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Abstract

Population-scale genetic studies can identify drug targets and allow disease risk to be
predicted with resulting benefit for management of individual health risks and
system-wide allocation of health care delivery resources. Although population-scale
projects are underway in many parts of the world, genetic variation between population
groups means that additional projects are warranted. South Asia has a population
whose genetics is the least characterized of any of the world’s major populations. Here
we describe GenomeAsia studies that characterize population structure in South Asia
and that create tools for economical and accurate genotyping at population-scale. Prior
work on population structure characterized isolated population groups, the relevance of
which to large-scale studies of disease genetics is unclear. For our studies we used
whole genome sequence information from 4,807 individuals recruited in the health care
delivery systems of Pakistan, India and Bangladesh to ensure relevance to
population-scale studies of disease genetics. We combined this with WGS data from
927 individuals from isolated South Asian population groups, and developed a custom
SNP array (called SARGAM) that is optimized for future human genetic studies in South
Asia. We find evidence for high rates of reproductive isolation, endogamy and
consanguinity that vary across the subcontinent and that lead to levels of homozygosity
that approach 100 times that seen in outbred populations. We describe founder effects
that increase the power to associate functional variants with disease processes and that
make South Asia a uniquely powerful place for population-scale genetic studies.

Founder effects and population bottlenecks reduce the number of individuals from the
past that contribute to present day genetic diversity. The shifts in allele frequencies that
result have contributed to many important discoveries in studies of Icelandic, Ashkenazi,
Finnish, Amish and other founder or bottlenecked populations'™. The historical events
that have produced genetic drift in these populations are recognizable and the genetic
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consequences can be effectively modeled. Studies of population structure in South
Asia have described patterns of genetic drift as founder effects® but there is little
evidence that reductions in population size have been a significant factor in producing
present day population structure. Endogamy (i.e., marriages that are restricted to a
particular group or caste) is however well recognized in South Asia® and can, through
effective reproductive isolation, produce founder effects by reducing effective population
size. At one extreme is consanguineous partnering but there are many possible
reproductive patterns that can be described as endogamy, and it is not possible to
usefully predict all of the possible effects on genetic variation. Empirical description of
population structure as it presents to the health care delivery system has been lacking
but is critical in order to efficiently design and carry out human genetic studies at
population scale. At the same time, tools for accurate and economical genotyping, also
necessary for population scale genotyping, have been lacking for South Asians. Used
together, a clear description of population structure and economical genotyping tools
can unlock the tremendous potential of human genetics in South Asia for discoveries
that illuminate disease processes and allow prediction of disease risk in South Asians.

The GAsP2 data set

We divided samples from the health care delivery systems of South Asia (informally
called ‘medical cohorts’) into three regional groups: Pakistani (PAK), South Indian (SOI)
and Bengali (BNG). We combined these samples with previously published
genomes’'? and additional samples we sequenced from isolated South Asian
population groups to create the GenomeAsia Phase 2 (GAsP2) data set. We then used
a standard pipeline for read mapping and variant calling, starting from the raw sequence
data of all of the samples. After standard quality control filters and removal of one
individual from each first-degree relative pair, we obtained a set of 6,443 high-coverage
genomes (average 25x) for downstream analyses (Supplementary Table 1). Of these,
5,734 genomes were of South Asian ancestry, with medical cohort sizes of 1,810, 1,363
and 1,634 respectively for the Pakistani, South Indian and Bengali groups. Basic
information on SNPs and allele frequencies are available from the GenomeAsia
consortium website (https://www.genomeasia100k.org), while a computationally phased
version of the data can be used as a reference panel for imputation using the Michigan
Imputation Server (https://imputationserver.sph.umich.edu/index.html). The estimated
non-reference discordance rate for duplicate samples found in both the GAsP2 and
1000 Genomes Project data sets is 1.61 * 10 (Supplementary Table 2).

Population structure

We used standard approaches such as Fg;, PCA"™, Admixture' and UMAP*® (Uniform
Manifold Approximation and Projection) for qualitatively assessing population structure
in our study (Fig. 1, Supplementary Figures 1-4) In the UMAP plot of South Asian
samples, we find a clear distinction between Bengali, Pakistani and South Indian groups
that roughly mirrors geography (Fig. 1a) When we further zoom in on each of these
three regions, we find that UMAP can separate individuals into smaller caste and
culture-based subgroups (Fig. 1b-d) In particular, since our samples include both
medical cohorts (sampled from particular regions without regard to caste) and focused


https://www.genomeasia100k.org/
https://imputationserver.sph.umich.edu/index.html
https://doi.org/10.1101/2020.10.02.323238
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.02.323238; this version posted October 2, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

sampling of particular caste and language groups, we can often reliably assign caste
(Fig. 1d) or subgroup (Fig. 1b) labels to individuals based solely on their genetic
makeup.

