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Abstract 

The rostrocaudal patterning of the neural tube is a key event in early brain development. This process is mainly driven 

by a gradient of WNT, which defines the fate of the present neural progenitor cells in a dose dependent matter and 

leads to a subdivision of the tube into forebrain, midbrain and hindbrain. Although this process is extensively studied 

experimentally both in vivo and in vitro, an integrated view of the responsible genetic circuitry is currently lacking. In 

this work, we present a minimal gene regulatory model for rostrocaudal neural tube patterning. The model's nodes and 

architecture are determined in a data driven way, leading to a tristable configuration of mutually repressing brain 

regions. Analysis of the parameter sensitivity and simulations of knockdown and overexpression cases show that 

repression of hindbrain fate is a promising strategy for the improvement of current protocols for the generation of 

dopaminergic neurons in vitro. Furthermore, we combine the model with an existing model for dorsoventral neural 

tube patterning, to test its capabilities in an in vivo setting, by predicting the steady state pattern of a realistic three-

dimensional neural tube. This reveals that the rostrocaudal pattern stacks dorsoventrally in the caudal half of the neural 

tube. Finally, we simulate morphogen secretion overexpression, which highlights the sensitivity of neural tube 

patterning to the morphogen levels. 

Introduction 

In Parkinson’s disease (PD), the dopamine-producing (dopaminergic) neurons (DA) of the substantia nigra of the 

brain undergo pathological deterioration. The resulting deficiency in striatal dopamine leads to symptoms such 

as tremor, bradykinesia and rigidity that can currently not be relieved sufficiently by pharmacological treatment 

(1,2). Today, transplantation therapy is the most promising approach to achieving PD recovery (3); several studies 

and clinical trials have demonstrated restoration of dopaminergic activity and partial symptom relief for up to 18 

years post-transplantation (2,4,5). The conventional cell source for these transplants, human fetal ventral 

mesencephalic tissue – which contains a high concentration of dopaminergic neuroblasts (4,6) – is naturally 

scarce, ethically controversial and suffers from highly variable results (6).  

Recently, it has been suggested that DA progenitor generation by differentiation of human pluripotent stem cells 

(hPSCs) presents an alternative approach. Studies in animal models have shown that hPSC-derived DA 

progenitors are equivalent to fetal cells in terms of subtype specific marker expression, controlled dopamine 

release and functional PD symptom relief (3,7–10). To date, various protocols have been developed to efficiently 

derive DA progenitors from human embryonic stem cells; many of them focusing on tuning a combination of 

WNT, SHH and FGF8 with great success (11–16). These protocols are inspired by the mechanisms and actors 

found in the development of the neural tube in vivo. Therefore, a better understanding of correct and reliable DA 
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differentiation in vivo would not only shine more light on the development of the early brain, but also contribute 

to improving current in vitro protocols for midbrain DA neuron generation.  

In vivo neural patterning is a complicated and concerted process that relies on the three-dimensional diffusion of 

various morphogen signals in an uneven geometry. In humans, the current understanding of this process can be 

summarised as follows. By the end of the fourth week of embryonic development the progenitor of the embryo’s 

brain, the neural tube, is patterned along the rostrocaudal axis into three distinct regions that develop into 

forebrain, midbrain and hindbrain (17). In addition, patterning occurs along the dorsoventral axis, setting up 

numerous progenitor cell types such as motor neurons and interneurons (18). The formation and subdivision of 

the neural tube is the result of extracellular morphogens that are released in specific areas of the tube, establishing 

concentration gradients. The cells of the neural tube are able to interpret the local concentration of these gradients 

and take fate decisions accordingly. Dorsoventral patterning is mainly controlled by opposing signalling gradients 

of WNT/BMP from the roof plate, and SHH from floor plate cells (19) and the zona limitans intrathalamica (20). 

Since gene regulatory networks have been shown to control pattern formation in multiple tissues (21–24), the 

developing vertebrate neural tube pattern might be the response of transcriptional circuitry inside neural 

progenitor cells to morphogen gradients.  

