mT/m, δ = ∆ = 40 ms). The different SNRs188

are scaled copies and we see that the mean recovered diameter is biased for diameters189

smaller than dmin. The bias occurs because the average detected diameters become190

driven by the signal decay corresponding to one standard deviation of noise. Hence,191

the result suffers not only from uncertainty, but also from systematic bias.192

It is necessary to insist on what the definition of dmin truly implies, because it is193

often misunderstood as being the diameter above which fitting will be stable. The194

formalism of this section is a way to calculate the smallest signal decay difference195

which is statistically differentiable from 0. We can assess if the SNR and acquisition196

parameters are enough to differentiate two arbitrary diameters, by verifying that197

their produced signal decay difference is bigger than σ̄. If we set one of those198

diameters to 0 and we look for the smallest second diameter above the threshold,199

we get dmin. The minimum diameter only assures us that the distribution of a noisy200
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Figure 1: Scatter plot of fitted diameters with mean fitted diameter (green line)

and 80% confidence interval (blue lines). For each diameter between 0.1 µm and

5 µm, we generated 10000 noisy restricted signals using eq. 3 and Gaussian noise

of SNR 30 (left) and 300 (right). The signals are generated for realistic in-vivo

setting (D0 = 2 µm2/ms) with a Connectom-like acquisition (single “direction”,

G = 300 mT/m, δ = ∆ = 40 ms). The orange line corresponds to dmin using the

framework by [21].
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signal decay around a true signal decay from a diameter bigger than dmin doesn’t201

“overlap significantly” with a signal decay of 0 (i.e. less than α of the distribution202

is below 0).203

2.4 Axon diameter distributions204

In the previous sections, we focused on the sensitivity of dMRI for axon populations205

of a single diameter within a voxel. However, the white matter is composed of axons206

with multiple diameters spanning a large range [1, 18] . Therefore, it is sensible to fit207

a full distribution of diameters to the measured signal. This strategy can be imple-208

mented in multiple ways, such as enforcing a parameterized distribution family such209

as a gamma distribution over the relative axon counts, fitting volume fractions for210

a binned discretized distribution or by fitting multiple cylinder compartments with211

diameters as a free parameter. Intuitively, moving from single diameter estimations212

to any type of distribution will increase the dmin, because adding additional degrees213

of freedom to a model increases the variance of the fitted parameters [16]. However,214

the fitting of axonal diameter distributions to dMRI signals is plagued by more than215

a simple increase to the related dmin.216

In this chapter we show that even the simplest model with multiple diameters has in-217

finitely many completely different solutions for realistic parameters (sec. 2.1). These218

simulations suggest that any “trend” of different diameters seen in images using such219

models is not supported by theory and is likely driven by either the regularization220

terms in the fit or by an effect unrelated to diameter, like noise, errors in the com-221

partment separation or by other types of time-dependent diffusion such as a diffusion222

signal from the extra-axonal compartment.223

When we describe distributions of axon diameters, Paxon(d), we refer to distri-224

butions over the number (axon count) of axons for each diameter inside a voxel.225

Under the assumption that axons of different diameter have the same proton den-226

sity, the spin count distribution becomes a cylinder volume-weighting of the axon227

count distribution, Pspin(d) = Paxon(d) Vol(d)∫
Vol(d′)dd′

. Since the different axons are im-228

plicitly assumed to be of the same length inside the voxel, the volume-weighting229

becomes a cross-section area-weighting (Pspin(d) = Paxon(d) d2∫
d′2dd′

). The normalized230

spin counts are also often referred to as the volume fractions of each axon diame-231

ter, representing the relative volume of water inside the axons of a given diameter.232

When the water molecules inside the axons of different diameters have the same233

magnetic properties (i.e. identical T2, T1, etc), the signal fractions are equivalent234

to the normalized axon count distribution. In this study, the conversion between235

volume and signal fraction only depends on cross-sectional area re-weighting.236

In this experiment, we define the simplest distribution, a signal generated from237

a population of two parallel very big axon diameters in roughly equal proportion238

(with signal fractions: 30% d1 = 4.5 µm and 70% d2 = 3.5 µm, equivalent to239
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volume fractions of 41.5% and 58.5%) (fig. 2). We then plot the mean absolute240

difference between this (noiseless) signal and the signals generated for all the other241

possible configurations.242

Similarly to how we only used a single “acquisition” (with maximally sensitive243