In Birbhum, West Bengal, we have self-reported population group identity (e.g.
tribe, caste and/or sub-caste) for over half of the individuals in our study. Figure 1c
shows that some clearly reported population group identities are genetically distinct,
such as the Santhal, Bayen and Brahmin, while others are not, like the Sadgope and
Kayastha. An admixture plot of Birbhum and Bangladeshi samples with K = 4 provides
a similar picture (Fig. 1e), with Santhal, Bayen and Kolu appearing to be well-defined
genetic groups, while most individuals from the other groups are estimated to be
admixed. The clustering of the Santhal, Bayen and Kolu reflects increased genetic drift
due to some combination of isolation, endogamy and consanguinity. It is well
established that the increased drift in founder populations in general and South Asian
groups in particular enable unique opportunities for genetic research®'®. Among the
other groups, we note that there is a clear distinction in Admixture estimates between
Bangladeshis and general caste individuals from Birbhum (who include a substantial
number of Bengali Muslims). Since Partition (between India and what was then East
Pakistan) happened too recently to cause systematic subsequent genetic differences,
our results suggest that the residents of Bangladesh are a non-random subset of the
Muslims that were living in Bengal in the mid-20™ century.

Endogamy and consanguinity

Endogamy and consanguinity lead to an excess of homozygous genotypes over the
expectations from random-mating. We calculated the ratio of the observed number of
rare homozygous genotypes over the expected number, binned by minor allele
frequency (MAF), for South Indian (SOI), Pakistani (PAK) and Bengali (BNG) samples
(Fig. 2a). For comparison with the patterns of genetic variation in an ostensibly outbred
population, we also included the same results for 1,442 unrelated Taiwanese (TWN)
genomes. For all four groups, we observe an increasing excess of rare homozygotes
with smaller MAF. This pattern is strongest in the South Indian and Pakistani groups,
moderate in the Bengali group, and weak in the Taiwanese, and reflects the strength of
non-random mating within each group.

Founder events or population bottlenecks that occurred in the distant past can
dramatically increase the rate of homozygosity, but with tract lengths decreasing over
increasing numbers of intervening generations. Endogamy and consanguinity both
produce excess homozygosity, but in the latter the excess homozygosity primarily
occurs in long runs of homozygosity (ROH). To determine the relative effects of
endogamy and consanguinity on patterns of homozygosity within our South Asian
cohorts, we developed a novel method for estimating the degree of parental relatedness
of an individual based on the observed numbers and lengths of long (e.g., >10 cM)
ROHs. The method categorized an individual’s parents as 2" degree relatives (e.g.,
uncle and niece), 3" degree relatives (e.g., 1% cousins), 4" degree relatives (e.g., 1%
cousins once removed), 5" degree relatives (e.g., 2" cousins) or unrelated (i.e., less
related than 2" cousins). Both the proportion of individuals identified as outbred and
the distribution of consanguineous individuals across the remaining four categories
show substantial regional variation (Fig. 2b). In particular, there appears to be less
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consanguinity and fewer closely related parental pairings on average among the
individuals in BNG (West Bengal and Bangladesh), compared with the medical cohorts
from SOI (South India) and PAK (Pakistan). This presumably reflects systematic
differences in marriage practices across the different regions. Interestingly,
self-reported consanguinity in Birbhum samples is only modestly correlated with genetic
estimates of consanguinity (Supplementary Figure 5).

To assess whether consanguinity by itself can explain the observed excess of rare
homozygotes, we stratified each regional group into ‘inbred’ and ‘outbred’ subgroups
(where the former referred to individuals whose parents were estimated to be 2" or 3™
degree relatives). We then tabulated the increase in rare homozygotes for each
subgroup (Fig. 2c and d). We find that the inbred subgroups (Fig. 2c) have as much as
600 fold higher levels of rare homozygotes above expectation, 4-10 fold above the
population group as a whole and 13-30 times the level seen in their outbred sub-group.
Interestingly, even in the outbred South Asian sub-groups (Fig. 2d) levels of
homozygosity can be as much as 3.8 fold higher than in TWN (Han Chinese from
Taiwan) individuals, presumably due to endogamy and the resulting enrichment in
distant parental relationships for the individuals in our data set which our methods were
not able to identify.

Excess homozygosity caused by close parental relatedness is structured in long
runs of homozygosity (ROH). We tabulated the total length of each individual’s genome
contained in ROH longer than 1 cM, and plotted the distribution of this length across
several South Asian groups, along with HAN (Han Chinese from China) as an outbred
population for comparison (Fig. 2d). All of the South Asian groups have a tail of
individuals with increased proportion of ROH that corresponds with the individuals that
have parents that are closely related (Fig. 2e). Consistent with this interpretation,
subdividing the medical cohort samples based on parental relatedness deconvolutes
the tail into separate distributions of ROH (Fig. 2f and Supplementary Figure 6).

