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SUMMARY 

Patient-derived bulk expression profiles of cancers can provide insight into transcriptional 

changes that underlie reprogrammed metabolism in cancer. However, these bulk profiles 

represent the average expression pattern of all heterogeneous tumor and non-tumor cells 

present in the biopsy. Therefore, subtle transcriptional footprints of metabolic processes can be 

concealed by other biological processes and experimental artifacts. We therefore performed 

consensus Independent Component Analyses (c-ICA) with 34,494 bulk expression profiles of 

patient-derived tumor biopsies, non-cancer tissues and cell lines. c-ICA enabled us to create a 

transcriptional metabolic landscape in which many robust metabolic transcriptional components 

(mTCs) and their activation score in individual samples were defined. Here we demonstrate that 

this metabolic landscape can be used to explore associations between metabolic processes and 

drug sensitivities, patient outcomes, and the composition of the immune tumor 

microenvironment. The metabolic landscape can be explored at 

http://www.themetaboliclandscapeofcancer.com. 
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INTRODUCTION 

Reprogrammed energy metabolism is a hallmark of cancer (Hanahan and Weinberg, 2011). 

Metabolic reprogramming supports the survival, proliferation, and maintenance of cancer cells 

by ensuring sufficient biosynthetic capacity, redox potential, and energy (Cantor and Sabatini, 

2012; Pavlova and Thompson, 2016; Vazquez et al., 2016). Additionally, metabolic 

reprogramming enables tumor cells to adapt to challenging microenvironmental conditions, such 

as hypoxia and low nutrient availability, and ultimately become resistant to cancer treatment 

(Huang et al., 2014; Viale and Draetta, 2016). Moreover, metabolic reprogramming of cancer cells 

influences the composition and function of immune cells within the tumor microenvironment, 

which affects their sensitivity to immunotherapies (Herbel et al., 2016; Le Bourgeois et al., 2018; 

Liu et al., 2018; Quail and Joyce, 2013). 

Metabolic dependencies have been successfully exploited to treat cancer, as illustrated by 

the efficacy of antifolate drugs such as methotrexate (Walling, 2006). Increased knowledge about 

cancer cell metabolism has resulted in novel therapeutic targets, including glutaminase or mutant 

forms of IDH1/2, that are currently being evaluated in pre-clinical models and phase I/II clinical 

trials (Luengo et al., 2017). However, adverse effects or a lack of effectiveness have hampered 

clinical development of most metabolic therapies, partly due to the complex involvement of the 

tumor micro-environment (Luengo et al., 2017). Many currently registered targeted drugs were 

developed based on insights into the molecular mechanisms of cancer based on model systems 

of human cancer (Ghaffari et al., 2015). However, most of these cell line-based models do not 

incorporate important features of the human cancer of interest, in particular the immune cells 
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present in the tumor microenvironment (Domcke et al., 2013; Hynds et al., 2018; Jiang et al., 

2016; Klijn et al., 2015; Vincent and Postovit, 2017). 

Evidence is emerging that predominantly transcriptional changes underlie the 

reprogrammed metabolism in cancer cells (Desvergne et al., 2006; Peng et al., 2018b; Ward and 

Thompson, 2012). The interplay between metabolism and regulation of gene expression may also 

explain the metabolic plasticity of cancer cells (Martin-Martin et al., 2018). The interaction is 

bidirectional: changes in gene expression can influence metabolite levels, and metabolic changes 

can result in altered gene expression (Martin-Martin et al., 2018). The availability of large 

numbers of gene expression profiles from a broad spectrum of cancer types in the public domain 

provides a unique opportunity to study cancer metabolism at the transcriptomic level in patient 

tumors. Since these expression profiles are derived from complex biopsies, they contain both 

tumor cells and immune cells present in the tumor microenvironment. Recent advances have 

made it possible to infer the composition and functionality of the immune tumor 

microenvironment from the average gene expression profiles of complex biopsies, thus enabling 

interrogation of the interaction between metabolic processes of tumor cells and the immune 

tumor microenvironment (Newman et al., 2015). This additional layer of information might help 

to identify novel metabolic targets and to design more effective metabolically-targeted therapies. 

In the present study we analyzed 34,494 gene expression profiles obtained from the Gene 

Expression Omnibus (GEO), The Cancer Genome Atlas (TCGA), the Cancer Cell Line Encyclopedia 

(CCLE) and the Genomics of Drug Sensitivity in Cancer portal (GDSC) (Barret et al., 2013; Barretina 

et al., 2012; Yang et al., 2013). We created a metabolic landscape in which we defined cross-

dataset robust metabolic transcriptional components (mTCs) and calculated the activity scores 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 1, 2020. ; https://doi.org/10.1101/2020.10.01.321950doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.01.321950


5 
 

for each mTC in individual samples. We also demonstrated how this metabolic landscape 

(www.themetaboliclandscapeofcancer.com) can be used to explore associations between 

metabolic processes and drug sensitivities, patient outcomes and the composition of the immune 

tumor microenvironment. 

 

RESULTS 

A subset of transcriptional components is associated with metabolic processes 

Previously, we collected gene expression data from four databases: the Gene Expression Omnibus 

(GEO dataset, n = 21,592), The Cancer Genome Atlas (TCGA dataset, n = 10,817), the Cancer Cell 

Line Encyclopedia (CCLE dataset, n = 1,067), and the Genomics of Drug Sensitivity in Cancer (GDSC 

dataset, n = 1,018) (Figure 1A), totaling 34,494 samples (Bhattacharya et al., 2020). Of this total, 

28,200 expression profiles originated from patient-derived complex tissue cancer biopsies, 4,209 

from complex tissue biopsies of non-cancerous tissue, and 2,085 from cell lines. The samples in 

these four databases represent 89 cancer tissue types and subtypes and 19 non-cancerous tissue 

types. For GEO and CCLE data sets, the expression profiles were generated with Affymetrix HG-

U133 Plus 2.0. Expression profiles within the GDSC dataset were generated with Affymetrix 

Human Genome U219, and TCGA profiles originated from RNA sequencing. 

Gene expression profiling measures the net expression level of individual genes, thus 

reflecting the integrated activity of underlying regulatory factors, including experimental, genetic, 

and non-genetic factors. To gain insight into the number and nature of these regulatory factors 

and their effects on gene expression levels, we previously performed consensus-independent 

component analysis (c-ICA) on the total of 34,494 samples from each of the abovementioned 
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datasets (Bhattacharya et al., 2020). The c-ICA resulted in transcriptional components (TCs) in 

which each gene has a specific weight. This weight describes how strongly and in which direction 

the underlying transcriptional regulatory factor influences the expression level of that gene. The 

analysis yielded 855, 1383, 466, and 467 TCs for GEO, TCGA, CCLE, and GDSC datasets, 

respectively (Figure 1A). 

