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Abstract (250 word max) 

Chronic wounds in patients suffering from type II diabetes mellitus (DMII) where wounds remain 

open with a complicated pathophysiology, healing, and recovery process is a public health concern. Normal 

wound healing plays a critical role in wound closure, restoration of mechanical properties, and the 

biochemical characteristics of the remodeled tissue. Biological scaffolds provide a tissue substitute to help 

facilitate wound healing by mimicking the extracellular matrix (ECM) of the dermis. In the current study 

an electrospun biomimetic scaffold, wound healing device (WHD), containing tropoelastin (TE) and 

collagen was synthesized to mimic the biochemical and mechanical characteristics of healthy human skin.   

The WHD was compared to a commercially available porcine small intestinal submucosa (SIS) matrix that 

has been used in both partial and full-thickness wounds, Oasis® Wound Matrix.  Wound closure rates, 

histochemistry, qPCR, and mechanical testing of treated wound sites were evaluated.  The WHD in a 

splinted, full-thickness, diabetic murine wound healing model demonstrated an enhanced rate of wound 

closure, decreased tissue inflammation, skin organ regeneration, and a stronger and more durable remodeled 

tissue that more closely mimics native unwounded skin compared to the control device.   

 

Introduction 

Chronic, non-healing, or slow to heal wounds present a significant and growing health problem in 

the United States, with an estimated 6.5 million people affected, at an annual cost of US $20 billion, with 

the highest risk groups represented by the elderly and the increasing prevalence of lifestyle diseases such 

as diabetes and obesity (Frykberg 2015, Sen, 2019). These wounds can take years or decades to heal causing 

significant emotional distress and physical pain to the patient, including their families (Jarbrink 2017). 

Chronic diabetic wounds pose pathophysiological abnormalities compared to “normal” wound healing 

(Falanga, 2005). 

The current numbers reported by the Center for Disease Control (CDC) estimates that more than 

122 million people in the United States are living with diabetes (34.2 million) or prediabetes (88 million) 

(CDC, 2020). Of the more than 23 million people in the US affected by diabetes, 10-15% will have at least 
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one diabetic foot ulcer (DFU) in their lifetime (Margolis, 2011), resulting in more than $176 billion per 

year in health care expenditures (Mathieu, 2006 and Menke, 2007).   

The current standard of care for diabetic wounds varies depending on the site of the wound, type 

of infection and clinician applying the treatment. Many treatment interventions include the application of 

wound dressings, surgical procedures, pressure relief therapy, biologics, antibiotic regimens, hyperbaric 

chambers, negative pressure devices and regenerative medical therapies. Wound dressings provide and 

maintain an optimal humid environment for the wound bed and subsequent healing (Hingorani, 2016). 

Surgical interventions include debridement, ridding the wound bed and surrounding wound margins of 

necrotic tissue (Chharbra, 2017), (Hingorani, 2016), and pressure relief applications which use casting and 

individualized shoe inserts or post-operative shoes to reduce mechanical stress to the wound (Frykberg, 

2006), (Health Quality Ontario, 2017). Biologic therapies include antimicrobial peptide applications 

(Santos 2016), (Gawande, 2014), (Saeed, 2013), (Lipsky, 2008) and a revival of larval treatment, which 

debride the wound without surgical involvement (Lipsky, 2008), (Sherman, 2003), (Hassan, 2014). 

Antibiotic regimens include a wide array of mixtures and classes, such as, glycopeptides and beta-lactams, 

although the infectious agent generally establishes the antibiotic regimen (Bergman, 2016), (Singh, 2017). 

Hyperbaric chambers provide a rich supply of oxygen to hypoxic wounds and have been demonstrated to 

promote fibroblast proliferation, stimulate angiogenesis and increase the immune response, which are all 

requisite for progression of the wound healing cascade (Han, 2017). Negative-pressure devices, also called 

wound-vacs, have produced positive impacts on wound healing. These vacuum assisted devices, keep the 

wound bed moist, remove exudate and bring a fresh supply of blood to the wound bed (Han, 2017).  Lastly, 

tissue engineering is a field within regenerative medicine aimed at restoring the native properties of the 

injured tissue. Within this field, biomimetic scaffolds have been fabricated, or preexisting tissue has been 

manipulated to create a device that mimics the extracellular matrix (ECM). These biomimetic ECM devices 

can then be implanted into the wound bed aiding in the restoration of healthy tissue. Commercially available 

examples of these ECM fillers include Biobrane, Integra, AlloDerm and a porcine intestinal sub-mucosa 

membrane titled Oasis® Wound Matrix (Oasis SIS Wound Dressing II (K993948)). However, many of these 
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products, along with other commercial wound devices, rely on harvested animal or cadaver tissue for 

production. Processes used in tissue harvesting for many of these commercial devices, including 

decellularization, subject the tissue to invasive processing which alters and disrupts the native ECM proteins 

and structure, potentially impacting their ability to promote progression of the healing cascade in a chronic 

wound (Badylak, 2015). 

When an injurious event occurs, normal wound healing follows an overlapping, three-phased 

approach (Clark, 1996). Phase one includes inflammation, followed by the proliferative/migration phase 

and lastly the tissue remodeling phase. During a diabetic wound healing response, the three-phases occur 

but with pathophysiologic changes. During the inflammatory phase patients with DMII demonstrate a 

disequilibrium of essential cytokines such as interleukins (ILs), tumor necrosis factor-alpha (TNF-α), 

PDGF, epidermal growth factor (EGF) among others (Chhabra, 2017) (Werner, 2003) (Xioa, 2014), 

(Pradhan, 2009). Additionally, the leukocyte exocytotic cytokine release is altered increasing the chance 

for infection (Xioa, 2014), (Pradhan, 2009). During the proliferative/migratory phase, angiogenesis brings 

in a fresh supply of blood and oxygen to the wound bed. Next, fibroblasts proliferate and aid in the 

formation of the ECM, which contains collagens, fibronectin, vitronectin and elastin. This ECM allows for 

the migration of additional cells, such as neutrophils, macrophages, keratinocytes, dendritic cells, to the 

injured area allowing for reepithelization and remodeling to occur (Singer & Clark, 1999). In a diabetic 

wound, the elevated hyperglycemic levels alter the migratory capacity of these proliferating cells, causing 

a deficiency in the new ECM deposition and recruitment of epithelial cells (Santoro, 2005), (Lan, 2008), 

(Maione, 2016). These cumulative events lead to a chronic or slow-to-heal diabetic wound. 