Loss of Function variants

To assess the potential functional effects of the high levels of endogamy and
consanguinity found within South Asia, we identified putative Loss of Function (pLoF)
variants in our data set (see Methods). For comparison, we also used an analogous
analysis pipeline to identify pLoF variants in non-Finnish European (NFE) individuals
from the genome aggregation database'” (gnomAD). There are more genes with pLoF
variants with frequency > 0.1% found in South Asia (SAS) than in NFE, and most of
these genes are in the set of pLOF containing genes unique to SAS (Fig. 3a). To
visualize the frequencies and geographic distributions of these pLoF variants, we
constructed heat maps representing genes containing pLoF variants, with warmer
colors indicating higher minor allele frequencies of pLoF variants. Individual clusters
are shown for each set of pLOF containing genes that are unique to or shared between
individual population groups (Fig. 3b). The excess of pLOF containing genes that is
seen in SAS is distributed fairly evenly amongst PAK, BNG and SOI, consistent with the
idea that these are distinct population groups, each of which had founder effects that
pushed LOF and other functionally relevant alleles to higher frequencies than is seen in
an outbred population. We also show the same heat maps for homozygous pLoF
variants (i.e., human ‘knockouts’) in Supplementary Figure 7.
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pLoF mutations are widely studied because they often have phenotypic effects
that can easily be tied to the function of a specific gene or pathway. We looked at three
genes where loss-of-function mutations are known to affect blood lipid levels'®% and
verified that individuals in our study that have pLoF variants in these genes have the
expected effects on measured LDL, triglyceride and HDL levels (Fig. 3c).

A recognized benefit of studying South Asian populations is the greater
probability of identifying individuals homozygous for pLoF alleles due to the excess
homozygosity caused by endogamy and consanguinity. To evaluate this potential
explicitly in our dataset, we tabulated the average numbers of rare (MAF < 0.01)
homozygous pLoF mutations per individual (i.e., those pLoF mutations most likely to be
deleterious), stratified by estimated degree of consanguinity (Fig. 3d). As expected,
increased consanguinity is associated with an increased number of these rare, likely
harmful mutations, similar to previous findings (cf. Figure 1c in ref. 21). As the degree
of consanguinity increases, these mutations are more likely to be found in long ROH
caused by recent inbreeding (Supplementary Figure 8).

The population structure within South Asia makes the region ideal for prospective
studies of loss-of-function mutations. Even rare pLoF variants might have appreciable
frequency in particular regions or caste groups, which would enable focused recruiting
for follow-up functional studies. To evaluate this, we displayed the distribution of
individuals containing characterized LOF alleles on the UMAP plots described
previously (Fig. 3e and Supplementary Figure 9). Characterization of ApoC3 LOF
homozygotes has elucidated the physiological basis by which ApoC3 acts to regulate
serum triglycerides?'. Within South Asia, ApoC3 LOF carriers are found predominantly
in Pakistani subpopulations that cluster with individuals from Balochistan and Sindh in
the South of Pakistan (Fig. 3e and 1b).

The SARGAM Genotyping SNP array

To optimize the effectiveness of future genotype-phenotype studies in South Asia, we
worked with Thermo Fisher to design a custom SNP array (South Asian Research
Genotyping Array for Medicine, or SARGAM) that (i) prioritizes direct genotyping of
known or putative protein altering variants present at a frequency of 0.1% or higher in
SAS populations, and (ii) is optimized for imputation of variants down to an SAS minor
allele frequency of 0.1%. To highlight the former feature, we tabulated how many pLoF
or presumed damaging mutations can be directly genotyped by the most commonly
used technology at present, lllumina’s GSA3 array and by the SARGAM array (Fig.
4a-b, Supplementary Figure 10). In Figure 4a and b, each protein coding gene is
represented by a square in an array of 19,600 squares, with each square colored by the
number of deleterious variants captured by each array at each gene. The SARGAM
array directly genotypes presumed damaging mutations from the vast majority (74%,
n=14,713) of non-read through protein coding genes in Ensembil (Fig. 4a), with a mean
coverage of 3.5 mutations per gene (n=51,804). In contrast, the number of damaging
mutations genotyped by the GSA3 array is much smaller (Fig. 4b), covering just 26% of
genes (n=5,100) with a mean coverage of 1.9 mutations per gene (n=9,443). The
SARGAM array therefore represents an inexpensive method for simultaneously
conducting many specific genetic tests, while also allowing for standard human genetic
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applications (e.g., genome-wide association studies and/or polygenic risk score
calculations).