Neural tube rostrocaudal patterning is mainly governed by WNT-signalling, emerging from the isthmic organizer 

(25). It has been shown in vitro that controlling the gradient of the WNT-signalling, using GSK3 inhibitors either 

in different cell cultures (11) or in microfluidic devices (26), acting on differentiating human embryonic stem 

cells can lead to progressive caudalisation from forebrain to hindbrain. However, the gene regulatory network 

acting downstream of WNT-signalling that regulate this patterning processes has not been elucidated. 

In this study, a minimal gene regulatory network model for rostrocaudal neural tube patterning is proposed. The 

transcription circuit topology was determined in an unbiased way and the model parameters were optimised using 

gene expression data from a study on hPSCs, which have been cultured in conditions with varied levels of WNT-

signalling. Subsequently, model parameter sensitivity analysis revealed the key interactions that drive the 

patterning process. Moreover, knockdown and overexpression model simulations gave insight into the regulation 

of the patterning and enabled the prediction of more efficient protocols for the generation of DA neurons in vitro. 

Finally, our optimised model was combined with the model controlling dorsoventral patterning proposed in (27) 

to simulate patterning of the neural tube in a realistic, three-dimensional geometry. Our findings represent a step 

forward towards a complete understanding of neural patterning and towards an optimal DA progenitor derivation 

protocol. Furthermore, recent advances in PD research incorporating organoids (28,29) make it necessary to not 

only investigate morphogen and gene interactions but also the effects of tissue geometry on neural patterning. 

Results 

Gene expression of GSK3i treated cells clusteres three-fold 

As a first step towards a minimal gene regulatory network for rostrocaudal neural tube patterning, we aimed to 

identify the essential genes involved in this process. To this end, we used experimental data consisting of the 

expression levels of a selection of genes recorded in hPSCs for varying concentrations of the GSK3 inhibitor 

CHIR99021 (CT). This dataset has been published in Kirkeby et. al (11). GSK3 is a negatively regulated target 

of canonical WNT-signalling, i.e. low GSK3 levels emulate strong WNT activity and vice versa. To identify the 

genes that correspond to the patterned brain regions, we calculated the correlation between the gene expression 

across the varied CT concentrations. For that, we used a hierarchical agglomerative clustering approach, resulting 

in a correlation cluster map (30) (Figure 1 A). From this analysis, we identified the three major clusters with 

positive correlation. Examining the expression levels of these three gene clusters, three distinct regions of gene 
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expression are found for varied levels of CT (Figure 1 B). For the gene regulatory network model parameter and 

topology optimisation we selected one representative gene for each brain region. For the forebrain (FB) region 

we used forkhead box G1 (FoxG1), since it has been shown to be involved in telencephalon fate (31–33). The 

midbrain (MB) region was represented by engrailed 1 (EN1), due to its key role in DA neuron specification 

(34,35). For the hindbrain (HB) region we chose HOXA2, as it is reported to be a central regulator in hindbrain 

fate (36,37). The selection of one representative gene per brain region enabled us to construct a minimal gene 

regulatory network to capture the dynamics of neural tube patterning. However, it is important to note that this 

does not necessarily imply that the selected genes are interacting directly or are primarily regulating cell fate 

specification. Therefore, in the following results, the labels FB, MB and HB are used, when referring to the genes. 

 

Figure 1 Experimental data from in vitro neural patterning experiments. A: Correlation cluster map of the different brain region 

specific genes across CT concentrations. Three clusters were identified, which correspond to the three brain regions. B: Normalised 

gene expression of FB, MB and HB specific genes for different concentrations of the GSK3 inhibitor CT. Genes marked with asterisk 

are used to represent the brain regions in the following results. C: Model network with all possible interactions between the brain region 

nodes and their reaction dependency on GSK3 expression. CT controls GSK3, which is self-activating to allow for steady-state GSK3 

expression. During the topology selection, all undefined interactions were either activation or repression. D: Minimal optimised cost 

function value for all possible network topologies. Two best topologies with similar and overall lowest cost functions were identified. 