The quantity and presence of collagen I and elastin, play an important role in the proliferative phase 

of wound healing. In the early stages of a wound, damage to the dermis signals recruitment of macrophages 

which secrete MMP-12 (elastase) that generates elastokines from resident elastin. These small elastin 

peptides signal a transient increase in inflammation associated with neutrophil infiltration and migration 

signals, furthering progression through the inflammatory and remodeling phases in wound healing in 

healthy tissue (Almine, 2013). Supplying the wound bed with physiologically relevant amounts and ratios 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 2, 2020. ; https://doi.org/10.1101/2020.10.01.322636doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.01.322636


5 
 

of collagen I and elastin facilitates progression of the healing cascade. Therefore, we have developed 

bioengineered scaffolds using human skin proteins in an architectural orientation that mimics the ECM, 

demonstrating improved cutaneous wound closure in vivo alone, or when incorporating therapeutics such 

as platelet-rich plasma, stem cells, and growth factors that promote accelerated wound healing compared 

to control therapy (Machula, 2014), (Tabor, 2016). In this study we hypothesized that a wound healing 

device (WHD) comprised of human collagen I and tropoelastin in physiologically relevant proportions 

would encourage a chronic wound halted in the inflammatory phase to progress into the remodeling phase. 

To test this hypothesis, full thickness, splinted wounds in diabetic mice were treated with biomimetic 

WHDs to assess wound healing and the resulting remodeled tissue (scar) mechanical properties.   

In this study, the WHD demonstrated an enhanced rate of wound closure, decreased tissue 

inflammation, skin organ regeneration, and a stronger and more durable remodeled tissue that more closely 

mimics native unwounded skin compared to the control devices.  The WHD has the potential to provide a 

novel, commercially available device for the treatment of chronic non-healing diabetic wounds.  

 

Materials and Methods 

Wound Healing Device (WHD) creation: 

Scaffolds were created using human dermal collagen type I (VitroCol, Advanced Biomatrix, 

Carlsbad, CA) and recombinant human dermal tropoelastin (rhTE, Protein Genomics, Sedona, AZ). The 

proteins were dissolved into 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP, Oakwood Chemical, Estill, SC). The 

biomimetic WHDs were prepared using a ratio of 9:1 collagen to rhTE. The solution was loaded into a 5 

mL syringe and dispensed with a syringe pump at a constant rate of 3mL/hr. A voltage of 24-27kV was 

used to create circular scaffolds onto a circular aluminum foil target. The scaffolds were dried in a desiccator 

at room temperature overnight. The scaffolds were then sterilized by exposure to ultraviolet (UV, 254 nm) 

light for one hour on each side and prepared using a sterile 8mm biopsy punch.  
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In vivo diabetic wound healing assay using a splinted wound model: 

Murine strain (C57BKS.Cg-m+/+Leprdb/J mice (db/db), Jackson Labs, Bar Harbor, ME) animals 

were used in all the experiments. All animals were handled in accordance with the Institutional Animal 

Care and Use Committee of Northern Arizona University, and the National Research Council Guide for the 

Care and Use of Laboratory Animals (National Research Council, 2011)). The murine diabetic model was 

used following Northern Arizona University (NAU) IACUC approval, Protocol #12-006R1. Seventy-two 

(72) 6-8-week-old mice, 36 male and 36 female, were placed into two groups. See Table 1 for experimental 

layout. The study followed a 14-day and 28-day research plan: day 0 = full thickness wound creation; day 

14 and day 28 = euthanasia. All animals survived the duration of the evaluation. 

 

Table 1. Description of the grouping and animal use for evaluation. 

Group Timepoint 

Number of Animals (2 wound sites per animal) 

Mechanical testing Biological testing (Histology/IHC/qPCR) 

Treatments Treatments 

Control Oasis® WHD Control Oasis® WHD 

1 14 Days 3♀   3♂ 3♀   3♂ 3♀   3♂ 3♀   3♂ 3♀   3♂ 3♀   3♂ 

2 28 Days 3♀   3♂ 3♀   3♂ 3♀   3♂ 3♀   3♂ 3♀   3♂ 3♀   3♂ 

 

Surgical preparation: 

Mice were anesthetized in a closed chamber using 2-2.5% isoflurane with 0.5-1 L/min oxygen to 

effect, evidenced by lack of response to toe pinch stimulus. Mice were placed on a towel-covered heating 

pad to maintain normal core body temperature while under anesthesia until fully recovered.  Mice were 

transferred to a preoperative field and connected to a nose cone delivering 2% isoflurane in 1 L/min oxygen. 

Mice were weighed and blood glucose levels were measured by collecting a droplet of blood by tail snip 

and reading in a Contour Next EZ Meter using Contour Next test strips (Ascensia Diabetes Care, 

Parsippany, NJ). The tail snip was sealed with a droplet of super glue. Mice were then shaved and depilated 

with Nair™ (Church and Dwight, Ewing, NJ) to obtain a smooth skin surface. Following saline rinse to 
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remove Nair, mice received a subcutaneous pre-operative dose of buprenorphine (0.01mg/kg) and 1 cc 

sterile saline. Mice were transferred to a sterile surgical field and connected to a nose cone delivering 1.5-

2% isoflurane in 1 L/min oxygen to maintain anesthesia.  

Surgical procedure: 

A randomization scheme was used to enroll animals into treatment and control groups according 

to Table 1. Wounds were created following previously published methods (Galiano et al., 2004; Machula 

et al., 2014), briefly described here. The dorsum was scrubbed with betadine solution and two full thickness 

wounds per dorsum were created lateral to the midline by scoring the skin with a sterile 8 mm biopsy punch 

and excising the tissue with sterile iris scissors. A sterile, donut-shaped silicone splint (Grace Bio-Labs, 

Bend, OR) was centered over the wound and secured with six interrupted 6-0 polypropylene sutures. The 

two treatments; WHD and Oasis® (Smith+Nephew, Fort Worth, TX) were prepared using a sterile 8 mm 

biopsy punch. The treatment devices were added to the splinted wound and allowed to uniformly contact 

the wound bed while the control sites remained untreated. All wounds were photographed before and 

immediately after treatment. All wounds from all treatment groups were covered with Tegaderm® dressing 

(3M, St. Paul, MN) and the mice were individually caged until fully recovered. 