Since the SARGAM array design utilized the observed patterns of linkage
disequilibrium in thousands of South Asian genomes, we expected it to allow for more
accurate imputation of untyped genotypes in South Asian samples. To evaluate this we
compared imputation accuracy between the SARGAM and GSAS3 arrays and found that
both the SARGAM array and the GAsP2 reference panel contribute to higher imputation
accuracy (Fig. 4c). These results reinforce why the quality of available genomic
resources is a factor that limits feasibility and power of large-scale human genetic
studies in non-European populations.

Polygenic risk scores and the genetic architecture of complex traits

We demonstrate clinical relevance of the improved genotyping and imputation through
an application of coronary artery disease (CAD) polygenic risk scores (PRS) in an
independent South Asian cohort (1800 cases, 1163 controls) which were genotyped on
the GSA3 arrays®. We imputed the genotypes using the 1000 Genomes and GAsP2
panels and applied the ancestry-adjusted genome-wide PRS model from ref. 22. The
results showed a marked improvement in the predictive power of the PRS, with an
improved AUC (0.638 for GAsP2 vs. 0.595 for 1000 Genomes). The odds ratios of CAD
for individuals in the top deciles (9th-10th) compared to those in the middle deciles
(56th-6th) are higher in the GAsP2-based PRSs (ORy,, = 1.67; OR,,,, = 2.43) as
compared to the 1000 Genomes-based PRSs (ORy,, = 1.32; OR,,,, = 1.83; Fig 4c).
These improved ORs are on par with those achieved for European samples with the
appropriate imputation panel (HRC, UK10K, 1000 Genomes), GWAS, and PRS model
(UKB ORy,,, = 1.51; OR,, = 2.52; Fig 4c). This improved performance can be explained
by the improved imputation accuracy as well as the increased number of well-imputed
variants (Supplementary Table 3).

Conclusion

South Asian populations provide a rich potential for human genetic discovery that is
largely unexplored. A population-scale genotyping project in South Asia will open up
opportunities to explore disease genetics in ways that are impractical or infeasible in
other populations. Notably, the dramatically higher rate of homozygosity that is found in
parts of South Asia allows homozygous loss of function effects to be studied for many
genes that cannot realistically be accessed in outbred populations such as those that
predominate in Europe and East Asia'’?*. Traditionally, homozygous gene function has
been explored through family-based studies, often involving self-identified
consanguineous unions. Although this will continue to be an effective way to carry out
focused studies, a population-scale dataset in South Asia will facilitate identification of
appropriate families and will also open up new opportunities to consider homozygosity
in population-based association analyses. At the same time, this dataset will provide
the opportunity to evaluate disease associations with a novel set of functional variants,
e.g. the unique set and larger set of pLoF alleles with frequencies > 0.1% found in
South Asians as compared to Europeans. The SARGAM genotyping array and the
GAsP2 imputation reference panel allow South Asian genotypes to be captured in an
economical and effective manner.
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Population-based genetic studies have been effectively carried out within single
coordinated health-care delivery systems such as national single-payer systems. South
Asia provides a different set of challenges and a different set of possibilities. In India in
particular, Super-specialty hospitals, organized to deliver health-care in a specific
disease area in a way that takes advantage of the economies of scale presented by its
large population base, predominate in certain markets. These hospitals can, in a
disease focused fashion, rival the scale of national general hospital systems of some
countries. Thus while, national biobank systems do not exist in South Asia at present
that could provide a foundation for a broad cross-sectional evaluation of the genetics of
disease, the scale at which patients can be recruited within specific disease areas will
allow clinically relevant datasets to be constructed to a total size that is unrealistic in
most parts of the world. This, paired with the unique population structure of South Asia,
presents a powerful set of opportunities for genetic discovery that will improve healthy
life-span around the globe.

Methods

Samples

We utilized a combination of genomes from previously published studies”'?, newly
sequenced genomes from 1000 Genomes Project samples, and newly sequenced
genomes from several ongoing genetic studies in South Asia. Further information on the
samples is contained in Supplementary Information 1 and Supplementary Table 1.

Sequencing, filtering, alignment and variant calling

lllumina short reads were mapped to the reference genome (build GRCh38) using
BWA?*. We then used GATK42 for base quality score recalibration, indel realignment,
duplicate removal, variant discovery and joint genotyping, using the GATK Best
Practices recommendations®?’. We then removed variants that were monomorphic or
were not annotated as PASS, and converted genotype calls with genotype quality (GQ)
score < 20 to missing data. Finally, we removed any variants with a missing genotype
rate of > 30%.