Connectom-like parameters) for the single parameters estimation in fig. 1, here we244

use Connectom-like acquisition parameters with three different gradient pulse du-245

rations to mimic the minimal requirements of uniquely fitting a three parameter246

model (two diameters and one signal fraction). The acquisition parameters were se-247

lected such that they provide sensitivity (long δ) and that the biggest individual dmin248

is comfortably below the smallest diameter in the ground truth (G = 300 mT/m,249

∆ = 50 ms, δ = [30, 40, 50] ms). This two-cylinder model has a three dimensional250

space of possible parameter configurations: the first diameter, the second diameter251

and the signal fraction (of the first cylinder). In fig. 2, the parameter space is sliced in252

the signal fraction direction every 5% and shown as a sequence of 2D plots spanning253

all pairs of diameters. Regions of solid colors across all slices correspond to regions254

of the parameter space producing similar signal decay in this noiseless setting. For255

instance, the blue region corresponds to configurations producing a signal with less256

than 1% signal decay difference from the ground truth, making them indistinguish-257

able at regular SNR (for example, 1% signal decay correspond to SNR = 164 for258

significance level α = 0.05). The blue region spans a surface across many unrelated259

pairs of diameters and signal fractions, showcasing the unresolvability of the sim-260

plistic two-diameter distribution under optimal conditions (ground truth perfectly261

matching the model and no other compartments to disentangle). The axon popu-262

lation diameters were chosen to be very big to highlight the fundamental problem263

of distribution fitting, for similar figures with smaller diameters, see Sec. A.4 where264

the effect is amplified.265

In fig. 3, we repeat the previous experiment with gamma distributed axon diam-266

eter counts instead of the two-diameter distribution. We generated a signal using a267

population of cylinders where the count for each diameter follows a gamma distribu-268

tion (shape = 2.25 and scale = 0.4 with peak at 0.5 µm) using the same diffusivities269

and acquisition parameters as in fig. 2. We show the mean absolute difference be-270

tween our (noiseless) signal and signal generated from gamma distributions spanning271

shapes up to 9 and peak location up to 3 µm. We note that a gamma distribution272

Γ(k, θ) of shape k and scale θ has its peak at (k − 1)θ for k ≥ 1 (0 otherwise).273

Regions of solid colors correspond to regions of the parameter space producing a274

similar signal decay in this noiseless setting. The colored dots in the central pa-275

rameter space correspond to the signal generated with the corresponding colored276

distribution (ground truth is red). As was the case with our previous two-cylinder277

example, we have a wide area of the parameter space generating roughly indistin-278

guishable signals. The four distributions pictured on the sides all produce essentially279

identical signals for a wide range of distribution shapes.280
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Figure 2: Example of the unresolvability of distribution fitting. The ground truth

signal was generated from a combination of 2 parallel cylinders; 30% signal fraction

with diameter d1 = 4.5 µm and 70% d2 = 3.5 µm (shown as white dot in the center

plot) with in-vivo diffusivity (D0 = 2 µm2/ms) and a Connectom-like acquisition

with three gradient pulse durations (G = 300 mT/m, ∆ = 50 ms, δ = [30, 40, 50] ms).

The parameters were selected so that the smallest diameter was comfortably above

“typical” diameter limit for δ = 30 (compared to the limit for SNR = 30, this exper-

iment is noiseless). The 9 subplots represent all combinations of diameters between

0.1 and 6 µm, sliced uniformly at signal fractions between 10% and 50%. The blue

“path” correspond to parameter combinations yielding a signal less than 1% sig-

nal decay different than the noiseless ground truth. It forms a surface spanning

most of the 3D parameter space, rendering any distribution fitting impossible for

non-absurd SNR. Section A.4 showcase the same experiment for diameters closer to

human axons.
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Figure 3: Example of the unresolvability of distribution fitting. The ground truth

signal was generated using a gamma distribution of diameter count (shown as red

dot in the center plot) with in-vivo diffusivity (D0 = 2 µm2/ms) and a Connectom-

like acquisition with three different gradient pulse durations (G = 300 mT/m,

∆ = 50 ms, δ = [30, 40, 50] ms). The center plot represents all combinations

of shape and peak location characterizing different gamma distributions. The dark

blue “path” corresponds to parameter combinations yielding a signal less than 0.1%

signal decay different than the noiseless ground truth. It forms a path spanning

across most of the 2D parameter space, rendering distribution fitting unreliable for

non-absurd SNR. The 4 side plots show examples of various gamma distributions

from the center plot of wildly different shapes generating roughly indistinguishable

signals.
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2.5 Effective MR diameter281