Postoperative care and wound photography: 

Mice were housed individually to prevent animal interference with wound sites. Cages were placed 

on a static ventilation caging system and welfare checks were performed once daily for normal activity, 

food and water consumption, excretion and grooming. Postoperative analgesics were administered within 

the first 1-2 days as needed. 

Every other day, mice were anesthetized with 2% isoflurane in 1 L/min oxygen in a chamber, then 

transferred to a prep area remaining under anesthesia. The Tegaderm was carefully removed and visual 

observations of the wound were recorded, followed by photography of the wound bed. A new piece of 

Tegaderm was applied and mice were recovered in their cage, then returned to their housing room. 
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Wound closure analysis: 

Wound closure was quantified by measuring the open area of the wound every 2 days through the 

duration of healing. The images in each study were analyzed blinded to treatment and sex. Percent wound 

closure was analyzed with NIH ImageJ, v1.52a (Bethesda, MD) by standardizing each image using the 

millimeter ruler captured in each photo. The open wound margin was traced with a freehand tool, generating 

an area in mm2. The wound bed for each day was normalized to time 0 using the following equation a: 

a: 
(𝐷0−𝐷𝑛)

𝐷0
× 100 = 𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝑊𝑜𝑢𝑛𝑑 𝐶𝑙𝑜𝑠𝑢𝑟𝑒 

where D0 = Initial wound area measurement and Dn = Day of wound area measurement. The data were then 

identified by sex and treatment for analysis. 

Tissue collection:  

After 14 or 28 days, the animals were euthanized with 5% isoflurane, followed by cervical 

dislocation. The skin of the dorsum was cut on 3 sides to create a skin flap. The wound bed was excised 

from the underside. The samples for immunohistochemistry (IHC) and histology were cut out using a 10 

mm biopsy punch, then sectioned in half, coronally. One half was placed in 4% paraformaldehyde in 1x 

PBS at 4°C for histology and IHC and the other half was placed in ice cold RNAlater at 4°C for PCR 

analysis. The samples for mechanical testing were prepared by cutting the samples into dog-bone templates 

(ASTM D412, Gallagher et al., 2012) and stored in KREBS until tested. 

Histology and Immunohistochemistry: 

Tissue samples were removed from fixative after 24 hours at 4°C and transferred to cold 70% 

ethanol until ready for processing. The tissue was dehydrated with graded ethanol to paraffin. The tissue 

was sectioned at 5 µm and stained with hematoxylin and eosin. These slides were used to evaluate the 

wound healing response and re-epithelialization. 

The tissues were also processed for IHC (Histotox, Boulder CO). All tissues were processed on a 

Leica Bond Rxm using standard chromogenic methods. For antigen retrieval, slides were incubated in pH 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 2, 2020. ; https://doi.org/10.1101/2020.10.01.322636doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.01.322636


9 
 

9 EDTA-based buffer for 2 hours at 70°C for CD31 (endothelial cells) and CD163 (monocytes and 

macrophages) or incubated with Proteinase K for 8 minutes at room temperature for elastin (Lau et al., 

2004). Slides were incubated with appropriately diluted antibody for 30 minutes for CD31 (1:500, Abcam 

ab182981) and CD163 (1:400, Abcam ab182422) or for 45 minutes for elastin (1:200, Abcam ab23748). 

Antibody binding was detected using an HRP-conjugated secondary polymer, followed by chromogenic 

visualization with diaminobenzidine (DAB). A Hematoxylin counterstain was used to visualize nuclei.  

All slides were digitally scanned using a Hamamatsu NanoZoomer (Hammamtsu, Japan) with a 

resolution of 0.5 µm per pixel and analyzed using ImageScope software and algorithms (Leica, Buffalo 

Grove, IL). The inflammatory response was evaluated using a nuclear counting algorithm, while the 

presence of microvasculature was evaluated using a microvessel analysis algorithm and elastin was 

evaluated using the color deconvolution algorithm.  

Gene expression: 

Tissue samples for gene expression analysis were stored at 4°C for 24 hours then transferred to a -

80°C freezer until processed for qPCR. One half of the biopsy samples were extracted using the Qiagen 

RNeasy 96 kit, after bead-beating in the Qiagen TissueLyser II using a 5mm Zirconium Oxide bead. RNA 

quality was measured on the Agilent BioAnalyzer 2100, cDNA was synthesized using the Invitrogen 

SuperScript IV First Strand Synthesis kit and 8 µL RNA was used for each reaction. The samples were 

reacted with the Taqman Fast Advance Master Mix. Real time PCR was performed with the following 

Taqman probes (ThermoFisher, Carlsbad, CA) GAPDH as housekeeping gene, TNF-α and NOS2 for 

inflammation and ARG1 and IL10 for remodeling (see probes in Table 2). Samples were analyzed by the 

2-ΔΔCT method. 

Table 2. Taqman Gene Expression probes 

Gene Taqman assay and fluor 

GAPDH Mm99999915_g1, VIC 

NOS2 Mm00440502_m1, FAM 

TNF Mm00443258_m1, FAM 

IL10 Mm01288386_m1, FAM 

ARG1 Mm00475988_m1, FAM 
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Mechanical testing: 

Dog-bone shaped tissue templates were measured for thickness, then placed in a unidirectional 

tensile testing device (UTTD) (Figure 1). The skin samples were marked with one dot above and one dot 

below the area wounded in surgery, which was centered in the gauge. The tissue was then placed into the 

UTTD in a water bath filled with fresh PBS at 37°C. The software program PASCO Capstone (Roseville, 

CA) was used to capture video and images every 0.5-1 second during the skin pull, and the force was 

collected simultaneously. Strain analysis measured the length between the two dots from each image 

captured until the tissue ruptured and was analyzed using NIH ImageJ, v1.52a (Bethesda, MD). Max stress 

was calculated using equation b:  

 

b:  Stress = Force / (width x thickness) 

 

Max strain was calculated using equation c: 

 

c:   Strain = (Lengthfinal – Lengthinitial) / Lengthinitial 

 

Elastic modulus was calculated using equation d:  

 

d:  Elastic Modulus = stress / strain 
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Figure 1: Left Uniaxial Testing Device (UTTD). Right, Assembled device and graphic user interface. 