E: Best model as determined by the topology selection. The three brain regions formed a tristable switch, controlled by the level of 

GSK3, which is in turn controlled by CT concentration. Note that GSK3, MB and HB are self-activating to allow for respective constant 

steady state gene expression. Degradation of GSK3, FB, MB, HB not illustrated. F: Gene expression levels of the three brain region 

specific genes given by the experimental data (plain bars) and the model (striped bars) for varied concentrations of CT. 

Unbiased topology selection identifies a tristable switch configuration 

With the key players of the network identified, the next step towards a minimal gene regulatory network was the 

determination of their interactions i.e. the connection between the nodes. These nodes are FB, MB, HB, GSK3 

and CT (Figure 1 C). We determined the interaction between these nodes and the resulting network topology in 

an unbiased way by optimising all possible configurations towards the experimental data. The only two 

interactions that were pre-defined are the repression of GSK3 by CT, which results in the necessity of GSK3 self-

activation to allow for steady state expression of GSK3. The remaining interactions can be either activation or 

repression, which makes for 4096 possible network configurations. The configurations that yield the lowest cost 

function 𝐸𝑑 (see Methods) after parameter optimisation were considered as the winning configurations (Figure 1 

D); two topologies satisfy this criterion. These two configurations only differ in the self-interaction of FB, which 
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is activation in one case and repression in the other. However, the corresponding rate constant 𝑐0 (see Methods) 

had a significantly smaller value compared to the other rate constants and therefore we concluded that, for the 

purpose of this minimal model, FB does not self-interact. 

The model resulting from the unbiased topology selection is shown in Figure 1 E. In this model, the three brain 

regions are mutually repressive and hence form a tristable switch. MB and HB fate are downregulated by GSK3, 

whereas FB fate is positively regulated. Also, FB does not self-interact and therefore directly follows GSK3 

expression when the latter is expressed at high levels. For lower levels of GSK3, FB is no longer strongly 

expressed and can be fully repressed by the presence of MB or HB. This reduces the network to a bistable switch 

between MB and HB fate for lower GSK3 levels, which is controlled by their mutual repression strength and the 

repression through GSK3. In fact, the corresponding parameters were determined such that HB is repressing MB 

much stronger than vice-versa. However, GSK3’s repression on HB is even stronger compared to its repression 

of MB. It follows that for low GSK3 levels HB will dominate over MB and vice versa for higher GSK3 levels. 

Figure 1 F shows the brain regions’ expression levels computed by using the model together with the experimental 

data used for the parameter optimisation. For most CT concentrations, model and data show high correlation. A 

significant deviation between model and data only occurred for the CT concentrations 0.8 μM and 1.0 μM. 

However, it is important to note that the overall structure of the brain regions’ response to varied CT concentration 

in this minimal model is close to the experimental data.  

Sensitivity analysis of model parameters reveals key interactions 

Next, we examined the sensitivity of the model output to changes of the model parameters to identify the key 

interactions. In vitro data were used as reference and consequently the results are given in terms of the cost 

function 𝐸𝑑, which was defined as the mean squared distance between model and data. Figure 2 A, B show that 

the most sensitive rate constants are 𝑐4, 𝑐8 and 𝑐12, which correspond to the self-activation of MB, HB and GSK3. 

A similar sensitivity pattern was found in the Hill coefficients 𝑛𝑖, for which also 𝑛4, 𝑛8, and 𝑛12were the most 

sensitive parameters, illustrating cooperativity and ultrasensitivity for MB, HB and GSK3. The most sensitive 

degradation rates were also the ones corresponding to the half-lives of MB, HB and GSK3 respectively (𝛿2, 𝛿3 

and 𝛿4). This implied that the most sensitive part of the model was the balance between self-activation and 

degradation of MB, HB and GSK3 expression and the resulting steady state gene expression level. This was to 

be expected, since those expression levels are controlling which node of the tristable switch is active. FB does 

not self-interact, and its expression is therefore strongly correlated to the expression of GSK3 at high GSK3 levels. 