We have shown in the previous section (sec. 2.4) that it seems unfeasible to fit even282

the simplest distributions. Therefore, we might resort to fitting a single “effective”283

diameter. When fitting a single parameter over a quantity following a distribution,284

it is natural that this fitted value will take the form of a central tendency measure285

of that distribution (a “weighted average”).286

In the case of MR axon diameters, there are two main effects providing the287

“weighting”. First, even though we are interested in the distribution of the axon288

count, the signal fractions are weighted by the spin count. Under the assumption289

of uniform intra-axonal proton density, T2, same length cylinder for each diameter290

and no exchange, this manifest itself as a cross section area weighting, proportional291

to the 2nd power of the diameter. Secondly, the signal is sensitive to the 4th power292

of the diameter (as seen in eq. 2), adding up an extra heavy tail-weighting effect.293

Putting it all together, we can define the effective MR axon diameter deff over an294

arbitrary count distribution of density P (d) as a function of its moments (eq. 4)295

[8, 30].296

deff = 4

√
〈d6〉
〈d2〉

(4)

where 〈dn〉 =
∫
d
P (d)dn is the nth moment of the distribution of density P (d) (See297

sec A.2 for a simple proof-of-concept derivation). Fig. 4 shows a high match be-298

tween the effective axon diameter computed from fitting a single diameter over the299

signal simulated from the distribution (dfit in red) and the effective axon diame-300

ter derived from direct computation using the moments of the distribution (deff in301

green) for an example of a human axon diameter distribution from the left and302

right uncinate/inferior occipitofrontal fascicle taken from [18]. Preliminary post-303

mortem results [30] indicated a good correspondence between deff estimated from304

microscopy and from dMRI in a rat brain using a complex imaging strategy which305

properly suppresses non-intra-axonal signals and effects from axon orientations and306

dispersion.307

Evidence points toward deff from eq. 4 being an accurate description of the “av-308

eraging” process of a typical dMRI sequence over a distribution of axons in the309

presence of no other signal. However, it is important to keep in mind the limitations310

of deff as a metric. By the nature of dMRI, it is extremely weighted toward the tail of311

the distribution as shown in fig. 4. The two distributions are fairly similar in term of312

mean and peak location. However, the distribution of the left hemisphere (top plot)313

comprises an additional ∼ 2.5% of large axons, effectively doubling the deff compared314

to the distribution of the right hemisphere (bottom plot). In practice, when com-315

paring two deff values, it becomes impossible to distinguish between situations such316

as a small global shift toward larger axons or a few more big axons or very few extra317
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Figure 4: Human axon diameter normalized count distribution taken from Liewald

et al.[18] (fig. 9, human brain 1, left and right hemisphere shown as top and bottom

respectively). The peak diameter for both distributions is 0.5 µm while the mean

diameter dmean is around 0.6 µm. The bottom distribution maxes out below 2 µm

while the top distribution has a few extra axons in the 2-4 µm range (∼ 2.5% of

axons by count). This small tail difference heavily affects the effective diameter deff

(eq. 4) (doubles it in this case). The fitted MR diameter dfit corresponds nicely with

deff estimated from the moments of the distribution.
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very large axons. This is to be expected when summarizing a complex distribution318

of two to three parameters with only a single metric. The interpretability of deff is319

additionally impaired by the heavy tail weighting of its calculation. Fig. 5 shows320

the same axonal diameter distribution taken from Liewald et al.[18] overlapped with321

densities of multiple families of distributions (gamma, normal, uniform, exponential)322

with parameters tailored to produce the same theoretical deff. The goal is to clearly323

highlight the large (infinite) number of strikingly different distribution shapes that324

can produce the same deff. The interpretation of deff in its current state will require325

very strong hypothesis on the type of distributions or differences that can exist,326

which is not available in general.327

3 Discussion and conclusion328

The goal of this work is to showcase the sensitivity limits and the unresolvability329

of MR axon diameter models from PGSE diffusion weighted sequences. In sec-330

tion 2.2 and 2.3, we have shown how simple computations using realistic in-vivo331

parameters even with high-end Connectom MR gradient systems generate only very332

small signal decay with extremely limited sensitivity to relevant axonal diameters.333