 

Statistical analysis: 

 Statistical analysis of wound closure rate, histological analysis, gene expression, and mechanical 

testing was performed using RStudio. The results of wound closure rate were analyzed using a Kruskal-

Wallis test along with a Dunn’s post-hoc test. An ANOVA was used to analyze the mechanical property 

data and where the data did not meet the criteria for an ANOVA, a Kruskal-Wallis test was used. 

Histological analysis and qPCR were analyzed by using a multi-way ANOVA.  Statistical differences were 

determined by p<0.05. 

 

Results 

Wound Closure 

The data from the 14 and 28-day studies were combined for wound closure analysis. Percent wound 

closure for Control and WHD were significantly greater than Oasis from day 6 to day 16 (p < 0.05) at 6-

13% over Oasis (Figure 2). After 20 days there was no difference among the three treatment groups. From 

day 14 through day 28 the average percent closure of WHD was 2-5% greater than control, though not 

statistically significant.   
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Figure 2: Polynomial regression analysis among treatment groups over 28 days. Percent wound closure was 

standardized to day 0 for each succeeding measurement. Shown values are means ± SEM. 

 

No differences in sex were present as determined by multi-way ANOVA analysis (p = 0.08), 

therefore sex was removed as a variable. The wound closure data provides evidence that WHD-treated 

wounds achieve faster wound closure (most notable in days 6-16 of healing), compared to Oasis treatment 

in diabetic mice (Figure 3). 

 
Figure 3: Gross images of full thickness splinted wounds in a diabetic murine model. Days 6-16 of healing 

demonstrate accelerated wound closure in the WHD treatment group compared to the Oasis Matrix Scale: each line 

= 1mm 

 

Histology and Immunohistochemistry 
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Histologically, wounds treated with the WHD demonstrated a greater degree of healing compared 

to the Oasis Wound Matrix or control treatment groups. The remodeled skin organ (epidermis and dermis) 

in WHD-treated animals exhibited well-formed new dermis, epidermis and accessory structures in the organ 

such as hair follicles and more closely resembled the native unwounded skin in the animal compared to 

Oasis-treated animals (Figure 4).  

 
Figure 4: Hematoxylin and Eosin stained samples from WHD and Oasis Wound Matrix-treated wound sites after 28 

days of remodeling.  WHD-treated wound sites demonstrated wound regeneration where the skin organ and tissue 

had evidence of functional restoration with the presence of hair follicles (yellow arrows).  Scale bars = 600 µm. 
 

There was large variability between animals and between and within treatment groups and sex 

when quantifying IHC targets. Analysis of elastin showed no differences between treatment or sex at 14 or 

28 days; however, there was a notable and significant (p < 0.001) increase in total elastin in the wound bed 

from 14 to 28 days (Figure 5), suggesting an increased elastin deposition as wound healing progresses, 

irrespective of treatment or sex. 
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Figure 5: Analysis of elastin positive staining percentage between day 14 and 28. Asterisk represents significantly 

different group means where p = 0.0003. Comparison was conducted using a two-sided t-test with equal variance 

(Levenne’s Test; p = 0.08). Means are illustrated by crosses. 

 

Microvessel analysis of the CD31 antigen, at 14 and 28-days post wounding, identified no 

differences between treatments, sex, or day (p = 0.94; p = 0.84; p = 0.45, respectively) (Figure 6). While 

there was no significant difference in the amount of microvasculature per area analyzed, there was less area 

to measure in the WHD sites at day 28 due to the progression of the healing. (Figure 7 right). Both 

treatments had a large amount of microvasculature present at day 14. (Figure 7 left).  

 
Figure 6: Microvessel density (CD31) faceted by day, treatment, and sex. 
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Figure 7. CD31 reacted tissues used to quantify the presence of microvasculature in the wounded tissue sites. Both 

treatments had a large amount of microvasculature present at 14 days (Left). While there was no significant 

difference in the amount of microvasculature measured per square micron, the area measured in the WHD was 

smaller due to the progression of wound healing in the 28-day samples (Right). Macro-image scale bars = 1mm, 

micro-image scale bars = 200 µm. 

 

Inflammation was evaluated indirectly using CD163-reacted tissue samples. CD163 is an M2-like 

macrophage phenotype marker associated with the transition of the inflammatory stage and the proliferative 

and remodeling phase; therefore, comparisons between treatment and control groups were performed for 

the inflammatory comparisons (Hu et al., 2017). A multi-way ANOVA analysis of the variables sex, day, 

timepoint and treatment was performed iteratively to assess macrophage density in the wound beds 

identifying “treatment” as the sole variable impacting analysis. A one-way ANOVA on the final model 

suggested at least one treatment mean was different (p = 0.04, Figure 8). A Tukey pairwise t-test provides 

evidence that WHD treatment resulted in significantly less CD163+ macrophage presence when compared 

to Oasis; however, no differences were detected between control and WHD. At day 14 Oasis elicited a 

greater macrophage response in the wounded tissue compared to the WHD. By day 28 the macrophage 

response of the wounds treated with Oasis had decreased notably. The wounds treated with the WHD had 

a lower expression of CD163+ cells at both timepoints (Figure 9). 
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Figure 8: CD163 positive stain count compared across treatments. Compact letter display illustrates significant 

differences between treatments when p-value < 0.05. WHD treatment had significantly less macrophage presence 

during healing compared to Oasis. 

 

 
Figure 9. Phase I Immunohistochemistry (CD163) highlighting tissue macrophage presence in remodeled wounds 

at 14 days (left) and 28 days (right).  The WHD demonstrated lower levels of tissue macrophage presence compared 

to Oasis. 

 

Gene Expression 

The presence of genetic signals relating to specific phases of wound healing were evaluated: TNF-

α and nitric oxide synthase (NOS2) for the inflammatory phase and IL-10 and arginase (ARG1) for the 

remodeling phase, normalized to housekeeping gene GAPDH.  