Gene set enrichment analysis (GSEA) with 608 gene sets that describe metabolic processes 

was performed to identify TCs associated with metabolic processes. These gene sets were 

selected from the gene set collections Biocarta (n = 7), the Kyoto Encyclopedia of Genes and 

Genomes (KEGG, n = 64), the Gene Ontology Consortium (GO, n = 508), and Reactome (n = 29) 

within the Molecular Signatures DataBase (MSigDB, v6.1; for the systematic selection strategy 

see Methods). We performed consensus clustering on the GSEA results to reduce potential 

biological redundancy in the gene set definitions (Figure S1A and B). This resulted in 50 clusters 

that each described a different metabolic theme (Table S1). In total, 132 (GEO), 151 (TCGA), 136 

(CCLE), and 137 (GDSC) TCs were identified that showed significant enrichment for metabolic 

processes (Figure 1A and B; see Methods for the systematic selection strategy). In the present 

study, this subset of TCs is referred to as metabolic TCs (mTCs). These mTCs constitute the 

metabolic transcriptional footprints present in our broad set of samples: patient-derived samples, 

cancer cell-line samples, and non-cancer samples. 

 

Metabolic TCs are robust across different datasets and platforms 

Pair-wise comparison between mTCs showed that at least 90% of mTCs identified in one dataset 

correlated strongly (|rs| ≥ 0.5) with at least one mTC identified in the other three datasets (Figure 
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1C and S1C). Focusing specifically on the mTCs identified in the two patient-derived datasets, we 

observed that 113/132 (85.6%) of the GEO mTCs and 127/151 (84.1%) of the TCGA mTCs had a 

strong and significant pair-wise correlation (|rs| ≥ 0.5 with P value < 0.05; Figure 1D). For 19/132 

GEO mTCs, the highest pair-wise correlation with an mTC from the TCGA dataset was ≤ 0.5. 

However, for 13 out of these 19 mTCs, still a very high enrichment (Z-transformed P value > 5) for 

at least one metabolic gene set was observed (Figure 1E). Furthermore, ten of the 19 GEO mTCs 

captured a metabolic process, which was active in a single tumor type that was present only in 

the GEO dataset. For example, GEO mTC 119 is active in a subset of myeloma samples, which 

were not represented in the TCGA dataset (Figure S1D). These results indicate that most of the 

identified mTCs were robust and independent of dataset-specific or platform-specific 

characteristics. 

 

Metabolic TCs identified new genes potentially involved in metabolic processes 

To identify clusters of genes with similar weight patterns across the mTCs, we clustered the genes 

based on their weight in the mTCs. We did this only on the subset of genes with an absolute 

weight > 3 in at least one mTC (Figure 2A and 2D). In most clusters, the member genes had a high 

weight in only one mTC, indicating that these genes predominately participate in one metabolic 

process.  

As mentioned in the previous paragraph, we observed many concordant mTCs between 

different datasets. Two strongly correlated mTCs, GEO mTC 54 and TCGA mTC 127 (rs = 0.77), 

which both showed enrichment for glycolysis and the metabolic process of ADP were analyzed in 

depth (Figure 2B and 2C, Table S1). GEO mTC 54 contained 262 genes with an absolute weight > 
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3, of which 155 (59.1%) also had absolute weight > 3 in TCGA mTC 127. Both mTCs contained 

multiple top-ranked genes that are known targets of the HIF-1 complex and genes previously 

found to be part of a hypoxic signature (Benita et al., 2009; Ye et al., 2018). Several genes ranking 

at the top of both GEO mTC 54 and TCGA mTC 127 (e.g., FAM162A, C4orf3, C4orf47, and 

ANKRD37) are currently not a member of any of the 608 metabolic gene sets. However, these 

data suggest that these four genes are involved in glycolysis and are possibly hypoxia related. 

Indeed, several studies have suggested that at least FAM162A and ANKRD37 are regulated by the 

transcription factor HIF-1α (Copple et al., 2012; Sørensen et al., 2015). 

As a second example, we investigated two highly correlated mTCs, GEO mTC 11 and TCGA 

mTC 141 (rs = 0.67), which showed enrichment for mitochondrial metabolic processes such as 

oxidative phosphorylation and the TCA cycle (Figure 2E and 2F, Table S1). GEO mTC 11 contained 

427 genes with an absolute weight > 3, of which 270 (63.2%) also had an absolute weight > 3 in 

TCGA mTC 141. In these two mTCs, C6orf136 and IMMT are top-ranked genes which are currently 

not assigned to any of the 608 metabolic gene sets. C6orf136 and IMMT were both previously 

identified in proteome profiles of functional mitochondria (Lefort et al., 2009). These results 

suggest that mTCs could be used to assign metabolic functions to genes currently not members 

of known gene sets describing metabolic processes. 

 

Clustering activity scores of mTCs reveal multiple metabolic subtypes 

In addition to mTCs, consensus ICA also provides a “mixing matrix” in which each column 

corresponds to an mTC and each row corresponds to a sample. The mixing matrix contains 

weights that are interpreted as measurements of the activity of the corresponding mTCs in an 
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individual sample; we refer to these as activity scores. By clustering these activity scores, we could 

investigate the heterogeneity of the metabolic transcriptome in a broad range of cancer subtypes. 

For each of the four datasets, samples were hierarchically clustered based on their mTC 

activity scores (Figure 3A, 3B and S2A, S2B). We selected the cutoff heights of the resulting 

dendrograms so that every cluster – referred to as metabolic subtype – contained at least 50 

samples (Figure S2C and S2D). This clustering analysis divided the 21,592 GEO samples into 67 

metabolic subtypes with a median of 276 samples per subtype (range 54-1252), and the 10,817 

TCGA samples into 58 metabolic subtypes with a median of 167 samples per subtype (range 52-

536). For an overview of the metabolic subtypes and their sample composition, see Figure S3, S4 

and Table S2. Three types of patterns emerged. 