Even the more favorable combination of post-mortem tissue and ultra-strong pre-334

clinical gradients does not result in sufficient signal decay to measure realistic axon335

diameters using diffusion MRI. The problem can be reframed statistically by com-336

paring the signal decay to the noise level with a Z-test and defining a diameter337

limit. Computing dmin results in values that are very big compared to relevant axon338

diameters in the human brain. The effect of this limit was shown with an explicit339

simulation in fig. 1. In section 2.4, we have shown that fitting a distribution of340

diameters to the signal results in a multitude of widely different solutions even in341

the simplest settings. Finally, in section 2.5, we have shown how a distribution of di-342

ameters projects itself onto a single fitted diameter. While estimating deff from data343

seem feasible using advanced hardware and sequences [30], it remains a low dimen-344

sional and strongly tail-weighted projection of the distribution, making it ambiguous345

and insufficient for useful comparison.346

We want to emphasize that every result in this work was computed utilizing347

idealized simulations that were arranged such that any presented limits correspond348

to a bound on the actual limit on real data. Hence, any claim of infeasibility349

of axon diameter measurement based on the employed simulations automatically350

translates to infeasibility of axon diameter measurements based on real data ac-351

quired with similar parameters. Our simulated data were generated (I) purely from352

intra-axonal signals and (II) perpendicular to the main orientation. In a multi-353

compartment model where the extra-axonal signal has to be fitted, (III) there will354

be residual fitting errors from the extra-axonal compartment contaminating the al-355
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Figure 5: Different families of distributions tuned to produce the same deff. The

target deff values were computed from the human axons diameter count distribution

from Liewald et al.[18] (in black, the discrete counts were converted into a density

for visualization). For both hemispheres, we used various families of distribution

(restricted to be univariate) to show potential shape variance with identical deff.
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ready tiny intra-axonal signal decay, increasing the effective dmin. For example, a356

typical extra-axonal tensor compartment in the WM with a perpendicular diffusiv-357

ity of 0.3 µm2/ms produces a signal decay of (1 − exp(−4.28 ∗ 0.3)) ≈ 71.6% for358

acquisitions parameters δ = ∆ = 10 ms and G = 300 mT/m. If only 1% of this359

signal decay (i.e. 0.716% total signal decay) is instead considered as restricted com-360

partment decay fitted with D0 = 2 µm2/ms, it would be equivalent to a cylinder361

with diameter 2.2 µm362

In the simulations, we considered that the typical white matter SNR from an363

MR acquisition using Connectom gradients was driven only by intra-axonal signal.364

(IV) However, in reality the intra-axonal volume fraction comprises less than 50% of365

the total volume in dense parallel fiber regions such as the corpus callosum and less in366

deep white matter [9]. This discrepancy (at least) halves the measured intra-axonal367

signal decay, thereby additionally increasing the effective dmin. (V) Moreover, uncer-368

tainties in the estimation of the fiber orientation will additionally bias the apparent369

diameter because the restricted diffusion model will be fitted to the elongated ellip-370

tical cross-section. (VI) Unaccounted orientation dispersion for multi-compartment371

models will make estimation essentially impossible as shown in Nilsson et al.[21].372

Considering all those sources of bias, it is clear that the already small signal decay373

caused by the restricted diffusion inside axons is essentially unattainable with such374

multi-compartment models.375

An important message from eq 3 and tables 1-2 are the scaling powers of the376

parameters. They are such that the sensitivity problem cannot be fixed using377

more powerful gradient systems. Even extreme cases such as going from in-vivo378

Connectom-like (G = 300 mT/m) acquisitions at normal SNR, to post-mortem379

measurements with ultra-strong preclinical gradients (G = 1500 mT/m) and 5 times380

better SNR (25 averages) only decreases the dmin from 2.56 to 0.58 µm (around 4.4381

times better). This new value is barely enough to be sensitive to the peak of the382

diameter distribution in the best case. If we consider all the idealized assumptions383