Comparison with 1000 Genomes Data

We downloaded genotype calls from the high-coverage 1000 Genomes Project data
from
http://ftp.1000genomes.ebi.ac.uk/voll/ftp/data_collections/1000G_2504 high_coverage/
working/20190425 NYGC_GATK/. We then used the same filters as described above,
except with a genotype quality filter of > 40. Then, for 22 individuals that were
sequenced independently but were contained in both our call set and the 1000
Genomes Project (high-coverage) call set, we tabulated the non-reference discordance
rate of the filtered genotype calls in the two data sets. Results are summarized in
Supplementary Table 2.

Sample QC and identification of 1%t degree relative pairs
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We used KING? to identify close relatives in our data. We labeled pairs of individuals as
duplicates or 1st degree relatives if the estimated kinship coefficients were > 0.4 and
[0.177, 0.4] respectively. We then removed samples in the following order:

1) All samples with duplicates from another population

2) For remaining duplicate pairs in the same population, the individual with more

missing data

3) Individuals that have more than one 1st degree relative

4) Individuals with genotype calls at < 90% of all SNPs

5) For remaining 1st degree relative pairs, the individual with more missing data
After this filtering, we were left with 6,443 genomes for downstream analyses.

Phasing

The collection of 6,443 individuals described above was computationally phased using
eagle2?®, with the default options (which includes allowing eagle2 to impute sporadic
missing genotypes). The GRCh38-based genetic map made available with the eagle2
distribution was used for the phasing. We also used the same workflow to construct a
reference panel consisting of only the South Asian medical cohorts, which was used in
the design of the SARGAM array.

Population structure (Fst, PCA, UMAP, and Admixture)

We used plink version 1.9% to conduct Principal Components analysis. We filtered
SNPs to have a MAF > 0.01, and LD-pruned using an r? threshold of 0.2. We then
created PCA plots after removing the pruned SNPs with the variant-weights modifier in
plink1.9. These analyses were performed separately for different groups of individuals
after the removal of 1st degree relative pairs and low-coverage samples as described
above.

UMAP projection was performed using the protocol and script published by
Diaz-Papkovich and colleagues®'. 15 principal components were used to generate the
two dimensional UMAP projection. Based on visualization and separation of known
population groups in the Birbhum Cohort, we chose the key parameter settings as
follows: number of neighbors (NN) of 15 and minimum distance (MD) of 0.5.

The ADMIXTURE™ analysis was performed using Version 1.3.0 of the software
(http://www.genetics.ucla.edu/software/admixture). We used SNPs with MAF > 0.01,
with the call rate > 99.9%, and LD-pruned using a 50-SNP sliding window and variance
inflation factor threshold of 2. The number of components K was optimized to minimize
the cross-validation error using Chromosome 21. The optimal K for the Birbhum Cohort
was 4, but for the larger South Asian and global samples, the cross-validation error
continued to decrease even for a large K (K=40). Thus, we chose to present the results
at K=12 which is the same number of components used in the GenomeAsia 100K Pilot
study’2.

Weir and Cockerham weighted F; estimates were calculated using VCFtools®?
Version 0.1.17. Only MAF-filtered and LD-pruned markers, as described above, were
used. Samples that were related or did not pass QC were excluded.

Rare homozygotes
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For each population considered, we stratified variants according to the MAF in the
specific population and tabulated the number of rare homozygotes and the expected
number of rare homozygotes for each MAF category, assuming random mating. We
then further stratified these results (Fig. 2c-d) by classifying some individuals as “inbred”
(i.e., offspring of 3" degree relatives or closer) or “outbred” (i.e., offspring of 6" degree
relatives or more distant), using the estimation process described below.

Runs of Homozygosity (ROH)
We used PLINK version 1.9% to identify ROH in our data. We used the default
parameter settings, except for the following:

--homozyg --homozyg-kb 500 --homozyg-window-snp 100 --homozyg-window-het 2
--homozyg-window-missing 20 --maf 0.001

We then converted the lengths of all ROHs into genetic distances, using a genetic map
first created by Adam Auton and downloaded from the Beagle website at
https://bochet.gcc.biostat.washington.edu/beagle/genetic_maps/

We required ROHs to have a minimum physical length of 500 Kb and a minimum
genetic distance of 1 cM to be included in our analyses.