The first pattern consisted of several metabolic subtypes that mostly contained samples 

from a single cancer type. For example, 102/133 (76.7%) of thyroid cancer samples in the GEO 

dataset fell into a metabolic subtype that was characterized by a high activity score of GEO mTC 

64 (Table S2). Similarly, 446/509 (87.6%) of thyroid cancer samples in the TCGA dataset fell into 

a metabolic subtype that was characterized by a high activity score of TCGA mTC 87 (Table S2). In 

line with the biology of thyroid tissue, both GEO mTC 64 and TCGA mTC 87 were highly enriched 

for thyroid hormone metabolism (Table S1). 

The second pattern consisted of metabolic subtypes that contained samples from multiple 

tumor types. For example, GEO metabolic subtype 22 contained samples from 25 tumor types, 

including 42 ovarian cancer samples (22% of all ovarian cancer), 33 synovial sarcoma samples 

(97% of all synovial sarcoma), and 15 Ewing's sarcoma samples (58% of all Ewing's sarcoma; Table 

S2). GEO mTC 111 had the highest absolute median activity score in GEO metabolic subtype 22 
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(Table S2). This mTC showed enrichment for the metabolism of nicotinamide adenine 

dinucleotide phosphate (NADP) and genes involved in the activation of an innate immune 

response (Table S1). 

The third pattern consisted of several tumor types that were not characterized by a few 

dominant metabolic subtypes, but the samples were divided across multiple metabolic subtypes. 

For example, the 3,512 breast cancer samples in the GEO dataset were divided across 33 

metabolic subtypes (Figure 3C). These metabolic subtypes did not follow the breast cancer 

classification based on ER and HER2 receptor status (Figure 3C and Table S2). In line with this 

observation in the GEO dataset, the 1,100 breast cancer samples in the TCGA dataset were also 

scattered across 29 metabolic subtypes. 

These results show that classification of samples based on metabolic subtype yields 

different patterns than current classification systems, such as histotype or receptor status in 

breast cancer. 

 

Metabolic subtypes show prognostic value 

We then investigated the clinical relevance of the metabolic subtypes. We had previously 

collected distant relapse-free survival (DRFS) data for 1,207 breast cancer samples (Bense et al., 

2017). In the present study the breast cancer samples in the GEO dataset were divided across 33 

of the 67 metabolic subtypes. Of these 33 subtypes, eight contained > 50 breast cancer samples 

with data available for DRFS: subtypes 15, 16, 20, 31, 32, 33, 34, and 35. We found that breast 

cancer samples assigned to metabolic subtypes 16 and 33 showed the best and worst DRFS, 

respectively (P value <0.05, Log-Rank test; Figure 3E). Distributions of standard prognostic factors 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 1, 2020. ; https://doi.org/10.1101/2020.10.01.321950doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.01.321950


11 
 

within these eight metabolic subtypes are presented in Table S3. Samples belonging to metabolic 

subtype 34 had the second-best DRFS. GEO mTC 50, which was enriched for genes involved in 

oxidative phosphorylation, had lower median activity in metabolic subtype 34 in comparison with 

other metabolic subtypes (P value <0.05, Mann-Whitney U test; Figure S2E). This indicates that 

lower expression of genes involved in oxidative phosphorylation was associated with a better 

DRFS. 

Melanoma samples in the TCGA dataset were divided into 17 metabolic subtypes. Overall 

survival (OS) data was available for 437 samples. Metabolic subtypes 5 and 8 contained >20 

samples with available OS data. Melanoma samples that were part of metabolic subtype 5 had 

better OS data than metabolic subtype 8 (P value <0.05, Log-Rank test; Figure 3F). In comparison 

to metabolic subtype 8, subtype 5 had a higher median activity score of TCGA mTC 7 (P value 

<0.05, Mann-Whitney U test; Figure S2F). TCGA mTC 7 was enriched for genes involved in the 

regulation of the metabolic processes of glycoproteins and phospholipids, cell-cell adhesion, and 

the activation of lymphocytes and leukocytes. Metabolic subtype 5 contained 82.9% melanoma 

samples from regional lymph nodes and no primary tumor samples (Table S3). In addition, 

subtype 5 (except for melanoma samples) contained samples from primary tumors of 27 other 

cancer types (Table S2). In contrast, subtype 8 contained 98% melanoma samples: 44.6% samples 

from regional lymph nodes and 28.0% primary tumor samples (Table S2 and S3). This difference 

in sample origin and the associated difference in the activity of metabolic processes may explain 

the difference in OS data between the melanoma samples in metabolic subtypes 5 and 8. These 

results show that metabolic subtypes are associated with disease outcomes, and may therefore 

be relevant for clinical practice. 
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The activity of mTCs is associated with drug sensitivity 

The CCLE and GDSC databases contain the sensitivities of cell lines to a large panel of drugs 

expressed as IC50 values. We observed clear associations between the activity scores of mTCs and 

the IC50 values of 270 drugs (Table S4). 

For example, in the GDSC dataset the activity score of GDSC mTC 3 was associated with the 

IC50 values of nutlin-3a (|rs|= 0.42; Figure 4A). Nutlin-3a targets the p53 pathway through 

inhibition of MDM2. In line with this, GDSC mTC 3 showed strong enrichment for genes involved 

in the p53 pathway with MDM2 ranked as the second gene (Table S1). GDSC mTC 3 was strongly 

correlated with CCLE mTC 4 (|rs|= 0.84), GEO mTC 57 (|rs|= 0.79), and TCGA mTC 110 (|rs|= 0.74) 

(Figure 4B), suggesting that this mTC was captured in cell line datasets as well as in the two 

patient-derived datasets. Cell lines with wildtype TP53 had a higher activity score of GDSC mTC 3 

(Figure 4C). Cell lines with wildtype TP53 had a higher activity score of CCLE mTC 4 as well (Figure 

4D). 