from the diameter limit formula, it is likely not sufficient.384

There are many misconceptions in the literature about the difficulty of going from385

single diameter fitting to multiple diameters or a distribution. The “intuition” that386

errors in the fitted distribution will be normally distributed around the true solution387

fails spectacularly, even in the absolute simplest case of a signal from two axonal388

compartments with big diameters and no source of possible confounds as seen in fig. 2389

and in section A.4. A commonly seen argument is to limit the distribution fit at some390

dmin best case value and claim that the resulting distribution must be valid because391

we are sensitive to these bigger diameters. Let’s ignore dmin and simply focus on what392

it fundamentally attempts to do, put a limit on the minimal signal decay that can be393

statistically seen above the noise. To highlight this previous point, let’s look at fig. 2394

where configurations such as (35% 5 µm + 65% 3 µm), (30% 4.5 µm + 70% 3.5 µm),395

(100% 4 µm) and (45% 0.1 µm + 55% 5 µm) produced signal with [0.1, 0.5]% signal396
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decay difference. Such a small decay requires SNR ∈ [330, 1650] at optimal in-vivo397

Connectom-like settings, which correspond to a dmin ∈ [0.96, 1.44] µm, showing the398

disconnection between the limits of distribution fitting and direct dmin computation.399

With the complexity of real axonal diameter distributions and the apparent im-400

possibility of reliably fitting a distribution, working with the effective diameter deff401

seems to be the most promising avenue, when combined with an advanced acquisi-402

tions strategy to negate the non-intra-axonal signal, such as [30]. However, deff is403

not a well behaved metric for comparisons between subjects or different brain areas.404

Before we can do such an analysis, we would potentially need to develop a new non-405

Stejskal-Tanner diffusion sequence producing a slightly different weighting of the406

distribution to allow some disentangling. In its current state, deff cannot differenti-407

ate fundamentally different situations such as a small diameter increase of all axons408

versus a large diameter increase from a small proportion of the axon population.409

An interesting topic we did not mention so far is the time-dependence of the410

extra-axonal space diffusion [22, 8, 17, 25]. Previous attempts to model axonal di-411

ameters assumed that all the time-dependent diffusivity portions of the signal were412

due to intra-axonal restricted diffusion. Recent work has highlighted a mechanism413

by which the extra-axonal space can also produce signals with time-dependent dif-414

fusivity. Indeed, the spacing of the restricting barrier in the extra-axonal compart-415

ment tends to be larger than typical axon diameters at relevant time-scales. This416

has the effect of producing a larger signal decay than the intra-axonal restricted417

compartment for a given acquisition scheme and to produce a time-dependent dif-418

fusivity when varying ∆. We briefly show in section A.3 how this extra-axonal419

time-dependence could contribute to the axon diameter overestimation seen in lit-420

erature.421

An apparent oversimplification throughout this work concerns how SNR and422

number of samples are chosen. For example, in fig. 1, our 1D approach is equivalent423

to generating the signal for a single gradient direction perpendicular to the cylin-424

der. Similarly, we chose three directions for fig. 2 i.e. equal to the number of free425

parameters. If you had a real sample containing only identical parallel cylinders,426

you wouldn’t have knowledge of the orientation and would sample hundreds of di-427

rections spread across multiple values of δ and G. It is hard to define a single value428

representing the SNR gain going from one data point with perfect alignment and429

with maximal sensitivity to hundreds of data points with varying sensitivity, extra430

parameters to fit and etc. If we take instead 100 repetitions of the optimal measure-431

ment and ignore the unknown orientations, we get an upper bound of
√

100 = 10432

times better SNR which corresponds to a 4
√

10 = 1.78 times smaller dmin. A more433

realistic upper bound is to include the estimation of the direction as two extra free434

parameters and frame the data as 100
3

repetitions of three optimal measurements;435 √
100
3
≈ 5.77 times better SNR which corresponds to a 4

√
5.77 ≈ 1.52 times smaller436

dmin. This view becomes increasingly complex as we add more parameters and start437
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taking into account how different measurements have non-equal sensitivity to each438

of the estimated parameter. Since there is a 8th root scaling of dmin versus addi-439

tional averaging (functional form of diameter versus signal decay is 4th power and440