The data showed a wide range of expression across all variables. A multi-way ANOVA analysis 

provided sufficient data to conclude that there was no significant difference found between “sex” or 

“treatment” in target gene expression (p = 0.13; p = 0.61). However, at 14-days, there was a slight trend 
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toward an increase in expression of ARG1 and NOS2 in the Oasis group for both sexes compared to control 

and WHD, which were relatively equivalent. There were no trends observed in the 28-day group, likely 

related to the variability seen among animals (Figure 10). Furthermore, expression levels of all genes were 

similar at days 14 and 28. These findings indicate that the treatment groups did not induce any wound 

healing-related gene expression changes for the assessed gene targets in the current study. 

 
Figure 10: Treatment differences in gene expression faceted by sex, treatment, day, and gene. No significant 

differences were noted. 

 

Mechanical Testing 

 Mechanical testing was performed on remodeled tissue from WHD n=11, Oasis n=9, and Control 

n=12 treated wound sites.  At Day 14, the Elastic Modulus for Oasis-treated wound sites was significantly 

lower than WHD and Control.  From Day 14 to Day 28, there was a significant increase in Max Strain 

within all treatments groups (Table 3).  At 28 days the WHD treated tissue demonstrated mechanics more 

similar to unwounded diabetic skin (Figure 11). Collectively, these data suggest that Oasis treatment 

produced a stiffer, less compliant remodeled wound tissue compared to control and WHD treated sites. 

Figure 11 demonstrates that the WHD withstood the greatest force prior to yielding with more than 0.4 MPa 
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of stress compared to control before yielding; however, these data were not statistically significant due to 

the increasing variation as strain increased. 

Table 3: Mechanical testing results of Max Stress, Elastic Modulus, and Max Strain from Day 14 and Day 

28 mice. Sample sizes for each treatment were: WHD n=11, Oasis n=9, Control n=12.  Elastic Modulus in 

Oasis-treated wounds was significantly lower than WHD and Control at Day 14 (*, p<0.05).  Max Strain 

significantly increased in all treatments from Day 14 to Day 28 (**, p<0.05). 

14 Day Max Stress 

(MPa) 

SEM 

(Stress) 

Elastic 

Modulus 

SEM (Elastic 

Modulus) 

Max 

Strain 

SEM 

(Strain) 

WHD  0.512 0.048 2.370 0.271 0.295 0.026 

Oasis 0.281 0.036 * 1.297 0.115 0.251 0.017 

Control 0.565 0.077 2.359 0.338 0.319 0.027 

28 Day Max Stress 

(MPa) 

SEM 

(Stress) 

Elastic 

Modulus 

SEM (Elastic 

Modulus) 

Max 

Strain 

SEM 

(Strain) 

WHD  0.582 0.081 2.085 0.277 ** 0.402 0.050 

Oasis 0.535 0.058 1.982 0.205 ** 0.370 0.027 

Control 0.580 0.060 2.701 0.316 ** 0.354 0.031 

 

 
Figure 11: Stress vs. Strain analysis of excised murine skin for each treatment. Lines represent spline regression 

models with 95% confidence intervals. Data was divided into 3 intervals x < 0.2, 0.2 ≤ x ≤ 0.3, and x > 0.3 applying 

a cubic prediction model to each section. Although not statistically significant, due to the amount of variation 

introduced as strain increases, WHD withstood more than 0.4 MPa of stress before yielding compared to control. NW 

group = non-wounded skin.  
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Discussion 

Chronic non-healing, or slow to heal wounds present a global health concern. A concerning subtype 

of these chronic wounds are diabetic foot ulcers (DFUs). In a 1999 US study, an estimated average 

outpatient cost of treating one DFU event over a two-year period was calculated to be USD $28,000 

(Ramsey, 1999). The increasing prevalence of sedentary lifestyle choices leads to diseases such as diabetes 

and obesity, which also contribute to the rise in these staggering wound numbers (Frykberg 2015, Sen, 

2019). Based on these growing trends, novel wound-care therapeutics are essential to help reduce 

hospitalization re-admittance rates, decrease wound healing time, and prevent life altering amputations.   

Our group has previously developed bioengineered scaffolds using human collagen and 

recombinant dermal tropoelastin in an architectural orientation that mimics the extracellular matrix.  

Therapeutics such as platelet-rich plasma, human adipose-derived stem cells, and growth factors that 

promote accelerated wound healing, have been previously incorporated into a WHD and tested in an in vivo 

mouse full thickness wound model. In these prior studies, expedited wound closure occurred compared to 

control groups (Machula. 2014 & Tabor, 2016).  In the current research, we have shown that these 

electrospun WHDs alone (without stem cells or added growth factors) promoted faster cutaneous wound 

closure in vivo compared to commercial treatments, specifically the Oasis Wound Matrix.  This current 

research focused on collagen’s contribution to the tensile strength of skin (Bailey, 1976), as well as elastin’s 

contribution to skin elasticity (Almine 2012). Furthermore, in adult wound healing, elastin is typically 

produced in small percentages, or not at all, compared to its production in juveniles scars (Almine 2012). 

Therefore, in the current study, an electrospun scaffold containing both type I collagen and tropoelastin, a 

dermal elastin precursor, was evaluated in a full thickness, splinted, diabetic, wound model, to assess wound 

healing outcomes with both collagen and elastin presence in the delivered wound healing scaffold, WHD. 

Since diabetic wounds are commonly associated with subsequent chronic infections, it is crucial for the 

wound to heal efficiently and obtain a proper mechanical barrier to moisture and microbial agents that can 

further delay the wound healing process due to improper scar formation. 
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Wound healing is a complex, series of molecular and cellular processes that work in concert to lead 

to resolution (regeneration) or repair (healing) (Clark, 1996).   In wound resolution the tissue experiences 

regeneration of the extracellular matrix, cell population, and function of the tissue or organ.  In contrast, 

wound repair is a healing response where scarring or fibrosis is present due to the lack of ability to fully 

regenerate the tissue.  In the current study wound resolution and repair were characterized by evaluating 

closure rates of wounds and physiological characteristics of the injured tissue in a diabetic murine model.  