Estimating the degree of inbreeding

We used a summary likelihood approach for estimating the degree of inbreeding from
an individual’s ROH tracts. We focused on the longest ROHSs to provide better power for
distinguishing ROHSs that arise due to endogamy versus ones that arise due to very
recent inbreeding. Specifically, we tabulated (1) the number of ROHs longer than 10
cM, and (2) the sum of the genetic lengths of the 10 longest ROHSs for each individual.
Simulations suggest that these two summaries are more informative than other, similar
summaries based on the number or length of the longest ROH tracts (Results not
shown.) Concurrently, we simulated the distribution of ROH lengths expected under
various degrees of inbreeding (see section directly below), ranging from the offspring of
2" degree relatives (e.g., uncle — niece) to the offspring of 6" degree relatives (e.g., half
2" cousins). Then, for each individual, we estimated the probability of observing the two
ROH summaries (within 1% for the 10 longest ROHs) as a function of the degree of
inbreeding. We then assigned the degree of inbreeding with the highest likelihood for
each individual, treating 6" degree relatives to be “unrelated”.

Simulating expected ROH size distribution under inbreeding

We utilize the model of Clark® for simulating the distribution of autozygous segments
expected under a specific degree of inbreeding. Specifically, we assume that the
genetic lengths of chromosomal segments inherited from particular paternal and
maternal ancestors follows an exponential distribution with mean equal to 100 cM
divided by the total number of generations in the path from the proband back to the
particular ancestors. For example, for an individual whose parents are 1st cousins,
there are four paternal great grandparents (and thus eight total paternal autosomal
chromosomes three generations ago) and eight total maternal autosomal chromosomes
that could be inherited at any particular genomic location. Of the 8 x 8 = 64 possible
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inheritance patterns, four result in consanguinity. We model an autosome’s ancestry as
a series of blocks of ancestry, each with genetic length exponentially distributed with
mean 100 / 6 cM, and with each block having a 4 / 64 = 6.25% chance of being
autozygous. We take the genetic lengths of chromosomes from the original deCODE
genetic map®*, and tabulate the number and size distribution of autozygous segments
over 2 million simulations for each degree of consanguinity considered.

Loss of Function variants
A list of high-confidence Loss-of-Function (LoF) variants, including frameshift,
splice-site, non-sense, start-loss and stop-loss mutations, was obtained using the
following criteria:
e The LoF variants should be predicted as high-confidence (HC) from the LOFTEE
program?®®
e The LoF variants must fall within the high-confidence regions defined by the
Genome-In-a-Bottle®* (GIAB) consortium (version - v.3.3.2)
e The LoF variants cannot fall in segmental duplication regions of the genome
(genomicSuperDups) as defined by the UCSC Genome Browser
e The Ensembl/GENCODE transcript with highest expression among all the
transcripts of the gene was retained. The expression value was obtained from
the GTEx (Genotype-Tissue Expression) project (version 8) and averaged over
all median tissue expressions.

Burden test and association test

We analyzed a total of 2,994 South Indian samples for which we had exome or
whole-genome sequence data as well as blood lipid level measurements. Samples with
extreme blood lipid values, defined as values outside of Q1 - 1.5 IQR/sqrt(n) and Q3 +
1.5 IQR/sqrt(n), were removed. Variant annotation was carried out using the Variant
Effect Predictor®” annotated against Ensembl v75%. We considered only the LoF
variants using the filters described above. Further, we removed samples and variants
with poor call rates (>5% no calls) and only kept the variants with MAF < 0.1. For each
sample, we combined the LoF variant dosages into a single burden within each gene
and restricted the analysis to genes with at least 3 LoF variant carriers. Association
analyses of quantitative traits were perfromed using linear regression on the burden
score with age and sex as covariates.

SARGAM array design

We partnered with Thermo Fisher Scientific to develop a custom genotyping array using
their Axiom platform. The SARGAM (South Asian Research Genotyping Array for
Medicine) assays a total of 639,029 SNPs, including 515,921 variants chosen to
optimize imputation accuracy as well as 102,752 putatively functional variants that had
a minor allele frequency of > 0.1% in our medical cohorts. The imputation-based SNPs
were chosen using an algorithm similar to the one described by Hoffmann and
colleagues®, based on the South Asian medical cohort phased reference panel
described above. The initial list of putative functional variants were obtained from a
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variety of sources, including this project, gnomAD", the UK Biobank*® and properly
consented MedGenome internal data.

We initially started with a larger list of 924,667 SNPs that were assayed on two
custom test arrays that were then used to genotype 960 individuals from the GAsP2
study for quality control purposes. We removed SNPs that could not be genotyped
accurately as well as low-priority variants to arrive at the final SARGAM array design.

