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Abstract

Background:
Cancer genomic studies often include data collected from several omics
platforms. Each omics data source contributes to the understanding
of the underlying biological process via source specific (”individual”)
patterns of variability. At the same time, statistical associations and
potential interactions among the different data sources can reveal sig-
nals from common biological processes that might not be identified
by single source analyses. These common patterns of variability are
referred to as ”shared” or ”joint”. In this work, we show how the
use of joint and individual components can lead to better predictive
models, and to a deeper understanding of the biological process at
hand. We identify joint and individual contributions of DNA methy-
lation, miRNA and mRNA expression collected from blood samples in
a lung cancer case-control study nested within the Norwegian Women
and Cancer (NOWAC) cohort study, and we use such components to
build prediction models for case-control and metastatic status. To
assess the quality of predictions, we compare models based on simul-
taneous, integrative analysis of multi-source omics data to a standard
non-integrative analysis of each single omics dataset, and to penalized
regression models. Additionally, we apply the proposed approach to
a breast cancer dataset from The Cancer Genome Atlas.
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Results:
Our results show how an integrative analysis that preserves both com-
ponents of variation is more appropriate than standard multi-omics
analyses that are not based on such a distinction. Both joint and
individual components are shown to contribute to a better quality of
model predictions, and facilitate the interpretation of the underlying
biological processes in lung cancer development.
Conclusion:
In the presence of multiple omics data sources, we recommend the use
of data integration techniques that preserve the joint and individual
components across the omics sources. We show how the inclusion of
such components increases the quality of model predictions of clinical
outcomes.

Keywords: data integration, dimension reduction, joint and in-
dividual variance explained, multi-omics, prediction models

1 Background

Cancer studies benefit from the availability of genomic data, also known
as omics. The dimensionality of omics data is extremely high, suggesting
the application of dimension reduction techniques. Additionally, omics are
available across multiple sources (or ‘blocks’) of data, collected on the same
organisms or tissues, and measured on different platforms. A comprehensive
understanding of the key underlying biological process relies on an integrative
approach able to combine the information arising from such multi-source
data. To this end, a large number of statistical methods for the simultaneous
analysis of multi-omics data have recently been proposed. Multiple reviews
of such methods are available, for example in Tseng et al (2015); Huang et al
(2017); Rappaport and Ron (2018).

Data integration techniques are often used to identify ‘joint’ (also referred
to as ‘common’ or ‘shared’) contributions of the data sources to the observed
variation, and their simultaneous effect on the biological process under study.
Such patterns of variation arise from the interaction among different omics
sources, and may not be detected by a separate analysis of each single source.
However, the different data sources do not only contain the joint informa-
tion, but also independent contributions. The separate analysis of each data
source has so far been the most common approach used in the omics con-
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text, and knowledge about the individual contributions of each omics source
is relevant to the understanding of the biological processes of interest. As
a consequence, considering only the joint patterns might also prove insuffi-
cient, as it overlooks the heterogeneity among single data sources, and their
individual signals from the underlying relevant biological process. An exam-
ple of this can be seen in genomic studies collecting DNA methylation and
gene expression data. It is known that methylation regulates gene expression
and that this can cause a non-negligible joint structure across the different
data sources. For example, they have been shown to contribute together
and jointly relate to the occurrence and characteristics of lung cancer (Heller
et al, 2012; Sandanger et al, 2018). On the other hand, methylation and gene
expression correlate to these clinical outcomes also through signals that are
specific to each omics data source and biologically relevant independently
from each other (Yanaihara et al, 2006; Hu and Chen, 2015; Zhang et al,
2016; Baglietto et al, 2017). Therefore, dimension reduction methods that
take both joint and individual patterns into account are necessary.