In another example, the activity score of GDSC mTC 18 was found to be associated with the 

IC50 values of 142 drugs (|rs| range 0.20 – 0.44; Figure 5A). An increase in activity score of GDSC 

mTC 18 in a sample was associated with a higher IC50 value for 135 of these drugs, including the 

widely used antimetabolite 5-fluorouracil (|rs| = 0.41). GDSC mTC 18 was strongly correlated with 

CCLE mTC 28 (|rs|= 0.84), GEO mTC 35 (|rs|= 0.59), and TCGA mTC 58 (|rs|= 0.55), indicating that 

this mTC is also captured in both cell line datasets and the two patient-derived datasets. All four 

of these highly correlated mTCs were enriched for genes involved in the metabolism of 

glutathione, cellular ketones and xenobiotics, and in drug detoxification (Table S1). Specifically, 
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genes in the aldo-keto reductase family were among the top-ranked genes in these mTCs. For 

both GEO mTC 35 and TCGA mTC 58, we observed high activity scores especially in non-small cell 

lung carcinoma samples (NSCLC; Figure S5A and S5B). In NSCLC, previous studies have reported 

a role for the glutathione system and drug detoxification/metabolism processes, and for the aldo-

keto reductase family of genes in acquired drug resistance to platinum-based drugs (Chang et al., 

2019; Tian et al., 2016; Yang et al., 2006; Zhu et al., 2018). In contrast, we observed that an 

increased activity score of GDSC mTC 18 was associated with a decrease in IC50 value (i.e., 

increased sensitivity) for only seven of the 142 drugs (|rs| range 0.20-0.41; Figure 5A). The drug 

with the highest negative correlation was tanespimycin (17-AAG), an Hsp90 inhibitor (|rs| = 0.41). 

A direct link between the functions of glutathione and Hsp90 in oxidative stress has been 

suggested, as well as a relationship between tanespimycin sensitivity and NQO1 expression, a 

gene coding for an enzyme reducing quinones to hydroquinones that is involved in detoxification 

pathways (Gaspar et al., 2009; Kim et al., 2015). In line with these findings, we found that the 

NQO1 gene is present near the top of GDSC mTC 18.  

As a final example, in the GDSC dataset in our study the activity score of GDSC mTC 108 was 

associated with the IC50 values of MEK inhibitor trametinib and histone deacetylase inhibitor 

vorinostat (|rs| = 0.48 and |rs| = 0.46, respectively; Figure 5B and Table S4). An increase in the 

activity score of GDSC mTC 108 in a sample was associated with a lower IC50 value of trametinib. 

In contrast, an increased activity score of GDSC mTC 108 was associated with a higher IC50 value 

of vorinostat. GDSC mTC 108 was found to be enriched for genes involved in the regulation of the 

biosynthetic process of cytokines and negative regulation of the MAPK cascade (Table S1). GDSC 

mTC 108 was strongly correlated with CCLE mTC 97 (|rs|= 0.61). Consistent with the observation 
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for GDSC mTC 108, in the CCLE dataset we found that increased activity of CCLE mTC 97 was 

associated with a lower IC50 value (i.e., increased sensitivity) to the MEK inhibitor PD-0325901 

(|rs| = 0.24) and a higher IC50 value (i.e., increased resistance) to the histone deacetylase inhibitor 

panobinostat (|rs| = 0.43). This contrasting sensitivity for MEK and histone deacetylase inhibition 

is in line with data from a study that used BRAF-mutated melanoma cell lines. The authors showed 

that cell lines with acquired resistance to MEK inhibitors subsequently became sensitive to 

treatment with the histone deacetylase inhibitor vorinostat (Wang et al., 2018). They concluded 

that the MEK-inhibitor resistance mechanism results from the activation (or reactivation) of 

MAPK cascades (Wagle et al., 2014). These findings are in line with our observation that both 

GDSC mTC 108 and CCLE mTC 97 were enriched for genes involved in the negative regulation of 

the MAPK cascade. These examples demonstrate that metabolic processes are associated with 

drug sensitivity.  

 

The activity of mTCs are associated with the immune composition of the tumor 

microenvironment 

We determined the association between the activity of mTCs and the immune composition of the 

tumor microenvironment (Table S5; see Methods for details). The immune composition for all 

samples in the GEO and TCGA dataset was determined by inferring fractions of 22 immune cell 

types using the CIBERSORT algorithm (Chen et al., 2018). We observed that the mTCs that were 

correlated with immune cell fractions could be divided into two groups. The first group included 

mTCs that were only identified in the patient-derived datasets. The second group contained mTCs 

that were identified in both the patient-derived and the cell line datasets. 
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For example, in the first group of mTCs that were correlated with immune cell fractions, the 

activity score of GEO mTC 123 was associated with CD8+ T-cell (|rs| = 0.40), γδ T-cell (|rs| = 0.36), 

activated CD4 memory T-cell (|rs| = 0.34), and regulatory T-cell (|rs| = 0.32) fractions (Figure 5C). 

GEO mTC 123 was correlated with TCGA mTC 34 (|rs|= 0.33). In line with this, the activity score 

of TCGA mTC 34 was also associated with CD8+ T-cell fractions (|rs| = 0.58). Both GEO mTC 123 

and TCGA mTC 34 showed enrichment for genes involved in immunological processes such as 

leukocyte activation and cytokine metabolism, as well as in metabolic processes such as 

phosphatidylinositol and phospholipid metabolism (Table S1). For both GEO mTC 123 and TCGA 

mTC 34, no strong correlation with the mTCs identified in the CCLE and GDSC cell line datasets 

was found. This suggests that GEO mTC 123 and TCGA mTC 34 both originated from non-

cancerous cells in the immune tumor microenvironment and that their activity scores correlate 

especially with the presence of CD8+ T-cells. 

GEO mTC 14 is illustrative of the second group of mTCs that were correlated with immune 

cell fractions. The activity scores of GEO mTC 14 were correlated with the fractions of M1 

macrophages (|rs|= 0.65) and M2 macrophages (|rs|= 0.59; Figure 5D). GEO mTC 14 was 

correlated with TCGA mTC 70 (|rs|= 0.44) and with CCLE mTC 118 (|rs|= 0.21), and GDSC mTC 33 

(|rs|= 0.33). All four mTCs were enriched for genes involved in the metabolism of extracellular 

macromolecules (Tables S1). Genes coding for several types of collagens were among the top-

ranked in these mTCs. This is in line with previous reports indicating that macrophages can 

function as collagen-producing cells in the tumor microenvironment (Schnoor et al., 2008; Vaage 

and Harlos, 1991). GEO mTC 14 and TCGA mTC 70 showed a high activity score in subsets of breast 

cancers, lung cancers, and sarcomas (Figure S5C and S5D). A negative activity score of GEO mTC 
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14 and TCGA mTC 70 was observed in a subset of hematological cancers, as well as in 

hematological cancer cell lines in both GDSC and CCLE mTCs. These mTCs are present in both 

patient data sets and cell-line datasets, which indicates that these metabolic processes are likely 

intrinsic to cancer cells and are associated with the fraction of macrophages present in the tumor 

microenvironment. 