This study involved a standardized wound treatment model (control) and two treatment groups: an 

electrospun WHD, dual-protein (type I collagen and tropoelastin) and a commercially available porcine 

small intestinal submucosa (SIS) matrix, Oasis Wound Matrix. The safety and efficacy of the WHD was 

demonstrated through an IACUC approved, pre-clinical, full-thickness surgical study. In this study, percent 

closure rates were calculated; histopathology was assessed, gene expression changes were quantified by 

qPCR, and mechanical stress-strain testing was quantified.  

The percent closure outcomes for control and WHD were significantly greater than Oasis from day 

6 to day 16 (p < 0.05) at 6-13% over Oasis. From days 14 through 28, there was a statistically insignificant, 

though notable, increase in the average percent closure of 2-5% in the WHD treatment compared to control. 

Study results demonstrate that an electrospun WHD composed of human collagen I and tropoelastin applied 

to full thickness wounds, in a type II uncontrolled diabetic mouse model, resulted in accelerated wound 

closure compared to the commercial device, Oasis. 

Hematoxylin and Eosin stained histological sections of control, WHD and Oasis-treated tissue 

demonstrated that the WHD-treated wounds had more complete organ regeneration (new skin) and closer 

epidermal/dermal resemblance to native murine epidermis. Follicular neogenesis was also visible in the 

WHD-treated wound sites based on the histological appearance of hair follicles within the wound margins 

when compared to the Oasis and control groups. These findings support the hypothesis that WHD-treated 

wounds advanced through the wound healing cascade at an accelerated rate resulting in wound resolution 

or skin regeneration, in comparison to the control and Oasis treated wounds. For example, the Oasis and 
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control wounds had a fairly primitive wound covering, absent of well-organized and remodeled epidermis 

and dermis, with higher tissue macrophage presence and a lack of new hair follicles.   

Immunohistochemistry was performed to evaluate angiogenesis, assessed with CD31, and 

inflammation, indirectly by the presence of tissue macrophages, characterized using CD163, in the newly 

remodeled wound sites. Although not statistically significant, at day 14, of the 28-day study, both Oasis 

and the WHD had a large presence of microvasculature in their wound margins, indicating angiogenesis 

had occurred within the newly remodeled wound sites.  At day 28 the WHD treated wound margins were 

smaller in area due to the progression of the healing. Assessment of M2 macrophage presence demonstrated 

that the WHD treatment resulted in significantly lower tissue macrophage presence compared to Oasis. This 

finding suggests that Oasis-treated wounds may have still been in an inflammatory stage of wound healing 

where WHD-treated wounds had progressed to later stages of the wound healing cascade with less 

inflammation and more collagen deposition and wound resolution.   

Genetic marker presence for specific phases of wound healing were also evaluated; however, no 

significant differences were seen in wound-healing related gene expression targets evaluated in the current 

study.  This could be due to inherent variability between the animals, in which further testing, and a larger 

sample size may be required, or the specific markers (genes) of key phases of wound healing that were 

selected in the current study were not impacted by the different treatment modalities applied to the wounds. 

An important goal for any wound recovery device is to rapidly close the wound and return the 

wounded skin to its native mechanical state. In the current study, the WHD in a splinted, full-thickness, 

diabetic murine wound healing model demonstrated an enhanced rate of wound closure, decreased tissue 

inflammation, skin organ regeneration, and a stronger and more durable remodeled tissue that more closely 

mimics native unwounded skin compared to the control groups.  Additionally, the Stress-Strain analysis 

curve (Figure 11), illustrates that WHD-treated wounds, post-healing, demonstrated tissue mechanics that 

more closely mimic the non-wounded diabetic skin in this model.  Collectively, these findings suggest that 

the WHD may aid in accelerating wound closure compared to the Oasis Wound Matrix and result in 
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remodeled skin that more closely resembles the non-wounded native skin in mechanics and architectural 

structure. 

 

Acknowledgments: 

The authorship group would like to offer the following acknowledgment to The University of Arizona 

Genetics Core, University of Arizona, Tucson, AZ  http://uagc.arizona.edu We appreciate your work and 

involvement in this project.  

 

Author Contributions: 

All persons who are authors certify that they have participated sufficiently in the work to take public 

responsibility for the content, including participation in the concept, design, analysis, writing, or revision 

of this manuscript. 

 

Funding Statement: 

Funding for this project was provided by NIH NIDDK: R41 DK112416.   

  

Author Disclosures: 

Robert S. Kellar PhD consults for Axolotl Biologix and is a scientific advisor for Protein Genomics. 

Robert B. Diller PhD works for a regenerative medicine company, selling membrane products in the 

wound market.  

Aaron J. Tabor PhD works for Axolotl Biologix. 

Dominic D. Dominguez works for Axolotl Biologix. 

Robert G. Audet works for Axolotl Biologix. 

Tatum A. Bardsley works for Axolotl Biologix. 

Alyssa J. Talbert has no disclosure to report. 

Nathan Cruz has no disclosure to report. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 2, 2020. ; https://doi.org/10.1101/2020.10.01.322636doi: bioRxiv preprint 

http://uagc.arizona.edu/
https://doi.org/10.1101/2020.10.01.322636


23 
 

Alison Ingraldi works for Axolotl Biologix. 

Burt D. Ensley PhD is the owner of Protein Genomics.  

References: 

 

Almine F.J., Wise S.G., Weiss A.S. (2012). Elastin Signaling in Wound Repair. Birth Defects Research Part C 

– Embryo Today. 96 (3). 248-257. 

Bailey, A.J., Sims, T.J., LeLous, M., Bazin, S. (1975). Polymorphism in the Experimental Granulation Tissue. 

Biochem Biophys Res Comm 66:1160. 

Bergman S., Shah P.J. (2016). Diabetic Foot Infections. ACSAP. 7-26. 

Centers for Disease Control and Prevention. New CDC report: more than 100 million have diabetes 

or prediabetes. 2017. https://www.cdc.gov/media/releases/2017/p0718-diabetes-report.html 

(last accessed July 10, 2020). 

Chhabra, S., Chhabra, N., Kaur, A., & Gupta, N. (2017). Wound Healing Concepts in Clinical Practice of 

OMFS. Journal of Maxillofacial and Oral Surgery, 16(4), 403-423. 

Clark, R.A.F. (1996). Wound repair: Overview and General Considerations. The Molecular and Cellular 

Biology of Wound Repair. 1-50. 