Polygenic Risk Scores
South Asian samples - We used the genotype data of 1,800 CAD cases and 1,163
controls assayed using lllumina GSA3 array covering more than 600,000 genome-wide
markers, as reported in ref. 22. All the samples had more than 95% of the markers
successfully genotyped. We used Beagle5.0*' to impute all variants with minor allele
count > 4, using either the 1000 Genomes Project Phase 3 data or the GAsP2 reference
panel described above. The total number of imputed variants were 24,154,211 and
24,969,892 respectively. We used the markers reported by the CardiogramplusC4D
consortium*?, and the methods described in ref. 22 to construct polygenic risk scores.
UK Biobank European samples - We selected 2910 samples from the UK
Biobank, comprising 1448 CAD cases and 1468 controls having European ancestry.
The cases were selected with ICD-9 codes of 410.X, 411.0, 412.X, 429.79 or ICD-10
codes of 121.X, 122.X, 123.X, 124.1, 125.2. We used the imputed genetic data for
generation of polygenic risk scores. This research was conducted using the UK Biobank
Resource under Application Number 42406.
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Figure legends

Figure 1. Fine-scale population structure in the Health-care delivery system.
reflects geographical locations of the sample sources. UMAP was run on all
samples using the first 15 principal components. a, In the South Asian subset, samples
cluster into three major groups by sample origins: Pakistan; South India; and West
Bengal and Bangladesh. The X-axis (UMAP1) was flipped so that the similarity between
the graphical position of the three populations and the map of South Asia was apparent.
b, ¢, Samples with detailed locations or self-reported group memberships are shown to
segregate within Pakistan and South India clusters. Among the samples from Pakistan
and South India, some segregate with recent immigrants (e.g. Bengalis and Guijaratis)
and historical immigrants (e.g. Lambadas), reflecting the metropolitan nature of the
recruitment centers. d, Samples from Birbhum District, West Bengal, have detailed
self-reported group membership information. Upper castes, scheduled castes, and
scheduled tribes clearly segregate, reflecting the historical reproductive isolation
between these groups. Bayen and Santhal are two notable population isolates. e,
ADMIXTURE analysis of samples from the Birbhum District shows four major
components. Labels are self-reported group identity with ‘general’ denoting a lack of
specified identity.

PAK - Pakistan; BLR - Bangalore; MAA - Chennai; COI - Coimbatore; BAN -
Bangladesh; BRB - Birbhum District, West Bengal; LAM - Lambada. For other 3-letter
codes, see Supplementary Table 1.

Figure 2. Homozygosity and inbreeding across different cohorts. a, Observed /
expected proportions of rare homozygotes, stratified by minor allele frequency and
population. The expected values assume random mating. b, Stacked bar chart showing
the estimated degree of inbreeding for individuals in the South Asian medical cohorts. c,
Same as in Fig. 2 but for ‘inbred’ individuals (whose parents are estimated to be 3rd
degree relatives or more closely related) only. d, Same as in Fig. 2 but for ‘outbred’
individuals (whose parents are estimated to be 6th degree relatives or more distantly
related) only. e, Ridgeplots showing the distribution across individuals of the total
(genetic) length of the genome contained in ROHSs that are at least 1 cM in length. f,
Ridgeplots showing the stratification of Fig. 2e’s PAK plot into groups with different
estimated degrees of inbreeding.

Figure 3. LOF alleles a, Number of high confidence loss of function genes found at a
minimum of 0.1% MAF in their relative population for overall non-Finnish European
(NFE), NFE and not in SAS (NFE Unique), NFE and SAS (NFE & SAS), SAS and not
NFE (SAS Unique) and overall for SAS. b, Loss of function gene space by population.
Each square represents a distinct gene and is colored by its maximum AF within the
relative group. Genes are separated by groups in which they are found (from top to
bottom and then left to right): NFE unique, NFE & SAS, PAK unique, PAK & SOI, PAK &
BNG, all of SAS (PAK & SOI & BNG), SOI unique, BNG unique, and BNG & SAS. c,
Effects of pLoF variants on blood lipid markers replicated the known biology: PCSK9
pLoFs associated with decreased LDL, ANGPTL3 pLoFs associated with decreased
triglyceride, and CETP pLoF associated with increased HDL. Only samples from South
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India (Bangalore and Chennai) were included. d, Mean number of homozygous pLoF
variants per individual, stratified by population and estimated degree of inbreeding. e,
APOC3 p.Arg19Ter alleles are found at a high frequency among Balochi and Sindhi
individuals from Southern Pakistan. Three of the self-reported Balochis and Sindhis
were heterozygous carriers, but a larger number of carriers without self-reported identity
were mapped to the same locus on the UMAP plot.