By correlating inferred immune cell fractions of samples with the activity scores of mTCs in 

samples, the relationship between metabolic gene expression and the various components of the 

immune tumor microenvironment could be assessed. 

 

DISCUSSION  

In the present study, we used consensus-Independent Component Analysis (c-ICA) in combination 

with Gene Set Enrichment Analysis (GSEA) to identify a broad set of robust metabolic 

Transcriptional Components (mTCs). With these mTCs, the transcriptional metabolic landscape 

was defined in patient-derived cancer tissue, cancer cell lines, and non-cancer samples. We also 

showed how this metabolic landscape can be used to explore associations between metabolic 

processes and drug sensitivities, patient outcomes, and the composition of the immune tumor 

microenvironment. 

 We used the wealth of publicly available pan-cancer transcriptomic data to study human 

metabolism on a large scale. Previous work used either single-cell sequencing or bulk cell 

transcriptomic profiles to study metabolism in specific cancer types (Hakimi et al., 2016; Xiao et 

al., 2019), or pan-cancer, but based on a single platform (Cubuk et al., 2018; Peng et al., 2018a; 

Rosario et al., 2018). Our present study differs from this previous work in two essential aspects. 
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Firstly, we used c-ICA to segregate the average expression patterns of complex biopsies into 

statistically independent components (Bhattacharya et al., 2020; Biton et al., 2014; Kong et al., 

2008). Metabolic processes relevant to cancer biology can be challenging to detect when their 

transcriptional footprints (TFs) are subtle and concealed by more pronounced TFs from other 

biological processes and experimental artifacts. Using c-ICA, both the pronounced and more 

subtle TFs of metabolic processes can be identified. Moreover, c-ICA provided us with information 

on the activities of these metabolic processes. This enabled us to determine the correlation 

between the activity of pronounced and subtle metabolic processes with drug sensitivities, 

patient outcomes, and the composition of the immune tumor microenvironment. Secondly, the 

present study is the most extensive transcriptional analysis of metabolism and the first that 

integrated patient-derived data from GEO and TCGA with cell-line data from CCLE and GDSC. The 

samples in these four datasets were obtained from a multitude of independently constructed, 

publicly available cohorts, and the expression profiles were generated using different 

technologies (microarray or RNA-sequencing). This integrated dataset enabled us to demonstrate 

that most of the identified mTCs were robust and independent from dataset-specific and 

platform-specific characteristics. The observed overlap, or lack of overlap, between patient-

derived and cell line-derived mTCs can help researchers understand how metabolic genes and 

pathways that are identified in cell lines can be translated to a patient tissue-context and vice 

versa. Furthermore, we hypothesize that metabolic processes that are identified only in patient-

derived samples and not in cell line samples are more likely to originate from cells in the tumor 

microenvironment. These microenvironment-specific metabolic processes will not be captured 
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by mTCs in cell line datasets. This is because bulk expression profiles of cancer cell line samples 

do not harbor transcriptional footprints associated with non-tumor cells. 

The metabolic landscape enabled us to classify samples based on the transcriptional activity 

of metabolic processes, resulting in metabolic subtypes. However, this metabolic classification 

was often not in alignment with current classification systems based on aspects such as histotype. 

For breast cancer and melanoma, we demonstrated that metabolic subtypes were associated 

with disease outcomes, emphasizing the relevance of metabolic pathway-based classification in 

cancer. The  heterogeneity (metabolic and otherwise) within and between cancer types is well 

recognized, and alternative subtyping based on metabolite profiling and the metabolic 

transcriptome have been proposed before (Reznik et al., 2018; Rosario et al., 2018; Tang et al., 

2014). More specifically, clinically significant, metabolism-based classifications have been 

proposed in breast cancer (Cappelletti et al., 2017; Serrano-Carbajal et al., 2020; Wang et al., 

2019) and melanoma (Fischer et al., 2018; Wind et al., 2018). The most active mTCs in a clinically 

relevant metabolic subtype could thus be used to generate new hypotheses for treatment 

targets. Additionally, the association between the activity of mTCs and drug sensitivity could help 

to design therapeutic strategies, personalized or otherwise. 

 Metabolic heterogeneity and plasticity are not limited to cancer cells but are also 

applicable to the immune cells present in the tumor micro-environment. Immune cells undergo 

metabolic changes when activated, and their metabolic status can overlap with the metabolic 

state of cancer cells (Andrejeva and Rathmell, 2017). For example, the Warburg effect is classically 

seen as an example of a metabolic transformation in cancer cells. However, it is also observed in 

activated T cells (Bantug et al., 2018; Patel and Powell, 2017; Wang and Green, 2012). In the 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 1, 2020. ; https://doi.org/10.1101/2020.10.01.321950doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.01.321950


19 
 

context of metabolism, this complex interplay between cancer cells and immune cells present in 

the micro-environment gives a new dimension to the use of drugs that target metabolic processes 

(O'Sullivan et al., 2019; Patel et al., 2019). For instance, inhibiting glutamine metabolism has been 

shown to inhibit tumor growth and increase the sensitivity of triple-negative breast cancers to 

immune checkpoint blockade (Oh et al., 2020), and reducing oxidative stress has been shown to 

prevent the generation of tumor-associated macrophages (Zhang et al., 2013). Furthermore, 

modulating metabolism in T-cells from glycolytic towards an OXPHOS-weighted profile has been 

shown to improve CAR T cell immunotherapy (Fraietta et al., 2018; O'Sullivan and Pearce, 2015; 

Sukumar et al., 2017). Our transcriptional metabolic landscape can contribute to knowledge on 

immunometabolism and, combined with the association of mTCs with drug sensitivity, also 

contribute to the formulation of new hypotheses on how to metabolically engage the tumor and 

its immune microenvironment, thus improving the response to immunotherapy. 

Further research to gain an even more comprehensive understanding of metabolism in 

patient-derived cancer samples should ideally integrate genomics, transcriptomics, proteomics, 

and metabolomics to capture the complexity of metabolic processes within cancer cells (Buescher 

and Driggers, 2016). Recent initiatives to this end are the Recon1, Edinburgh Human Metabolic 

Network (EHMN), and Human1 projects (Brunk et al., 2018; Ma et al., 2007; Robinson et al., 2020). 

However, challenges for these initiatives lie in the limited set of samples for which these high-

dimensional multi-omics features are available, and the use of predominantly cell line samples. 