Cua, A.B., Wilhelm, D.P., Maibach, H.I. (1990). Elastic Properties of Human Skin: Relation to Age, Sex, and 

Anatomical Region. Arch Dermatol Res. 282:283-288.  

Falanga, V. (2005). Wound Healing and its Impairment in the Diabetic Foot. Lancet. 336(9498), 1736-1743. 

 

Frykberg, R. G., Banks, J. (2015). Challenges in the Treatment of Chronic Wounds. Advances in Wound Care. 

4(9), 560-582. 

Frykberg R.G., Zgonis T., Armstrong D.G., Driver, V. R., Giurini, J. M., Kravitz, S. R., ... & Wukich, D. K. 

(2006). Diabetic Foot Disorders. A clinical Practice Guideline (2006 revision) J. Foot Ankle Surg. 

45:S1–S66. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 2, 2020. ; https://doi.org/10.1101/2020.10.01.322636doi: bioRxiv preprint 

https://www.cdc.gov/
https://doi.org/10.1101/2020.10.01.322636


24 
 

Galiano, R.D., Michaels, J 5th., Dobryansky, M. Levine, J.P., Gurtner, G.C. (2004). Quantitative and 

Reproducible Murine Model of Excisional Wound Healing. Wound Repair Regen. 12(4):485-92. 

 

Gallagher, AJ., Anniadh, AN., Bruyere, K., Ottenio, M., Xie, H., Gilchrist, MD.  2012.  Dynamic tensile 

properties of human skin.  International Research Council on the Biomechanics of Injury (IRCOBI) 

Conference Proceedings.    

Gawande P.V., Leung K.P., Madhyastha S. (2014). Antibiofilm and Antimicrobial Efficacy of DispersinB(R)-

KSL-W Peptide-based Wound gel Against Chronic Wound Infection Associated Bacteria. Curr. 

Microbiol. 68:635–641. 

Han, G., Ceilley, R. (2017). Chronic Wound Healing: A Review of Current Management and 

Treatments. Advances in Therapy, 34(3), 599-610. 

Hassan M.I., Hammad K.M., Fouda M.A., Kamel M.R. (2014). The Using of Lucilia cuprina Maggots in the 

Treatment of Diabetic Foot Wounds. J. Egypt Soc. Parasitol. 44:125–129. 

Health Quality Ontario Fibreglass Total Contact Casting, Removable Cast Walkers, and Irremovable Cast 

Walkers to Treat Diabetic Neuropathic Foot Ulcers: A Health Technology Assessment. Ont. Health 

Technol. Assess. Ser. 2017;17:1–124. 

Hingorani, A., LaMuraglia, G.M., Henke, P., Meissner, M. H., Loretz, L., Zinszer, K. M., ... & Mills Sr, J. L. 

(2016). The Management of Diabetic Foot: A Clinical Practice Guideline by the Society for Vascular 

Surgery in Collaboration with the American Podiatric Medical Association and the Society for Vascular 

Medicine. J. Vasc. Surg. 63, 3S-21S.  

Hu, J.M.,  Liu, K.,  Liu, J.H., Jiang, X.L., Wang, X.L.,  Chen, Y.Z., Li, S. G.,  Zou, H.,  Pang, L.J.,  Liu, C.X., 

Cui, X. B., Yang, L., Zhao, J., Shen, X.H., Jiang, J.F., Liang, W. H., Yuan, X. L., and Li, F. (2017). 

CD163 as a Marker of M2 macrophage, Contribute to Predict Aggressiveness and Prognosis of 

Kazakh Esophageal Squamous Cell Carcinoma.  Oncotarget.  8(13): 21525-21538. 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 2, 2020. ; https://doi.org/10.1101/2020.10.01.322636doi: bioRxiv preprint 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Hu%20JM%5BAuthor%5D&cauthor=true&cauthor_uid=28423526
https://www.ncbi.nlm.nih.gov/pubmed/?term=Liu%20K%5BAuthor%5D&cauthor=true&cauthor_uid=28423526
https://www.ncbi.nlm.nih.gov/pubmed/?term=Liu%20JH%5BAuthor%5D&cauthor=true&cauthor_uid=28423526
https://www.ncbi.nlm.nih.gov/pubmed/?term=Jiang%20XL%5BAuthor%5D&cauthor=true&cauthor_uid=28423526
https://www.ncbi.nlm.nih.gov/pubmed/?term=Wang%20XL%5BAuthor%5D&cauthor=true&cauthor_uid=28423526
https://www.ncbi.nlm.nih.gov/pubmed/?term=Chen%20YZ%5BAuthor%5D&cauthor=true&cauthor_uid=28423526
https://www.ncbi.nlm.nih.gov/pubmed/?term=Li%20SG%5BAuthor%5D&cauthor=true&cauthor_uid=28423526
https://www.ncbi.nlm.nih.gov/pubmed/?term=Zou%20H%5BAuthor%5D&cauthor=true&cauthor_uid=28423526
https://www.ncbi.nlm.nih.gov/pubmed/?term=Pang%20LJ%5BAuthor%5D&cauthor=true&cauthor_uid=28423526
https://www.ncbi.nlm.nih.gov/pubmed/?term=Liu%20CX%5BAuthor%5D&cauthor=true&cauthor_uid=28423526
https://www.ncbi.nlm.nih.gov/pubmed/?term=Cui%20XB%5BAuthor%5D&cauthor=true&cauthor_uid=28423526
https://www.ncbi.nlm.nih.gov/pubmed/?term=Yang%20L%5BAuthor%5D&cauthor=true&cauthor_uid=28423526
https://www.ncbi.nlm.nih.gov/pubmed/?term=Zhao%20J%5BAuthor%5D&cauthor=true&cauthor_uid=28423526
https://www.ncbi.nlm.nih.gov/pubmed/?term=Shen%20XH%5BAuthor%5D&cauthor=true&cauthor_uid=28423526
https://www.ncbi.nlm.nih.gov/pubmed/?term=Jiang%20JF%5BAuthor%5D&cauthor=true&cauthor_uid=28423526
https://www.ncbi.nlm.nih.gov/pubmed/?term=Liang%20WH%5BAuthor%5D&cauthor=true&cauthor_uid=28423526
https://www.ncbi.nlm.nih.gov/pubmed/?term=Yuan%20XL%5BAuthor%5D&cauthor=true&cauthor_uid=28423526
https://www.ncbi.nlm.nih.gov/pubmed/?term=Li%20F%5BAuthor%5D&cauthor=true&cauthor_uid=28423526
https://doi.org/10.1101/2020.10.01.322636


25 
 

 

Jarbrink, K., Sonnergren, H., Schmidtchen, A., Pang, C., Bajpai, R., & Car, J. (2017). Humanistic and Economic 

Burden of Chronic Wounds: A Protocol for a Systemic Review. Systematic Reviews. 6(1), 15. 