Also, high GSK3 levels lead to repression of MB and HB, whereas at low GSK3 levels MB or HB repress the 

expression of FB, explaining the low sensitivity of the model to changes of the FB degradation rate 𝛿1. The 

sensitivity of the repressions between FB and HB (𝑐2,10, 𝑛2,10) was low, because either (at high GSK3 levels) HB 

was repressed by GSK3 or (at low GSK3 levels) FB was turned off. In both cases the sensitivities of the rate 

constants and Hill coefficients were low because the corresponding concentrations were close to zero. Another 

weak sensitivity was found in the repression of HB by MB (𝑐9, 𝑛9), implying that the HB level was more 

dependent on its self-balance and repression by GSK3 than on repression by MB. Figure 2 C shows the mean cost 

function change when all parameters were varied. We observed that the model was not sensitive to small 

variations of the model parameters. The mean cost function change for the variation of the whole parameter set 

of ± 10 % was similar to the maximum cost function change for the variation of an individual parameter. This 

showed that the model is robust under the variation of parameters.  

The sensitivity analysis shows that the key parameters of our model are the self-interactions of MB, HB and 

GSK3, since they not only control their own expression level, but also which node of the tristable switch is active. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 2, 2020. ; https://doi.org/10.1101/2020.10.02.323535doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.02.323535
http://creativecommons.org/licenses/by/4.0/


 

 

 

5 

 

Furthermore, the general dynamics of the model seem to be that FB is proportional to GSK3, MB and HB are 

anti-proportional to GSK3 and the extent of the MB peak is controlled by the HB expression level. Therefore, we 

can formulate the hypothesis that knockdown of FB would not have a strong effect on the extend of the MB 

domain. However, knockdown of HB would remove the repression of MB for low GSK3 levels and would 

therefore lead to an extended MB region that includes the former HB region. 

 

Figure 2 Sensitivity analysis of the model parameters and kd / oex predictions. A: Fold-change of the cost function 𝚫𝑬𝒅(𝚫𝒑), with 

𝚫𝒑 being a parameter set with one parameter varied between 0 and 10 % relative to the optimised parameter set. B: Mean cost function 

change 〈 𝚫𝐄(𝚫𝒑) 〉 across 𝚫𝒑 =  ± 𝟏𝟎 % relative to the optimised value. C: 〈 𝚫𝑬𝒅(𝚫𝒑)〉 for all parameters varied ± different relative 

amounts to the optimised parameter set. D: HB kd showed strong MB expression for CT > 0.2 µM. FB kd lead to strong MB expression 

for CT < 0.3 µM and wt behaviour for higher CT concentrations. MB oex suppressed FB expression and lead to mixed MB/HB 

expression for higher CT concentrations. MB kd gave insight into the interaction between HB and FB and the double kd’s highlight the 

reaction of the brain regions’ gene expressions to the CT concentration. Axes are the same for all panels, gene expression is in arbitrary 

units between 0 and 1. 

Knockdown and overexpression simulations show that only HB knockdown increases the MB domain 

To test this hypothesis and to gain more insight into the transcriptional regulation of this patterning, we simulated 

knockdown (kd) and over-expression (oex) cases (Figure 2 D). HB kd did not influence the interaction between 

FB and MB and lead to strong MB expression for CT > 0.2 µM, resulting in a more than five-fold larger CT 

window for MB fate. Knockdown of FB similarly did not influence the interaction between MB and HB and led 

to strong MB expression for CT < 0.3 µM. However, this only doubled the extent of the CT window for MB fate. 