Paired datasets on a large scale are needed to unleash the full potential of such an integrated 

approach. 
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In the present study we demonstrated several examples of how metabolic processes were 

associated with the composition of the immune tumor microenvironment, drug sensitivity, and 

patient outcomes. To facilitate the use of our transcriptional metabolic landscape, we have 

provided access to all data via a web portal (www.themetaboliclandscapeofcancer.com). In this 

portal, users can explore genes, metabolic processes, and tissue types of interest. We invite 

researchers and clinicians to use this portal as a guide to the metabolic transcriptome in cancer, 

or as a starting point for further research into cancer metabolism. 
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FIGURE TITLES AND LEGENDS 

Figure 1 – Identification of metabolic transcriptional components (mTCs). mTCs are highly 

concordant across different datasets and platforms. (A) Workflow for identification of mTCs. 

Consensus-Independent Component Analysis (c-ICA) on 34,494 samples from four datasets was 

used to identify transcriptional components (TCs). Subsequent systematic selection of TCs 

enriched for metabolic processes resulted in in 132, 151, 136, and 137 mTCs for the GEO, TCGA, 

CCLE, and GDSC datasets, respectively. (B) Hierarchically clustered heatmaps showing the 

enrichment of the 608 metabolic gene sets for the mTCs identified in GEO, TCGA, CCLE, and GDSC 

datasets. (C) Citrus plots showing the absolute Spearman correlations of mTCs identified in one 

dataset with mTCs identified in the other three datasets. Colored lines indicate |rs| > 0.5. The 

fraction and percentage of mTCs of a dataset having at least one |rs| > 0.5 are depicted for each 

dataset. (D) Scatter plot showing the correlations between all GEO mTCs and TCGA mTCs (x-axis), 

versus their Z-transformed P values (y-axis). Colored dots show the correlations > 0.5 having a P 

value < 0.05. (E) Scatter plot illustrating the highest absolute correlation coefficient |rs| of a GEO 

mTC to a TCGA mTC (x-axis), versus the highest enrichment score for a metabolic gene set found 

for that GEO mTC (y-axis). 

 

Figure 2 - For GEO and TCGA datasets, genes with an absolute weight > 3 in at least one mTC 

were clustered hierarchically. (A) Heatmap of hierarchically clustered genes with an absolute 

weight > 3 in GEO mTCs. Sets of top genes in GEO mTC 54 and GEO mTC 11, as highlighted in the 
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text, are enlarged in black boxes. The blue and red colors in the heatmap designate the sign and 

magnitude of each gene weight, as given in the legend. However, interpreting the sign of a gene 

weight only has value when the activity score of the respective mTC in a sample is taken into 

account. This activity score, too, can be either positive or negative. Only the product of a gene 

weight and activity score can therefore be interpreted, and the sign of this product will give an 

indication of a gene from a mTC being “more active” or “less active” in a sample than the average.     

(B-C) Top genes in GEO mTC 54 and TCGA mTC 127. Text colored white shows genes that are a 

member of the 608 metabolic gene sets. Lines signify genes that are present in the top of both 

GEO and TCGA mTCs. (D-E) Top genes in GEO mTC 11 and TCGA mTC 141. (F) Heatmap of 

hierarchically clustered genes with an absolute weight > 3 in TCGA mTCs. Sets of top genes in 

TCGA mTC 127 and TCGA mTC 141, as highlighted in the text, are enlarged in black boxes. 

 

Figure 3 – Clustering activity scores of mTCs reveal multiple metabolic subtypes, which show 

prognostic value 

(A) 21,592 GEO samples were hierarchically clustered based on mTC activity scores and divided 

into 67 metabolic subtypes. (B) 10,817 TCGA samples were hierarchically clustered based on mTC 

activity scores and divided into 58 metabolic subtypes. (C) Metabolic landscape of the subset of 

breast tissue samples in the GEO dataset. (D) Metabolic landscape of the subset of melanoma 

samples in the TCGA dataset. (E) Retrospective distant relapse-free survival of breast cancer 

patients in the GEO dataset. Patient-derived samples were stratified per metabolic subtype. 

Kaplan Meier curves are shown with a confidence interval of 0.95. (F) Retrospective overall 
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survival of melanoma patients in the TCGA dataset. Patient-derived samples were stratified per 

metabolic subtype. Kaplan Meier curves are plotted with a confidence interval of 0.95. 

 

Figure 4 – Activity of GDSC mTC 3 is highly correlated with the IC50 value of Nutlin-3a and is 

active in cell lines with wildtype TP53. (A) Spearman correlations between drug IC50 values and 

the activity of GDSC mTC 3 (B) Scatter plot showing the association between the IC50 value of 

Nutlin-3a and activity of GDSC mTC 3. (C) Highest pair-wise correlations between GDSC mTC 3 and 

mTCs from GEO, TCGA and CCLE datasets. (D) Box plot of activity of GDSC mTC 3 across cell lines, 

colored for their TP53 mutation status. (E) Box plot of activity of CCLE mTC 4 across cell lines, 

colored for their TP53 mutation status.  

 

Figure 5 – Associations between mTCs, drug sensitivities, and the composition of the immune 

tumor microenvironment for selected examples. (A-B) Spearman correlations between drug 

IC50 values and the activity of GDSC mTC 18 and mTC 108. (C-D) Spearman correlations between 

CIBERSORT estimated immune cell fractions and the activity of GEO mTC 123 and mTC 14. 

 

METHODS 

Resource availability  

Lead contact 

Further information and requests for resources should be directed to and will be fulfilled by the 

Lead Contact, Rudolf S.N. Fehrmann (r.s.n.fehrmann@umcg.nl). 
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Materials availability 

N.A. 

 

Data and code availability 

Data can be explored at http://themetaboliclandscapeofcancer.com. Code is available at 

github.com/MetabolicLandscape/ 

 

Method details 

Data acquisition, data preprocessing and c-ICA 

A detailed description of the methods are available in the Supplementary Note. The methods for 

data acquisition, preprocessing of the four datasets GEO, TCGA, GDSC, and CCLE and c-ICA was 

published previously (Bhattacharya et al., 2020). These methods are summarized below. 