Several methods that have recently been proposed to address this prob-
lem are based on matrix factorization. In this framework, each data block is
decomposed into three matrices modeling different types of variation, specif-
ically joint variation across the blocks, individual variation for each data
block, and residual variation. One such method is JIVE. JIVE stands for
Joint and Individual Variance Explained, it was formulated by Lock et al
(2013) and, also thanks to its implementation available in R (O‘Connell and
Lock, 2016), has been used in various medical applications, including clus-
tering of cancer genomics data (Hellton and Thoresen, 2016), multi-source
omics data (Kuligowski et al, 2015; Kaplan and Lock, 2017) and imaging and
behavioral data (Yu et al, 2017). Although JIVE successfully maintains joint
and individual structures, it uses an iterative algorithm and is computation-
ally very intensive. In Feng et al (2018), Angle Based JIVE (aJIVE) was
formulated to improve this aspect. It computes the matrix decomposition
by using perturbations of the row spaces to identify the joint and individ-
ual variation, and results in a much faster implementation than the original
JIVE. Besides resulting in a faster implementation of the algorithm, aJIVE
provides a more intuitive interpretation of the decomposition, especially in
the case of high correlations among individual components (Feng et al, 2018).

Other dimension reduction methods have been extended to the case of
multi source data, as for example canonical correlation analysis (CCA) (Hotelling,
1936) or partial least squares (PLS) analysis, which has been further gen-
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eralized to O2PLS (Trygg and Wold, 2003). A similar method that allows
for the presence of multiple data sources is the multiple CCA (Witten and
Tibshirani, 2009), but it mainly focuses on the common variation among the
components, and seems to neglect the individual contributions of the data
sources. An alternative method based on factor analysis has been proposed
in Argelaguet et al (2018), and provides a low-dimensional representation of
multi-source omics data, although it can fail to detect individual components
in the presence of heterogeneous dimensionalities of the single data sources.
Other similar approaches to identify both kinds of variation have been pro-
posed, as for example DISCO (Schouteden et al, 2013) and OnPLS (Lofsted
et al, 2012). An illustration of these methods and a comparison with JIVE
was provided in Måge et al (2019).

Additionally, Principal Component Analysis (PCA) based techniques have
been expanded to the case of multi source data. For example, consensus PCA
(Westerhuis et al, 1998) consists of PCA on the normalized concatenated
data, and distributed PCA (Fan et al, 2019) performs local PCA on the indi-
vidual data sources and then uses these principal components to estimate a
global covariance structure. Integrated PCA (iPCA) is a model based gener-
alization of PCA that decomposes variance into joint and individual variation
(Tang and Allen, 2018).

In this work, we focus on prediction models for lung cancer development
using both joint and individual components arising from different sources
of omics data. We show how the inclusion of both joint and individual
components in predictive models leads to a better quality of predictions.
The combination of joint and individual components can also facilitate the
biological interpretation of the underlying process, although this might still
fail as the dimension reduction itself bears the risk of obscuring some relevant
information.

We use aJIVE to formulate integrative prediction models in a real data
set on lung cancer, identifying individual and joint components across three
sources of omics data. We chose to use aJIVE because it inherits a good sub-
space recovery in comparison to other methods (Måge et al, 2019), as well
as the robustness to model misspecification from JIVE, but it also solves the
issue of correlated individual subspaces (Feng et al, 2018), and provides a
much faster implementation. Furthermore, McCabe et al (2020) show that
aJIVE performs best in terms of consistency and lack of overfitting when
compared to other integrative methods. We use the aJIVE joint and indi-
vidual components to build prediction models for lung cancer development.
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We evaluate the performance of the proposed models in terms of prediction
quality, and we compare them to non-integrative benchmark methods, as
well as standard regularized variable selection techniques. Additionally, we
show how disentangling joint and individual sources of variation can lead to
the identification of biological mechanisms, which would not be highlighted
by source-specific analyses.

The data we use stem from a lung cancer case-control study nested within
the Norwegian Women and Cancer (NOWAC) cohort study (Lund et al,
2008). The associations among three levels of omics data analyzed in blood
samples, specifically DNA methylation, mRNA and miRNA expression, are
investigated and their joint and individual contributions are used to pre-
dict future cancer cases, and for the characterization of future cancers as
metastatic or non-metastatic at diagnosis. We show that both types of com-
ponents contain information that reveal properties about biological processes
and that using joint and individual components results in good model pre-
dictions for case-control and metastatic status. We assess the quality of
prediction by comparing models based on both joint and individual compo-
nents to models uniquely based on clinical, patient-level covariates, and most
importantly non-integrative models, i. e. based on independent analyses of
data from each source.