Interestingly, when overexpressing MB, FB expression was lost, but the HB expression pattern was similar to 

wildtype. This gave rise to mixed MB-HB expression for CT > 0.4 µM and resulted in a CT window for HB fate 

similar to the FB kd case. Knockdown of MB revealed that FB and HB have the same mutually exclusive 

interaction as FB and MB in the wildtype case. This produced a slightly larger FB domain, whereas the HB 

domain was almost unaffected in extent or shape. The double knockdown simulations of FB and MB showed that 
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HB expression requires a threshold CT concentration of CT > 0.2 µM and reacts positively to increasing CT past 

that threshold. Knockdown of MB and HB illustrated that FB expression is negatively regulated by CT. 

Interestingly, the knockdown of FB and HB showed that MB reacts only weakly to CT at low levels. This implies 

that MB is only weakly regulated by CT itself.  

These results confirmed the findings from the parameter sensitivity analysis and suggest that protocols for the 

generation of DA MB neurons could be made more robust and independent of precise CT concentration by 

repressing HB fate. This would significantly increase the window of CT concentration that leads to MB fate, 

while the repression of FB fate or the promotion of MB fate via overexpression would not lead to the same result. 

Application of model to realistic geometry revealed dorsoventral stacking of rostrocaudal pattern 

To further test the potential of the minimal rostrocaudal model, we merged it with the model of Balaskas et al. for 

dorsoventral patterning (27) and used the combined model to simulate the steady state pattern of the human neural 

tube in vivo. The combined model is shown in Figure 3 A. WNT signalling controls both dorsoventral and 

rostrocaudal patterning and therefore, the two model branches are linked through the WNT node. In the 

rostrocaudal network branch, a buffer node (U) translates the WNT signal into the GSK3-inhibition as achieved 

by CT in the in vitro case. On the dorsoventral network branch, Gli expression is repressed by WNT signalling 

and activated by SHH activity (19). Gli expression acts as selector for dorsoventral fate – like GSK3 in the 

rostrocaudal case – by activating the expression of Nkx2.2 (ventral fate, N) and Olig2 (central fate, O), which are 

mutually repressive. Both N and O repress the expression of Pax6 (dorsal fate, P), resulting in a reduced tristable 

switch network motif. 

To explore effects of the curved tube geometry and morphogen secretion sites on patterning, we set up a spatial 

simulation of the network on a realistic three-dimensional model of the rostral neural tube (38) (Figure 3 B). The 

WNT signal originates from the roof plate (rp) and the isthmic organiser (io) and SHH is secreted from the floor 

plate (fp) and the zona limitans intrathalamic (zli) (20). The diffusion dynamics of both morphogens were 

estimated based on their respective protein structure (see Methods). 

The calculated steady state pattern (Figure 3 C) agreed with previous studies for the dorsoventral branch (27) and 

also yielded the anticipated rostrocaudal pattern in the ventral half of the neural tube. Interestingly, in the dorsal 

half of the neural tube, the additional WNT signal from the roof plate lead to a stacking of the rostrocaudal brain 

regions in dorsoventral direction (* HB stacking, ** MB stacking in Figure 3 C, D), which resulted in an L shaped 

MB and HB region in a sagittal cross section. A frontal cross section revealed that, caudally, the stacked 

rostrocaudal pattern did not overlap with the dorsoventral pattern. The former was contained in the Pax6 regime, 

whereas the latter fell fully inside the FB region. This resulted in five distinct regions in dorsoventral direction 

and nine in total. 