ICA was performed on a preprocessed and whitened dataset using the FastICA algorithm, 

resulting in the extraction of estimated sources (ESs) and a mixing matrix. The number of principal 

components which captured 90% of the variance seen in the whitened dataset was chosen as the 

number of ESs to extract. We performed 25 ICA runs with different random initialization weight 

factors to assess the robustness of the ESs and exclude ICA results derived from convergence at 

local solutions. ESs extracted from these runs were clustered together if the absolute value of the 

Pearson correlation between them was > 0.9. We considered a consensus TC robust when 

clustering included individual TCs from > 50% of the runs. The consensus TCs, in combination with 

the original input expression profiles, were used to obtain the consensus mixing matrix with the 

individual activity scores of the consensus TCs in each sample via matrix inversion. 
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Identification of TCs enriched for metabolic processes 

Gene sets defining metabolic process were selected from gene set collections obtained from the 

Molecular Signatures Database (MSigDb version 6.1): BioCarta, Gene Ontology – Biological 

Process (GO-BP), Gene Ontology – Molecular Function (GO-MF), KEGG, and Reactome (See 

Supplemental Information for details on selection process). To identify transcriptional 

components enriched for metabolic processes, gene set enrichment analysis (GSEA) was 

performed using the selected metabolic gene sets. Enrichment of each metabolic gene set was 

tested according to the two-sample Welch's t-test for unequal variance between the metabolic 

set of genes, and the Welch's t statistic was transformed to a Z-score to allow comparison 

between gene sets. 

To reduce the redundancy in gene sets from different gene set collections, consensus 

clustering was performed set-wise on the GSEA data for the GEO, TCGA, CCLE, and GDSC datasets. 

Consensus clustering was performed using the ConsensusClusterPlus-package (v1.51.1) within R, 

using the default hierarchical clustering algorithm and Pearson correlation distance, a maximum 

number of clusters (maxK) of 150, 2000 resamplings (reps), with 80% row and 80% column 

resampling (pFeature and pItem, respectively). The optimal number of clusters (k) was 

determined as the k at which the relative change in area under the CDF curve was minimized 

(<0.01). This resulted in a k of 50 clusters (Figure S1). 

The 50 clusters of gene sets were subsequently used to select transcriptional components 

based on their enrichment for metabolic processes. Per gene set cluster, the three TCs with the 

highest absolute enrichment score for any gene set in that cluster were selected. We also selected 
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the three TCs with the highest absolute mean enrichment score for all gene sets in that cluster. 

These selected TCs were then referred to as metabolic Transcriptional Components (mTCs). 

 

Clustering of Metabolic Transcriptional Components, Genes and Samples 

Hierarchical clustering of mTCs, genes, and samples was performed using ward.D2 as the method 

and 1-cor(data) as the distance function. Heatmaps were created using R's gplots package 

(v3.0.1).  

 

CIBERSORT 

Relative and absolute immune fractions for 22 immune cell types were estimated for all samples 

in GEO and TCGA datasets using the CIBERSORT algorithm running with default parameters, 1000 

permutations, and selecting 'nosumto1' as output. This output was then associated with the 

activity of the mTCs in samples, through Spearman correlation. 

 

Statistical Analyses 

Univariate DRFS on breast cancer samples from GEO and univariate OS analyses on melanoma 

samples from TCGA were performed using a Cox regression model through survminer (v0.4.3) and 

survival (v2.43-3) packages in R. Confidence intervals were set at 0.95. Significance was tested 

through the Log Rank test. Scripts are available at github.com/MetabolicLandscape/. Pearson 

correlations were performed in R using the cor.test()-function from the stats package (v.3.5.1). 

Spearman correlations and the corresponding exact P values were calculated using the 

pspearman-package (v0.3-0) in R, with a t-distribution as an approximation. 
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SUPPLEMENTAL INFORMATION TITLES AND LEGENDS 

Figure S1 – Related to Figure 1; 

 (A) Consensus clustering gene set enrichment scores of all TCs in the GEO dataset. Consensus 

matrix for a k of 50 gene set clusters. (B) Consensus clustering gene set enrichment scores of all 

TCs in the GEO dataset. Relative change in area under the consensus CDF curve with increasing k.  

(C) Histograms quantifying the gene-based pair-wise correlations between mTCs from each 

dataset with an |rs| > 0.5 and a P value < 0.05 

(D) The activity of GEO mTC 119 in multiple myeloma, other cancer and non-cancer samples in 

the GEO dataset. (E) Only very low correlations were found between GEO mTC 119 and mTCs 

from either TCGA, CCLE or GDSC datasets.  

 

Figure S2 – Related to Figure 3;  

(A) Metabolic landscape for CCLE samples. The 1,067 samples were hierarchically clustered and 

divided into 38 metabolic subtypes. (B) Metabolic landscape for GDSC samples. The 1,018 

samples were hierarchically clustered and divided into 36 clusters metabolic subtypes. Grey labels 

designate tissue types that are present in other datasets, but are not present in the given dataset; 

(C) Hierarchical clustering of samples based on activity scores of mTCs in GEO and TCGA datasets 

in order to define metabolic subtypes. The plot shows the minimum sample size of a cluster 

depending on the chosen cutoff height of the dendrogram resulting from hierarchical clustering. 

The heights at which the minimum cluster size reaches 50 is given for both GEO and TCGA 

datasets. (D) Hierarchical clustering of samples based on activity scores of mTCs in CCLE and GDSC 

datasets in order to define metabolic subtypes. The plot shows the minimum sample size of a 
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cluster depending on the chosen cutoff height of the dendrogram resulting from hierarchical 

clustering. The heights at which the minimum cluster size reaches 50 is given for both CCLE and 

GDSC datasets; 

(E) Activity of GEO mTC 50 in breast cancer samples with survival data, grouped by metabolic 

subtype. The selected mTC was enriched for oxidative phosphorylation. (F) Activity of TCGA mTC 

7 in melanoma samples with survival data, grouped by metabolic subtype. The selected mTC was 

enriched for genes involved in the regulation of the metabolic processes of glycoproteins and 

phospholipids, cell-cell adhesion, and the activation of lymphocytes and leukocytes. 

 

Figure S3 – Related to Figure 3; Pie graphs depicting the tissue type composition of the 67 

metabolic subtypes defined for the GEO dataset. 

 

Figure S4 – Related to Figure 3;  Pie graphs depicting the tissue type composition of the 58 

metabolic subtypes defined for the TCGA dataset. 