To further evaluate this approach, we provide an application to a publicly
available dataset on breast cancer from The Cancer Genome Atlas (TCGA).

2 Methods

2.1 Data integration setup

Throughout the manuscript, we will denote each data block with Xk, where
k = 1, ..., K and K is the number of data sources used in the study. Each
block is a matrix with n columns, where n is the number of study subjects.
The kth matrixXk has pk rows, corresponding to the variables in data source
k. The overall dimensionality is denoted as p = p1 + ... + pK . The low-rank
decomposition we want to obtain is:
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X1 = J1 + I1 + ε1
...

XK = JK + IK + εK (1)

where Ik is the individual component for data block k, εk is its residual
component and

J =


J1

...

...
JK

 (2)

is the joint structure matrix, where each Jk is the submatrix of the joint
structure J associated with Xk.

2.2 Angle Based JIVE

Angle based Joint and Individual Variation Explained (aJIVE) is a variant
of the JIVE method, based on perturbation of row subspaces. JIVE aims
to minimize the squared residual components ε1, ..., εK , using an iterative
algorithm that alternatively estimates the joint and individual components
by singular value decomposition (SVD). AJIVE builds on this method but
constructs the algorithm in a more efficient and computationally feasible
way. The aJIVE algorithm is structured in three phases: First the low-rank
approximation of each data block Xk is obtained by SVD. Secondly, the
joint structure between the obtained low-rank approximations is extracted
by computing the SVD of the stacked row basis matrices. This second phase
of the algorithm is based on basic principles of Principal Angle Analysis.
Finally, the joint components Jk are obtained by projection of each data
block onto the joint basis, while the individual components Ik are calculated
by orthonormal basis subtraction.

The first step is based on the choice of the initial ranks for each data block,
which are used as a threshold value in the first SVD decomposition of the
data blocks. This choice is rather subjective and involves taking into account
some bias variance trade-off in the joint signals representation. Although
Feng et al (2018) provide guidelines on how to determine the initial ranks,
the recommended choice is based on the observation of scree plots, which
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remains highly subjective. As an alternative, Zhu and Ghodsi (2006) present
a choice of initial ranks based on the profile likelihood of the single data
blocks.

From the aJIVE decomposition, it is possible to obtain the full matrix
representation of the original features, as well as the block specific decomposi-
tions of each data source and the common normalized scores. The aJIVE im-
plementation is available in Matlab (Jiang, 2018) and R (Carmichael, 2019).

2.3 Application to the NOWAC data

The dataset

The data used in the following analyses stems from blood samples in a lung
cancer case-control study nested within the Norwegian Women and Cancer
Study (NOWAC) (Lund et al, 2008). All participating subjects are women
who did not have a cancer diagnosis at time of blood sampling (2003–2006).
The time from blood sampling to cancer diagnosis ranges from 0.3 to 7.9
years, with a median time equal to 4.2 years. The study was designed as
a nested case-control study, starting from 125 subjects who developed lung
cancer in the NOWAC cohort. One control was randomly chosen for each
case from the risk set at the time of cancer diagnosis, following an incidence
density sampling scheme. Cases and controls were matched on time since
blood sampling and birth year. All participants gave written informed con-
sent and the study was approved by the Regional Committee for Medical and
Health Research Ethics and the Norwegian Data Inspectorate. Three levels of
omics data are available for n = 230 individuals (115 case-control pairs), with
numbers of variables respectively equal to p1 = 485, 512 CpG methylation,
p2 = 11, 610 mRNA expression and p3 = 198 miRNA expression. Informa-
tion about individual covariates, including age, body mass index (BMI) and
smoking habits was also collected for all participants. Outcomes of interest
are the classification of case versus control, as well as the characterization of
cancers as metastatic or non-metastatic at diagnosis.