Overexpression simulations of morphogen secretions show high sensitivity of neural progenitor cell fate to 

morphogen levels  

To investigate the influence of morphogen secretion levels, we simulated overexpression of SHH and WNT 

production. SSH oex did not affect the rostrocaudal pattern, but significantly changed the dorsoventral pattern 

(Figure 4 A). The Nkx2.2 domain was drastically dorsally enlarged compared to the wildtype (WT) and took up 

the whole ventral half of the neural tube. This led to a dorsal shift of the Olig2 domain, which, however, did not 

change in size. Consequently, the extent of the Pax6 domain was smaller. Through the dorsal shift of the pattern, 

the split of the dorsoventral domains occurred closer to the isthmic organiser and hence the extents of MB/HB + 

Olig2/Nkx2.2 domains were enlarged, leading to a decrease in size of the FB + Pax6/Olig2 domains. 
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Figure 3 In vivo patterning of the neural tube. A: Complete model for neural tube patterning. Left branch: dorsoventral model by 

Balaskas et al., controlled by antagonistic action of SHH and WNT. G: Gli, P: Pax6, O: Olig2, N: Nkx2.2. Right branch: Proposed 

model for rostrocaudal patterning governed by WNT action. B: Three-dimensional model of neural tube geometry and the morphogen 

secretion sources. SHH (green): floor plate (fp) and zona limitans (zli); WNT (blue): roof plate (rp) and isthmic organiser (io). C: Steady-

state distribution of the patterned regions after applying the complete model. The geometry of the tube caused dorsoventral stacking of 

the rostrocaudal gene domains (* HB stacking, ** MB stacking).  D:  Rostrocaudal and dorsoventral steady-state pattern. Arrows indicate 

the direction of pattern establishment i.e. the main direction of morphogen action. Greyed areas in C and D are only shown for orientation 

and are not considered for pattern establishment.

Overexpression of WNT had a small effect on dorsoventral patterning, decreasing the size of the Nkx2.2 domain 

and shifting the Olig2 and Pax6 domains ventrally. However, the effects of this overexpression on the rostrocaudal 

pattern were more striking (Figure 4 B). Most dominantly, the HB region was drastically enlarged, covering the 

whole caudal half of the neural tube and extending almost to the WT MB/FB boundary. This led to a ventral and 

caudal shift of the MB domain, which changed its characteristic L shape to a diagonal band and decreased its 

volume. Interestingly, through the dorsoventral stacking, the MB domain extended up to the caudal boundary of 

the neural tube. The FB domain was positioned in the ventral and rostral tip of the neural tube, covering less than 

half the volume of the WT FB domain. All this led to a more pronounced dorsoventral stacking of the rostrocaudal 

brain regions in the caudal half of the neural tube, which gave rise to a large MB + Olig2 domain, while the 

volume of the WT HB + Nkx2.2 domain was drastically reduced.  

Discussion 

We presented a simple mathematical model of rostrocaudal neural tube patterning. We determined its topology 

in an unbiased and data-driven fashion. The resulting configuration was that of a tristable switch of mutually 

repressing brain region fate under the control of the WNT target GSK3. The unbiasedly discovered gene 

regulatory network has at its core genetic toggle switches consisting of cross-repressing transcription factors, 

which are network motifs that were shown to control patterning at tissue levels (39). The toggle switch motif has 

the capability of translating the continuous signal into an on-off behavior, in our case WNT gradient signal into 

e.g. FB off / MB on. Our multiple toggle switch model was able to recapitulate data from in vitro studies on 

hPSCs cultured at different WNT signalling levels (8) and exhibited similar dynamics as recent experiments done 

on a synthetic in vitro setup (26). The toggle switch motif has the capability of controlling the boundaries of gene 
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expression domains (27,40). Thus, parameter perturbation or manipulation (e.g. via knockdown, overexpresion) 

of one of the factors can lead to changes in the resulting pattern. For our network model parameter sensitivity 

analysis and in silico overexpression and knockdown experiments suggested that the repression of HB fate, rather 

than the repression of FB fate or the promotion of MB fate, is the most promising strategy to increase efficiency 

and robustness of DA MB generation protocols by increasing the window of supplied GSK3 inhibitor CT that 

results in MB fate. It will be interesting to see if this result can be validated experimentally; one option could be 

to use synthetic neural tube patterning similar to the work recently published by Rifes et al. (26). 