Keane, T. J., Swinehart, I. T., & Badylak, S. F. (2015). Methods of Tissue Decellularization Used for 

Preparation of Biologic Scaffolds and in vivo Relevance. Methods, 84, 25-34. 

Lan, C. C., Liu, I. H., Fang, A. H., Wen, C. H., & Wu, C. S. (2008). Hyperglycaemic Conditions Decrease 

Cultured Keratinocyte Mobility: Implications for Impaired Wound Healing in Patients with Diabetes. 

British Journal of Dermatology, 159(5), 1103-1115. 

Lau S.K., Chu P.G., Weiss L.M. (2004). CD163: A Specific Marker of Macrophages in Paraffin-Embedded 

Tissue Samples.  Am. J. Clin. Pathol.  122(5):794-801. 

Lipsky B.A., Holroyd K.J., Zasloff M. (2008). Topical Versus Systemic Antimicrobial Therapy for Treating 

Mildly Infected Diabetic Foot Ulcers: A Randomized, Controlled, Double-blinded, Multicenter Trial 

of Pexiganan Cream. Clin. Infect. Dis. 47:1537–1545. 

Machula, H., Ensley, B., Kellar, R. (2014). Electrospun Tropoelastin for Delivery of Therapeutic Adipose-

Derived Stem Cells to Full-Thickness Dermal Wounds. Adv Wound Care (New Rochelle) 3, 367-375. 

Maione, A. G., Smith, A., Kashpur, O., Yanez, V., Knight, E., Mooney, D. J., ... & Garlick, J. A. (2016). Altered 

ECM Deposition by Diabetic Foot Ulcer‐Derived Fibroblasts Implicates Fibronectin in Chronic Wound 

Repair. Wound Repair and Regeneration. 24(4), 630-643. 

Margolis, D.J., Malay, D.S., Hoffstad, O.J., Leonard, CE., MaCurdy, T., López de Nava, K., Tan, Y., Molina, 

T., Siegel, K.L. (2011). Incidence of Diabetic Foot Ulcer and Lower Extremity Amputation Among 

Medicare Beneficiaries, 2006 to 2008. Data Points Publication Series.  

Mathieu, D. (2006). Handbook on Hyperbaric Medicine. 27. 

Menke, N.B., Ward, K.R., Witten, T.M., Bonchev, D.G., and Diegelmann, R.F. (2007). Impaired Wound 

Healing. Clinics in dermatology, 25(1), 19-25. 

National Research Council. 2011. Guide for the Care and Use of Laboratory Animals: Eighth Edition. 

Washington, DC: The National Academies Press 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 2, 2020. ; https://doi.org/10.1101/2020.10.01.322636doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.01.322636


26 
 

Pradhan L., Nabzdyk C., Andersen N.D., LoGerfo F.W., Veves A. (2009). Inflammation and Neuropeptides: 

The Connection in Diabetic Wound Healing. Expert Rev. Mol. Med. 11. 

Saeed S., Zafar J., Khan B., Akhtar A., Qurieshi S., Fatima S., Ahmad N., Irfanullah J. (2013). Utility of 

(9)(9)mTc-labelled Antimicrobial Peptide Ubiquicidin (29-41) in the Diagnosis of Diabetic Foot 

Infection. Eur. J. Nucl. Med. Mol. Imaging. 40:737–743. 

Santoro, M. M., & Gaudino, G. (2005). Cellular and Molecular Facets of Keratinocyte Reepithelization during 

Wound Healing. Experimental Cell Research, 304(1), 274-286.Sherman R.A. (2003). Maggot Therapy 

for Treating Diabetic Foot Ulcers Unresponsive to Conventional Therapy. Diabetes Care. 26:446–451. 

Santos, R., Gomes, D., Macedo, H., Barros, D., Tibério, C., Veiga, A. S., ... & Oliveira, M. (2016). Guar gum 

as a New Antimicrobial Peptide Delivery System Against Diabetic Foot Ulcers Staphylococcus aureus 

Ssolates. Journal of Medical Microbiology, 65(10), 1092-1099. 

Sen, CK, (2019). Human Wounds and Its Burden: An Updated Compendium of Estimates. Advances in Wound 

Care. 

Singer, Adam J, & Clark, Richard A.F. (1999). Cutaneous Wound Healing. The New England Journal of 

Medicine, 341(10), 738-746. 

Singh S.K., Gupta B. (2017). Choices and Challenges of Antibiotics Therapy in Diabetic Foot Infection. Indian 

J. Endocrinol. Metab. 21:647–648. 

Tabor, A., Robinson, A., Pinto, B., Kellar, R.S. (2016). Platelet Rich Plasma Combined with an Electrospun 

Collagen Scaffold: in-vivo and in-vitro Wound Healing Effects. Clinical Research in Dermatology 

Open Access 3, 1-8. 

Werner, Sabine, & Grose, Richard. (2003). Regulation of Wound Healing by Growth Factors and 

Cytokines. Physiological Reviews, 83(3), 835-870. 

Xiao, J., Li, J., Cai, L., Chakrabarti, S., & Li, X. (2014). Cytokines and Diabetes Research. 

 

 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 2, 2020. ; https://doi.org/10.1101/2020.10.01.322636doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.01.322636


27 
 

Correspondence:   

    Northern Arizona University  

    Attn: Dr. Robert S. Kellar  

   617 South Beaver Street 

   Bldg. 21, Box 5640 

   Flagstaff, Arizona 86011 

   928-523-9311 

   robert.kellar@nau.edu 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 2, 2020. ; https://doi.org/10.1101/2020.10.01.322636doi: bioRxiv preprint 

mailto:robert.kellar@nau.edu
https://doi.org/10.1101/2020.10.01.322636