Filtering and preprocessing

Laboratory processing and microarray analyses for DNA methylation and
mRNA expression are described in Sandanger et al (2018). For miRNA,
laboratory processing included miRNA isolation and purification from 100
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µl plasma using the Qiagen miRNeasy Serum/Plasma Kit. Small RNA se-
quencing libraries were prepared using the NEXTflex small RNA-seq kit v3
(Bioo Scientific, Austin, TX, USA) and sequencing of fragments was per-
formed using a Illumina HiSeq4000 flowcell, according to the manufacturer’s
instructions (Illumina, Inc., San Diego, CA, USA), at 50 bp SE, resulting in
approximately 7− 9M reads per sample.

Preprocessing and quality control of methylation data accounted for miss-
ing values and intensities below detection thresholds, and included back-
ground subtraction and dye bias correction Guida et al (2015). For mRNA
data, the probe values were background-corrected and probes reported to
have poor quality from Illumina or detected in less than 95% of samples were
filtered out Sandanger et al (2018). The filtering of miRNA expressions was
based on the counts per million, that is the total read counts of a miRNA
divided by the total read counts of the sample and multiplied by 106, and
signals having less than one count per million were excluded. Additionally,
signals with null reads on more than 5 patients were excluded.

Because of the high computational requirements, we reduced the number
of mRNA expressions to p2 = 5, 000, by selecting the variables with higher
variance. We then reduced the number of methylation sites by selecting the
CpGs located on the same genes as the filtered mRNAs, as well as the 10,000
CpGs with highest variance. Among these, we excluded CpGs with more
than 40% missing data, as well as CpGs with extreme M-values (|M | > 3,
see Zhang et al (2012); Ma et al (2014)). This resulted in p1 = 26, 706. All
p3 = 198 available miRNAs were analysed. Other possible filtering criteria
have been considered and are described in the discussion of the paper. We
used log2 transformed expressions for both mRNA and miRNA, and M-
values for methylation (Du et al, 2010). We accounted for missing values in
the data by using SVDmiss, as suggested in Lock et al (2013). The data was
mean-centered. Thanks to the insensitivity of aJIVE to scale heterogeneity,
scaling was not performed in the data normalization stage.

aJIVE

We performed aJIVE on the three levels of omics data. The initial ranks
were selected by maximizing the profile likelihood (Zhu and Ghodsi, 2006),
but different choices of initial ranks were also explored and results did not
change substantially.

Joint and individual components were used in prediction models. The
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outcomes of interest were the occurrence of lung cancer (yes/no) and metas-
tasis (yes/no).

We fitted logistic models on each outcome using joint and individual
components as explanatory variables, in addition to age, BMI and smoking.
These models were compared in terms of AUC with the respective models
with only age, BMI and smoking as covariates. To assess the performance of
the models, we measured the average AUC in a 10-fold cross-validation. We
compared these with a non-integrative analysis, obtained by performing PCA
separately on each single data source. We fitted a model on the first principal
components (PCs) of each data source, and on the same clinical covariates.
We chose to include five PCs for each data source, based on the variance
explained by the first PCs and on the analysis of screeplots. We included the
same numbers of individual components in the integrative model described
above.

To provide a comparison with a standard supervised prediction method,
we ran a lasso procedure that selects signals from all three omics layers
and used it to predict the two outcomes of interest. We used 10-fold cross-
validation on 2/3 of the data points to select the optimal penalty parameter
and we used the fitted lasso model to predict case-control status and metas-
tasis. We ensured the inclusion of the clinical covariates in the lasso models
by fixing the corresponding penalty parameters to 0 for age, BMI and smok-
ing status. We compare the quality of model prediction in terms of average
AUC across 50 repeats of this procedure.

In addition, we used a random forest of 1, 000 trees to predict case vs
control on the basis of joint and individual components, and patient covari-
ates as above (age, BMI, smoking). We extracted the AUCs and the out of
the bag (OOB) classification errors from the random forest, and we ranked
all the variables in importance on the basis of their mean decrease in gini
index (Jiang et al, 2009).

2.4 Application to the TCGA data

To assess the predictive performance also in another dataset, we illustrate
an application to a subset of data generated by The Cancer Genome Atlas
(TCGA Research Network, https://www.cancer.gov/tcga), and used in the
mixOmics project Rohart et al (2017).