SNR versus averages is 2nd power in the best case), we feel that results on minimal441

number of data points are sufficiently relevant.442

In summary, our results show that the MR-based assessment of axonal diameters443

is methodologically infeasible. Our simulations under ideal conditions demonstrate444

that diffusion-weighted MRI with current and foreseeable future hardware is not445

capable of performing axonal diameter measurements in biologically relevant dimen-446

sions. The inability to measure axonal diameters is not a matter of the biophysical447

model choice but rather stems from the missing contrast of the intra-axonal tissue448

fraction. Under realistic, less ideal measurement conditions, the feasibility of such449

measurements is even further reduced. We show that frequently shown “known”450

variations of axonal diameter across structures such as the corpus callosum might451

also be explained with time dependent diffusion of the extra-axonal tissue frac-452

tion. Therefore, previous measurements and model fitting results rather represent a453

characterization of the extra-axonal space than a measure or representation of the454

axonal diameter. Our manuscript further investigates recent descriptions of axonal455

diameters using a projection on an “effective diameter”. Our simulations show this456

representation can be strongly biased by single axons and does not allow to draw457

any unambiguous conclusions about the actual distribution of diameters. Given458

the immense methodological difficulties of MR axonal diameter measurements, we459

suggest to include the time dependence of extra-axonal diffusion in the quantitative460

description of the microstructure of white matter in future studies. In connection461

with an independent measure of tissue myelination, this time dependency may pro-462

vide an indirect approach to estimate the outer axonal diameter. Multidimensional463

dMRI measurements [28] may help to describe the extra-axonal space due to a re-464

duced degeneracy of associated microstructural models. This may open a doorway465

to a quantitative study of brain microstructure using diffusion MRI.466

Acknowledgement467

MP is supported by a scholarship (PDF-502732-2017) from the Natural Sciences468

and Engineering Research Council of Canada (NSERC). MP and CE are supported469

by the Priority Program 2041 (SPP 2041) “Computational Connectomics” of the470

German Research Foundation (DFG).471

19

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 3, 2020. ; https://doi.org/10.1101/2020.10.01.320507doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.01.320507
http://creativecommons.org/licenses/by-nc/4.0/


A Appendices472

A.1 ∆ insensitivity to axon diameter473

There is some misunderstanding in the literature concerning the impact of varying474

∆ to probe axon diameter. Intuitively, the dMRI signal is created by the dephasing475

of spins due to their displacement. For ∆ to play a role in the measured restricted476

signal, we need to be in a short enough δ time regime. In the long time regime, by477

the end of the gradient application, most spins have interacted strongly with the478

axonal wall and their positions are mostly de-correlated from their initial position;479

the maximal signal decay has been reached and changing the gradient spacing ∆480

will not change anything. In the range of relevant parameter values (see sec. 2.1),481

it is simple to numerically show this phenomenon. Fig. 7 shows the signal decay482

computed from eq. 1 for all physically plausible (∆, δ) pairs in ∆ ∈ [10, 50] ms and483

δ ∈ [10, 50] ms for various axon diameters for an in-vivo Connectom-like settings.484

The respective signal decay depends strongly on the diameters, however, there is485

no perceptible difference for different ∆ at the same δ. The same results can be486

achieved by Monte-Carlo spin diffusion simulation (see Fig. 6).487

Figure 6: Mean squared displacement (MSD) for one direction from 2D Monte-Carlo

simulation for free diffusion and restricted diffusion inside circles of different radius

using D0 = 2 µm2/ms. The horizontal lines show the long time limit MSD for each

diameter. The center plot is a zoom on the first millisecond where we see that even

the relatively large 2 µm diameter circle reaches long time regime quicker than any

sufficiently strong diffusion gradient can be applied (δmin ≥ 5 ms).

Another way to demonstrate this result is to derive the rough form of the signal488
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equation from spin dephasing. We have applied gradient g and pulse width δ. In489

the long time regime, we have δ � tc, tc being the characteristic correlation time of490

the cylinder (tc ∼ d2/D0). We will first calculate the phase φ1 accumulated by spins491

within a time window of tc (where the Gaussian phase approximation applies [20])492

and then compute the total phase φ accumulated as a sum of N ∼ δ/tc uncorrelated493

contributions. Within one short step, phase is accumulated linearly proportional to494

the applied gradient and spin displacement, φ1 ∼ gdtc. We now compute the signal495

using ln(S) ∼ −φ2 ∼ −φ2
1δ/tc = −g2d2tcδ = −g2d2δ

D0
. The recovered equation form496

corresponds to the Neuman long-time limit up to a constant and is independent of497

∆ and the initial position (it implicitly vanished by considering a displacement of d498

for a time-step of tc in φ1).499

Figure 7: Noiseless MR signals from eq 1 for various (∆, δ) and axon diameter (d).