 

Figure S5 - Related to Figures 4 and 5; (A) Activity of GEO mTC 35 in samples, grouped per tissue 

type. Tissue types mentioned in the text are highlighted on the x-axis. (B) Activity of TCGA mTC 

58 in samples, grouped per tissue type. Tissue types mentioned in the text are highlighted on the 

x-axis. (C) Activity of GEO mTC 14 in samples, grouped per tissue type. Tissue types with a higher 

median activity highlighted in the text are given a red axis label, tissue types with a lower median 

activity highlighted in the text are given a blue axis label. (D) Activity of TCGA mTC 70 in samples, 

grouped per tissue type. Tissue types with a higher median activity highlighted in the text are 
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given a red axis label, tissue types with a lower median activity highlighted in the text are given a 

blue axis label. 

  

Table S1 – Related to Figure 1; This file contains five sheets: (1) List of 608 metabolic gene sets, 

selected in a systematic way, divided into 50 gene set clusters. These gene set clusters resulted 

from consensus clustering the gene set enrichment scores of TCs. (2-5) Gene set enrichment 

scores for the 608 metabolic gene sets for all GEO, TCGA, CCLE and GDSC mTCs.  

 

Table S2 – Related to Figure 3; This file contains four sheets: (1-2) Tissue type composition of 

metabolic subtypes as defined for the GEO and TCGA datasets. (3-4) The mean activity score of 

all GEO and TCGA mTCs in samples belonging to the metabolic subtypes as defined in the GEO an 

TCGA datasets, respectively. 

 

Table S3 – Related to Figure 3; Clinicopathological parameters of breast cancer tissue samples 

with DRFS survival data from the GEO dataset, and of melanoma samples with OS data from the 

TCGA dataset, stratified per metabolic subtype. 

 

Table S4 – Related to Figure 5; Spearman correlations between drug IC50 values and the activity 

of CCLE and GDSC mTCs in cell lines. 

 

Table S5 – Related to Figure 5; Spearman correlations between CIBERSORT estimated immune 

cell fractions and the activity of GEO and TCGA mTCs in samples. 
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Figure 1 – Identification of metabolic transcriptional components (mTCs). mTCs are highly 

concordant across different datasets and platforms. (A) Workflow for identification of mTCs. 

Consensus-Independent Component Analysis (c-ICA) on 34,494 samples from four datasets was 

used to identify transcriptional components (TCs). Subsequent systematic selection of TCs 

enriched for metabolic processes resulted in in 132, 151, 136, and 137 mTCs for the GEO, TCGA, 

CCLE, and GDSC datasets, respectively. (B) Hierarchically clustered heatmaps showing the 

enrichment of the 608 metabolic gene sets for the mTCs identified in GEO, TCGA, CCLE, and GDSC 

datasets. (C) Citrus plots showing the absolute Spearman correlations of mTCs identified in one 

dataset with mTCs identified in the other three datasets. Colored lines indicate |rs| > 0.5. The 

fraction and percentage of mTCs of a dataset having at least one |rs| > 0.5 are depicted for each 

dataset. (D) Scatter plot showing the correlations between all GEO mTCs and TCGA mTCs (x-axis), 

versus their Z-transformed P values (y-axis). Colored dots show the correlations > 0.5 having a P 

value < 0.05. (E) Scatter plot illustrating the highest absolute correlation coefficient |rs| of a GEO 

mTC to a TCGA mTC (x-axis), versus the highest enrichment score for a metabolic gene set found 

for that GEO mTC (y-axis). 
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Figure 2 - For GEO and TCGA datasets, genes with an absolute weight > 3 in at least one mTC 

were clustered hierarchically. (A) Hierarchically clustered heatmap of genes with an absolute 

weight > 3 in GEO mTCs. Sets of top genes in GEO mTC 54 and GEO mTC 11, as highlighted in the 

text, are enlarged in black boxes. The blue and red colors in the heatmap designate the sign and 

magnitude of each gene weight, as given in the legend. However, interpreting the sign of a gene 

weight only has value when the activity score of the respective mTC in a sample is taken into 

account. This activity score, too, can be either positive or negative. Only the product of a gene 

weight and activity score can therefore be interpreted, and the sign of this product will give an 

indication of a gene from a mTC being “more active” or “less active” in a sample than the average.     

(B-C) Top genes in GEO mTC 54 and TCGA mTC 127. Text colored white shows genes that are a 

member of the 608 metabolic gene sets. Lines signify genes that are present in the top of both 

GEO and TCGA mTCs. (D-E) Top genes in GEO mTC 11 and TCGA mTC 141. (F) Hierarchically 

clustered heatmap of genes with an absolute weight > 3 in TCGA mTCs. Sets of top genes in TCGA 

mTC 127 and TCGA mTC 141, as highlighted in the text, are enlarged in black boxes. 
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Figure 3 – Clustering activity scores of mTCs reveal multiple metabolic subtypes, which show 

prognostic value 

(A) 21,592 GEO samples were hierarchically clustered based on mTC activity scores and divided 

into 67 metabolic subtypes. (B) 10,817 TCGA samples were hierarchically clustered based on mTC 

activity scores and divided into 58 metabolic subtypes. (C) Metabolic landscape of the subset of 

breast tissue samples in the GEO dataset. (D) Metabolic landscape of the subset of melanoma 

samples in the TCGA dataset. (E) Retrospective distant relapse-free survival of breast cancer 

patients in the GEO dataset. Patient-derived samples were stratified per metabolic subtype. 

Kaplan Meier curves are shown with a confidence interval of 0.95. (F) Retrospective overall 

survival of melanoma patients in the TCGA dataset. Patient-derived samples were stratified per 

metabolic subtype. Kaplan Meier curves are plotted with a confidence interval of 0.95. 
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Figure 4 – Activity of GDSC mTC 3 is highly correlated with the IC50 value of Nutlin-3a and is 

active in cell lines with wildtype TP53. (A) Spearman correlations between drug IC50 values and 

the activity of GDSC mTC 3 (B) Scatter plot showing the association between the IC50 value of 

Nutlin-3a and activity of GDSC mTC 3. (C) Highest pair-wise correlations between GDSC mTC 3 and 

mTCs from GEO, TCGA and CCLE datasets. (D) Box plot of activity of GDSC mTC 3 across cell lines, 

colored for their TP53 mutation status. (E) Box plot of activity of CCLE mTC 4 across cell lines, 

colored for their TP53 mutation status.  
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Figure 5 – Associations between mTCs, drug sensitivities, and the composition of the immune 

tumor microenvironment for selected examples. (A-B) Spearman correlations between drug 

IC50 values and the activity of GDSC mTC 18 and mTC 108. (C-D) Spearman correlations between 

CIBERSORT estimated immune cell fractions and the activity of GEO mTC 123 and mTC 14. 
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