Records are included for 379 patients, and consist of 2,000 CpGs, 2,000
mRNA and 184 miRNA expression. We use methyaltion, mRNA, and miRNA
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expression data to explore shared and data-specific components of variation
via aJIVE. The joint and individual contributions are used to predict tumor
subtypes, specifically a four level classification into Basal, Her2, LumA and
LumB breast cancer. The original classification of these subtypes is based
on levels of mRNA expression Sørlie et al (2001). We build a prediction
model based on joint and individual components, and compare it to a non-
integrative model, i. e. based on independent analyses of data from each
source.

3 Results

3.1 Application to the NOWAC data

3.1.1 aJIVE

Using initial ranks obtained with the profile likelihood method resulted in a
joint rank equal to 5, and individual ranks respectively equal to 67, 10 and
9. Figure 1 reports the proportions of variance explained that are due to the
joint, individual and residual components.

Estimated proportions of variance explained with different choices of ini-
tial ranks are stable and reported in Supplementary File 2.

3.1.2 Prediction models

Figure 2 reports the in-sample ROC curves relative to the logistic models fit-
ted on the joint and individual components estimated by aJIVE. The model
with only patient covariates (age, BMI and smoking) as explanatory vari-
ables and the full, integrative model are reported. The integrative model is
fitted using patient covariates, aJIVE joint components and first five aJIVE
individual components for each data source as explanatory variables. These
are compared to non-integrative models, using the first five individual PCs
obtained for each dataset separately, in addition to the same covariates. In
the prediction of both outcomes, the integrative model shows the highest
AUCs, showing how the combination of both kinds of components results
in better model predictions. In particular, the integrative models perform
better than a non-integrative analysis based on source specific PCs. Addi-
tionally, the omics data contribute substantially to the predictions, and result
in considerably better prediction quality than patient covariates alone.
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A 10-fold cross-validation was used to validate the in-sample results for
each outcome, and shows a considerable improvement for the aJIVE integra-
tive model, when compared to non-integrative analysis. In the ROC studies
from cross-validation, the integrative models based on the aJIVE components
improve the prediction for both case-control and metastasis status. The
mean AUCs for the integrative models are 0.69 and 0.70, for case-control
and metastasis status respectively. The mean AUC of the non-integrative
model, based on the single data source PCAs and the clinical covariates, is
respectively 0.65 and 0.63. In the prediction of both outcomes, the aJIVE
integrative models perform better than the non-integrative analysis.

For comparison, as mentioned above, we also ran lasso models on the two
outcomes. The mean AUCs obtained by the lasso procedure are 0.69 and
0.61 for case-control status and metastastasis, respectively.

Table 1 reports accuracy and OOB classification error for the random
forests, as well as the mean AUCs. For case-control status, the aJIVE based
model improves the quality of predictions, both in terms of accuracy and
AUC, compared to the non-integrative model. The difference from the logis-
tic models with cross-validation can be due to the instability of the random
forest, and to the limited sample size. We do not report the random forests
results for metastasis because they are highly unstable and the accuracy is
very low, most likely due to the even more limited sample size, that is only
125 (only cases) for the metastasis classification.

Figure 3 shows the first ten variables ranked by variable importance in
the integrative model for case-control status. One joint component and three
individual components appear among the first five variables when ranked for
variable importance in the random forest prediction.