The signals were simulated for G = 300 mT/m and D0 = 2.0 µm2/ms. We note

that different ∆ (y-axis) doesn’t modify the signal in any appreciable way.
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A.2 Effective diameter derivation500

We give a simple derivation of the effective diameter. The normalized MR signal as

a function of d with all other parameters fixed is

E(d) = exp

(
− 7

768

γ2G2δ

D0

d4

)
≡ exp

(
Cd4

)
for some fixed constant C. We compute the volume fraction normalized signal EP for501

diameter counts following a distribution of density P (d). We use the approximation502

E(d) ≈ 1 + Cd4 from the truncated Taylor series of exp(·).503

EP =

∫
d

P (d)
(πd2)∫

d′
P (d′)(πd′2) dd′

E(d) dd

=

∫
d
P (d)(πd2)E(d) dd∫
d
P (d)(πd2) dd

=

∫
d
P (d)(πd2)(1 + Cd4) dd∫

d
P (d)(πd2) dd

=

∫
d
P (d)(πd2) dd∫

d
P (d)(πd2) dd

+

∫
d
P (d)(πd2)Cd4 dd∫
d
P (d)(πd2) dd

= 1 + C ·
∫
d
P (d)d6 dd∫

d
P (d)d2 dd

= 1 + C · 〈d
6〉
〈d2〉

= 1 + C ·

(
4

√
〈d6〉
〈d2〉

)4

= E

(
4

√
〈d6〉
〈d2〉

)
= E(deff) �

A.3 Extra-axonal time-dependent diffusivity504

It has been shown that the extra-axonal compartment can exhibit time-dependent505

diffusivity [22, 8, 17]. It arises from the disorder created by the irregular packing506

of axons of varying diameters. The “disorder strength” is characterized by the507

parameter A and has been empirically estimated in [8] to be A ≈ 0.2(l⊥c )2 where l⊥c508

is the fiber packing correlation length at which diffusion is restricted in extra-axonal509

space. Two models of perpendicular diffusivity as function of (∆, δ) are described510

in [17]; Dintra
⊥ (∆, δ) assuming that all the time dependence in the diffusivity arises511

from intra-axonal space, Dextra
⊥ (∆, δ) assuming that all the time dependence in the512

diffusivity arises from the extra-axonal space.513

Dintra
⊥ (∆, δ) ' fexD

ex
∞ +

c

δ(∆− δ/3)
, c =

7

768

find
4
eff

D0

(5)
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Dextra
⊥ (∆, δ) ' fexD

ex
∞ + c′

ln(∆/δ) + 3
2

∆− δ/3
, c′ = fexA (6)

with extra-axonal volume fraction fex, intra-axonal volume fraction fin = 1−fex,514

long time (∆ → ∞) extra-axonal diffusivity Dex
∞ , bulk diffusivity D0 and disorder515

strength parameter A.516

Evidence on a few subjects suggest that the extra-axonal time-dependence dom-517

inates the intra-axonal time-dependence [25, 17]. This was shown by fitting both518

eq. 5 and 6 to data acquired with fixed δ = 20 ms and multiple ∆ ∈ [26, 100] ms519

to comparable goodness-of-fit. The fitted parameters were then used to predict the520

signal values of a second acquisition using ∆ = 75 ms and multiple δ ∈ [4, 45] ms,521

where the extra-axonal model obtained good predictions and the intra-axonal model522

failed. Since most axon diameter estimation methods assume static values for the523

extra-axonal diffusivity, if the time-dependence in the signal is dominated by extra-524

axonal effects, the estimated diameters will be large and mostly unrelated to the525

effective diameter deff. To showcase this effect, we equated eq. 5 and 6 (Dintra
⊥ (∆, δ) =526