Figure 4. Improved Genotyping of South Asian Genomes a, Gene space plot of all
protein altering alleles that are directly genotyped using either the SARGAM or the
lllumina GSAS3 arrays. Protein coding genes of the human genome are depicted as an
array of 19,600 squares. Genes whose variants are genotyped are colored to indicate
the number of gene-specific variants that are genotyped. b, Non-reference concordance
rate as a function of South Asian minor allele frequency for variants imputed using
different genotyping array and imputation reference panel combinations. ¢, Impact of
imputation on Polygenic Risk Score (PRS) calculation. PRS were calculated using
imputed genotypes from a CAD case-control cohort of 3,000 South Asian individuals
genotyped using the lllumina GSA3 array. The individuals were divided into 10 groups
based on deciles of PRS and odds ratios were calculated from case-control status of
the individuals in each group.
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Figure 1. Fine-scale population structure in the Health-care delivery system. UMAP was run
on all samples using the first 15 principal components. a, In the South Asian subset, sam-
ples cluster into three major groups by sample origins: Pakistan; South India; and West
Bengal and Bangladesh. The X-axis (UMAP1) was flipped along the vertical axis so that the
parallel between the graphical position of the three populations and the map of South Asia
was apparent. b, ¢, Samples with detailed locations or self-reported group memberships are
shown to segregate within Pakistan and South India clusters. Among the samples from Pa-
kistan and South India, some segregate with recent immigrants (e.g. Bengalis and Gujara-
tis) and historical immigrants (e.g. Lambadas), reflecting the metropolitan nature of the re-
cruitment centers. d, Samples from Birbhum District, West Bengal, have detailed self-report-
ed group membership information. Upper castes, scheduled castes, and scheduled tribes
clearly segregate, reflecting the historical reproductive isolation between these groups.
Bayen and Santhal are two notable population isolates. e, ADMIXTURE analysis of samples
from the Birbhum District shows four major components. Labels are self-reported group
identity with “general” denoting a lack of specified identity.

PAK - Pakistan; BLR - Bangalore; MAA - Chennai; COI - Coimbatore; BAN - Bangladesh;
BRB - Birbhum District, West Bengal; LAM - Lambada. For other 3-letter codes, see Supple-
mentary Table XX.
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the distribution across individuals of the total (genetic) length of the genome contained in ROHs that are at least 1 cM in length. f.
Ridgeplots showing the stratification of Fig. 2e’s PAK plot into groups with different estimated degrees of inbreeding.
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Figure 3. Loss of function mutations a, Number of high confidence
loss of function genes found at a minimum of 0.1% AF in their rela-
tive population: total found in non-Finnish European (NFE), found
in NFE and not in SAS (NFE Unique), found in both NFE and SAS
(NFE & SAS), found in SAS and not NFE (SAS Unique) and total
found in SAS. b, Loss of function gene space by population. Each
square represents a distinct gene and is colored by its maximum
AF within the relative group. Genes are separated by groups in
which they are found (from top to bottom and then left to right):
NFE unique, NFE & SAS, PAK unique, PAK & SOI, PAK & BNG, all
of SAS (PAK & SOI & BNG), SOI unique, BNG unique, and BNG &
SAS. c, Effects of pLoF variants on blood lipid markers: PCSK9
pLoFs associated with decreased LDL, ANGPTL3 pLoFs associat-
ed with decreased triglyceride, and CETP pLoF associated with
increased HDL. Only samples from South India (Bangalore and
Chennai) were included. d, Mean number of homozygous pLoF
variants per individual, stratified by population and estimated
degree of inbreeding. e, APOC3 p.Arg19Ter alleles are found at a
high frequency among Balochi and Sindhi individuals in Southern
Pakistan. Three of the identified Balochis and Sindhis were hetero-
zygous carriers, and a larger number of carriers without self-report-
ed identity were mapped to the same locus on the UMAP plot.
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Figure 4. Improved Genotyping of South Asian Genomes a. Gene space plot of all protein altering
alleles that are directly genotyped using either the SARGAM or the lllumina GSA3 arrays. Protein
coding genes of the human genome are depicted as an array of 19,600 squares. Genes with
genotyped variants are shown as squares that are colored to indicate the number of gene-specific
variants that are genotyped. b. Accuracy of non-reference allele imputation for combinations of
genotyping array and imputation reference panel. Array genotypes were modeled by down-sampling
from an independent data set of 30x WGS data. Missing genotypes were imputed using the indicated
reference panels and the variant site accuracy of non-reference alleles was calculated and graphed as
a function of allele frequency in South Asian genomes. ¢. Impact of imputation on Polygenic Risk Score
(PRS) calculation. PRS were calculated using imputed genotypes from a CAD case-control cohort of
3,000 South Asian individuals genotyped using the lllumina GSAS array and using a SAS PRS model
(Wang et al 2020). The individuals were divided into 10 groups based on deciles of PRS and odds
ratios were calculated from case-control status of the individuals in each group. For comparison, a
case-control cohort of white Britons, matched for age and gender with the SAS cohort, was selected
from the UKBiobank data set. PRS was calculated using a European model (Khera et al, 2018). 95%

confidence intervals are shown for each PRS result as a shaded area.
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