3.1.3 Biological interpretation

To investigate the biological processes indicated in the most influential com-
ponents, we extracted the top genetic features from any omic level that con-
tributed to the first ten variables identified by the random forests. We inves-
tigated the omics signals with the highest contribution in terms of loadings
estimated by aJIVE, for each component identified by the random forests.
Among the mRNAs with the highest contribution, 13 have earlier been iden-
tified in conditional logistic regression analyses of metastatic cases sampled
within 3 years of their diagnosis as compared to their controls Nøst et al
(2020). Additionally, 11 genes overlapped with the top genes identified in
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the analyses of all case-control pairs independent of metastatic status. We
used the Bioconductor package “clusterProfiler” Yu et al (2012) to conduct
functional enrichment analyses of GO(BP) categories for these genes, and
identified the following ontology categories: inflammatory response, peptide
secretion, innate immune response, positive regulation of DNA-binding tran-
scription factor activity, protein secretion, establishment of protein localiza-
tion to extracellular region. Inflammatory response was identified in San-
danger et al (2018) in the non-smoking related integrative analysis of DNA
methylation and gene expression. Among the miRNAs with highest con-
tributions, 80 are significantly associated with the classification of cases vs
controls, respectively 36 from the first individual component and 44 from the
third individual component. Using the Bioconductor package multiMiR and
validated databases therein Ru et al (2014), 55,267 miRNA-gene target inter-
actions were identified for the 36 miRNAs with the highest contribution to the
first individual miRNA component. Among the known gene targets for these
miRNAs, there were ten (S100A12, MX2, EIF2AK2, TNFSF13B, FFAR2,
IL1RN, ANXA3, CCR1, TNFAIP6, TLR5) that were among the mRNA with
the highest contributions to the aJIVE mRNA component (“mRNAInd3”).
Correspondingly, 32,707 miRNA-target interactions were identified for the
44 miRNAs in the third individual miRNA component. Among these, three
(IL1RN, FFAR2, EIF2AK2) were among the mRNA with the highest con-
tribution to the aJIVE mRNA component (“mRNAInd3”).

3.2 Application to the TCGA data

3.2.1 aJIVE

Using initial ranks obtained with the profile likelihood method resulted in a
joint rank equal to 4, and individual ranks equal to 2, 6 and 11, respectively
for methylation, mRNA and miRNA. Figure 4 reports the proportions of
variance explained that are due to the joint, individual and residual com-
ponents. The joint components explain about 30% of the variation in the
datasets, and the individual contributions are limited to about 25%, leaving
a high contribution to the residual components.
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3.2.2 Prediction models

An integrative model for prediction of tumor subtype is fitted using the
aJIVE joint components and the first five aJIVE individual components for
each data source as explanatory variables. This is compared to the non-
integrative model, using the first five individual PCs obtained for each data
source separately. Multinomial logistic models were used, with four classes
for the response variable.

The results were validated by 10-fold cross-validation. Multiclass AUCs
for in-sample classification of tumor type, as well as mean AUCs from cross-
validation, are reported in Table 2 for each model. The integrative model
including both individual and joint components shows the best quality of
prediction.

In addition, we used random forest of 1, 000 trees to predict tumor subtype
on the basis of joint and individual components, and again compared them
to non-integrative models. Table 3 reports accuracy and OOB classification
error for the random forests, as well as the mean AUCs. The integrative
model performs better than the non-integrative model in terms of AUC.
In terms of accuracy and classification error, the integrative model and the
non-integrative model are equivalent. Figure 5 shows the first ten variables
ranked by variable importance in the full integrative model. The three top
variables are joint components, and their importance measured in mean gini
index is substantially higher than the importance of the other variables.

4 Discussion

Prediction results

We use data integration to identify both joint and individual components in a
lung cancer study, where multiple omics data sources are available. While the
individual contribution of each data source is known to be relevant and has
been widely studied in this context, different data sources are also expected
to jointly associate with the clinical outcomes. We show how including both
joint and individual components in prediction models improves the quality
of prediction of the occurrence of lung cancer, as well as its classification
into metastatic or non-metastatic cancer. Models that include both types
of components lead to better predictions when compared to non-integrative
models, or to models based on clinical covariates. This approach was also
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used on data from a breast cancer study available from The Cancer Genome
Atlas (TCGA Research Network) and the results are similar.

Prediction models are validated in a 10-fold cross-validation framework,
and such results are further confirmed by random forests. From the cross-
validation study, we see that for case-control status, the integrative analysis
provides better prediction than non-integrative analysis.

As an additional comparison, we use supervised variable selection and fit
a lasso model on the three omics layers. Although we would expect that
a supervised method, by using information from the response variable in
fitting the model itself, results in better predictions, the aJIVE models used
here perform similarly (for case vs control), and substantially better (for
metastasis).