Dextra
⊥ (∆, δ)) and isolated deff. We used the typical value of D0 = 2 µm2/ms and527

fixed Dex
∞ = 0.5 µm2/ms (fitted values in [17] inside [0.38, 0.6] µm2/ms). We use528

fex ∈ [0.25, 0.75] and A ∈ [0.25, 2], giving us fexA ∈ [0.0625, 1.5] compared to the529

reported values in [17] inside [0.24, 0.56]. We generated the “fake” deff for all phys-530

ically plausible combinations of ∆ ∈ [5, 100] ms and δ ∈ [5, 50] ms. We observe531

effective diameter between 2 µm and 9.5 µm, with most diameters above 6 µm in532

the configurations (fex = 0.5 and A = [0.5, 1]) closest to results from [17].533

Figure 8: Signal generated using the extra-axonal time-dependence formula eq 6

and effective diameters fitted using eq 5.

The well-known “small-big-small diameter pattern” observed in the corpus cal-534

losum with histology and “reproduced” with big overestimation by axon diameter535
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estimation methods ([2, 19, 15, 10]) can potentially be explained by this presented536

effect [25]. A brain area with a higher mean diameter is likely to also have an537

increased l⊥c for random circle packing; if the diameter distribution is uniformly538

shifted up, the packing keeps the same relative efficiency and the individual inter539

space grows, alternatively, if a few more big axons are present, it increases the di-540

ameter heterogeneity and the packing efficiency tend to go down, creating more541

extra-axonal space. In any case, fexA increases and the “fake” deff follows in the542

setting of fig. 8. However, the extra-axonal model parameters still contain some543

information about the outer diameter distribution, but it is complexly tangled with544

axon packing.545

A.4 Two-diameter distributions546

We show more examples of fitting a two-diameter model with smaller, more realistic547

diameters. In fig. 2, we used a combination of enormous diameters (signal frac-548

tion, 30% d1 = 4.5 µm and 70% d2 = 3.5 µm) to highlight the effect of having a549

distribution over the lack of sensitivity of the realistic state-of-the-art acquisition550

scheme. We now show results for (30% d1 = 3.5 µm and 70% d2 = 2.5 µm) and551

(30% d1 = 2.5 µm and 70% d2 = 1.5 µm), where the ambiguity over the diameters552

is amplified for the same sampling scheme.553
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Figure 9: Example of the unresolvability of distribution fitting. The ground truth

signal was generated from a combination of 2 parallel cylinders; 30% signal frac-

tion with diameter d1 = 3.5 µm and 70% d2 = 2.5 µm (shown as white dot in the

center plot) with in-vivo diffusivity (D0 = 2 µm2/ms) and a Connectom-like acqui-

sition with three different gradient pulse durations (G = 300 mT/m, ∆ = 50 ms,

δ = [30, 40, 50] ms). The parameters were selected so that the smallest diameter was

comfortably above “typical” diameter limit for δ = 30 (compared to the limit for

SNR = 30, this experiment is noiseless). The 9 subplots represent all combinations

of diameters between 0.1 and 6 µm, sliced uniformly at signal fractions between 10%

and 50%. The blue “path” correspond to parameter combinations yielding a signal

less than 1% signal decay different than the noiseless ground truth. It forms a

surface spanning most of the 3D parameter space, rendering any distribution fitting

impossible for non-absurd SNR.
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Figure 10: Example of the unresolvability of distribution fitting. The ground truth

signal was generated from a combination of 2 parallel cylinders; 30% signal frac-

tion with diameter d1 = 2.5 µm and 70% d2 = 1.5 µm (shown as white dot in the

center plot) with in-vivo diffusivity (D0 = 2 µm2/ms) and a Connectom-like acqui-

sition with three different gradient pulse durations (G = 300 mT/m, ∆ = 50 ms,

δ = [30, 40, 50] ms). The parameters were selected so that the smallest diameter was

comfortably above “typical” diameter limit for δ = 30 (compared to the limit for

SNR = 30, this experiment is noiseless). The 9 subplots represent all combinations

of diameters between 0.1 and 6 µm, sliced uniformly at signal fractions between 10%

and 50%. The blue “path” correspond to parameter combinations yielding a signal

less than 1% signal decay different than the noiseless ground truth. It forms a

surface spanning most of the 3D parameter space, rendering any distribution fitting

impossible for non-absurd SNR.
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