A possible explanation of generally low AUCs is that prediction models
for the NOWAC dataset might also be affected by the time between blood
sampling and cancer diagnosis, and we expect the quality of predictions to be
higher in subjects with a shorter time to diagnosis. We stratified cases into
two subgroups based on time to diagnosis (higher vs lower than the median
time) and obtained higher in-sample AUCs for the classification of case vs
control in subjects with a closer time to diagnosis. For the classification
of metastasis, the sample size in the two time to diagnosis classes is not
enough to draw conclusions. In the application to the NOWAC dataset, it
is interesting to observe that one genomic component identified from aJIVE,
specifically one individual component from the methylation data, ranks above
smoking in importance for case-control classification (Figure 3), smoking
being known to be the one, major risk factor for lung cancer.

In the TCGA example, the high prediction quality of the non-integrative
model is likely to arise from the definition of subtypes, which is based on levels
of mRNA expression. In the non-integrative models, the mRNA principal
components highly contribute to the prediction quality (mean AUC from
10-fold CV = 0.875 for non-integrative models based on mRNA components
only vs mean AUC from 10-fold CV = 0.867 for the non-integrative models
based on all three sources). Although we use multiclass ROC curves in this
example, a dichotomous classification of the tumor classes could provide a
deeper understanding of the models and easier comparison with the logistic
case.

While this work provides preliminary evidence of the importance of an
integrative analysis of the omics sources, a more thorough investigation of
the joint and individual components could help identifying relevant biological
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patterns for future research. An example can be given by the underlying bi-
ological processes involving smoking and lung cancer: the omics signals that
are dominating the components could be important risk factors for lung can-
cer, in addition to being informative about present or past smoking, and their
interaction could shed light on the relevant underlying biological processes.
Although a functional interpretation of such processes and of their link to
the clinical outcomes is not straightforward, an investigation of the aJIVE
components could provide further information that would not be identified
by a non-integrative analysis of the separate omics sources.

Variable filtering

The chosen approach for variable filtering is based on variance for mRNA,
and on genomic location and variance for methylation. Specifically, the top
5,000 most variable mRNAs are selected and CpGs are then selected based
on their location on genes, by including CpGs located on the same genes as
filtered mRNAs. The top 10,000 most variable CpGs are included in addition
to these. We expect that choosing signals that are on the same gene loca-
tions, and therefore naturally associated, will result in very relevant joint con-
tributions and possibly obscure the individual components associated with
methylation. The inclusion of the most variable CpGs, independently from
their gene locations, solves this issue. Varying the proportions of CpGs that
are selected based on their variance and on their gene location can give rise to
different joint and individual contributions, and this aspect needs to be fully
considered in the interpretation of the results. In the supplementary mate-
rial (File 2), we report the aJIVE results for two additional filtering set ups,
specifically: a) by selecting CpGs uniquely on the basis of their gene location,
and b) by including only the top most variable CpGs regardless of their loca-
tion. The filtering of mRNA is based on the variance of the log-transformed
signals. Although this procedure might generally result in selecting signals
with the lowest intensities, this did not seem to have any impact on the re-
sults in our example. Different choices of filtering criteria for the mRNAs
can be the interquantile range (IQR), or the association with the clinical out-
come of interest, estimated by an appropriate regression model, and would
yield different results of the aJIVE decomposition. Finally, also the filtering
of the miRNAs needs to be taken into account, where less restrictive criteria
might result in the estimation of different joint and individual components.
Other choices could be made in this phase, for example applying the variance
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criterion independently on each data source, which could yield different joint
and individual components. Another choice we made in the preprocessing
and filtering of the data is the use of M-values for methylation. This choice
is motivated by Du et al (2010).

Methodological considerations

One of the main issues in aJIVE is the selection of initial ranks. The most
common method for the choice of initial ranks in aJIVE is the visualization of
screeplots, which is subjective and highly sensitive to noise in the data. The
profile likelihood idea suggested by Zhu and Ghodsi (2006) partly addresses
the problem, but it still lacks some objectivity and automation. Nevertheless,
the correct choice of ranks is fundamental for aJIVE, and ranks misspecifi-
cation can lead to incorrect results (Feng et al, 2018).

The high dimensionality of the data motivates the use of sparse methods,
which reduce the number of variables included in the model and provide an
easier interpretation of the results. A sparse version of the aJIVE method
could be used for this purpose, by introducing a penalty term in the decompo-
sition to induce variable sparsity. This has not been specifically implemented
for aJIVE, but Lock et al (2013) discuss and provide an implementation of
a sparse version of the JIVE method.

Finally, one aspect that is not accounted for in aJIVE is the presence of
partially shared components. When joint components are only shared by,
for example, two out of the three data sources, they will not be identified by
aJIVE. This is a limitation of most data integration methods, and we expect
partially shared components to result in even better prediction models. A
way to investigate partially shared patterns is provided in the SLIDE method
by Gayananova and Li (2019), and is a potential starting point for further
work in this direction.

5 Conclusion

Our study shows how integrative models that include both joint and indi-
vidual contribution of multiple datasets lead to more accurate model predic-
tions, and facilitate the interpretation of the underlying biological processes.
We use joint and individual contributions of DNA methylation, miRNA and
mRNA expression to predict cancer development in a lung cancer case-control
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study, and breast cancer subtype in a dataset from The Cancer Genome At-
las. We show that the use of joint and individual components leads to better
prediction models, and to a deeper understanding of the biological process
in hand.
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Figure 1: Joint and individual proportions of variance explained in the
NOWAC dataset.
The individual component is prevalent for all three datasets, especially for
methylation. The joint component is relevant for mRNA and miRNA.
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Figure 2: ROC curves from logistic prediction models.
a) reports the ROC curves and their AUCs for the prediction models on case
vs control, b) reports the ROC curves and their AUCs for the prediction
models on metastasis status. The integrative models are fitted on the joint
and individual components extracted from aJIVE, while the non-integrative
models are fitted on the first principal components obtained separately for
each omics source.
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Figure 3: Variable importance plot from random forest on case vs control in
the NOWAC dataset
First ten variables ranked by variable importance (in terms of mean Gini
index) in the full integrative model for case vs control in the NOWAC dataset.
Jointi denotes the i−th joint component estimates by aJIVE, while MetIndi,
mRNAIndi and miRNAIndi are the i−th individual components estimated by
aJIVE for methylation, mRNA and miRNA respectively.

Figure 4: Joint and individual proportions of variance explained in the TCGA
dataset.
Both joint and individual components are relevant for the three datasets.
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Figure 5: Variable importance plot from random forest on cancer subtype in
the TCGA dataset.
First ten variables ranked by variable importance (in terms of mean Gini
index) in the full integrative model for cancer subtype in the TCGA dataset.
Jointi denotes the i−th joint component estimates by aJIVE, while MetIndi,
mRNAIndi and miRNAIndi are the i−th individual components estimated by
aJIVE for methylation, mRNA and miRNA respectively.
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Tables

Model Accuracy OOB Classification Error mean AUC

Joint and Individual (with covs) 0.71 45.63% 0.70
Patient covariates 0.62 39.32% 0.68
Non-integrative analysis (with covs) 0.62 38.83% 0.63

Table 1: Random forest diagnostics for prediction models of case-control
status in the NOWAC dataset.

Model In-sample AUC mean AUC from CV

Full integrative aJIVE 0.924 0.883
Non-integrative 0.887 0.867

Table 2: In-sample and cross validated AUCs for prediction of tumor subtype
in the TCGA dataset.

Model Accuracy OOB Classification Error AUC

Full integrative aJIVE 0.81 19% 0.91
Non-integrative 0.81 19% 0.78

Table 3: Random forest diagnostics for prediction models of cancer subtype
in the TCGA dataset.

28

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 3, 2021. ; https://doi.org/10.1101/2020.10.02.299834doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.02.299834

	Background
	Methods
	Data integration setup
	Angle Based JIVE
	Application to the NOWAC data
	Application to the TCGA data

	Results
	Application to the NOWAC data
	aJIVE
	Prediction models
	Biological interpretation

	Application to the TCGA data
	aJIVE
	Prediction models


	Discussion
	Conclusion