 

Figure 4 SHH and WNT overexpression simulations. A: Overexpression of SSH secretion. The rostrocaudal pattern was unaffected 

by the overexpression, whereas the Nkx2.2 domain was significantly larger than in the WT and the Pax6 domain was consequently 

smaller. B: Overexpression of WNT secretion. Predominantly, the rostrocaudal pattern was affected. The HB region was drastically 

enlarged, which led to smaller MB and FB regions. Moreover, the L-shape of WT HB and MB domains was lost. Greyed areas are only 

shown for orientation and are not considered for pattern establishment. 

Combining the rostrocaudal model with a previously published model for dorsoventral neural tube patterning 

resulted in an integrated model controlled by the morphogens SHH and WNT. On the rostrocaudal side of this 

model, a buffer node U, which translates WNT signal to GSK3 inhibition, needed to be introduced to achieve 

stable steady state rostrocaudal patterning. This node corresponds most likely to one or more elements in the 

WNT pathway and the need for it is an example for the dynamic difference between signalling cascades and direct 

modulation of gene expression. It should be noted that the configuration of the rostrocaudal branch of the 

integrated network is very similar to the dorsoventral branch, with both branches having a morphogen level-

regulated multiple toggle switch configuration at their core. This is very much in line with the idea that network 

motifs like feedback, mutual repression predominate parts of the modular structure of gene regulatory networks 

(39,41). To test the capabilities of the combined model, we simulated the patterning of the early human neural 

tube. For that, we set up a realistic three-dimensional model of the neural tube, which included the major 

morphogen secretion sites. The diffusion of the morphogens from these sites led to stable patterning of the tube 

into distinct regions. Interestingly, the bent geometry of the neural tube, combined with WNT secretion from the 

roof plate led to dorsoventral stacking of the rostrocaudal domains in the rostral half of the tube. It would be very 

interesting to find out if this is a shortcoming of the model or indeed a patterning mechanism. Lastly, we simulated 

the overexpression of morphogen secretion, which illustrated that cell fate and consequently neural tube 

patterning is sensitive to the abundance of morphogens seen by individual cells. In the WNT overexpression case, 

the model predicted an increase in HB fate, which is consistent with a study in Xenopus explants (42). Moreover, 

we find that the general sensitivity of neural progenitor cells to the abundance of WNT and SHH ligands predicted 

by the model to be in line with a recent study on hPSCs (43). 

In summary, the presented model for rostrocaudal neural tube patterning can, despite its simplicity, recapitulate 

the main features of neural tube patterning and neural differentiation in dependence of WNT signalling and predict 

strategies of improving the efficiency of DA MB generation protocols. In the future, targeted experiments in vitro 
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are required to test the predictions of this model. Moreover, our 3D computational model is a first step towards 

an integrated and conclusive view of neural tube patterning in vivo. 

Methods 

Clustering of gene expression data 

For a gene with expression level 𝑥 the normalisation was chosen such that �̅�  =  
𝑥− 〈𝑥〉

𝜎𝑥
 with the normalised gene 

expression �̅�, the mean gene expression 〈𝑥〉 across the different CT levels and the corresponding standard 

deviation 𝜎𝑥. 

The normalised gene expression data was clustered using hierarchical agglomerative clustering (30). As method 

for the computation of the cluster distance, the Nearest Point Algorithm was used, meaning that the minimal 

distance between two clusters was considered as their distance. The used metric for the determination of the 

distance was the Euclidean distance.  

Optimisation of model towards in vitro data 

The parameters of the model were optimised using the experimental data. For the purpose of parameter 

optimisation, the expression of each brain region’s specific genes was normalised such that its maximum value 

was one via division of all values by the maximum value. During the optimisation, the network was initialised 

with FB = MB = HB = GSK3 = 1 for all used CT concentrations. The evolution of the gene expressions was 

computed iteratively, stabilising at 𝑡 = 200. This steady state gene expression for a specific CT level was 

considered as the model output. The cost function 𝐸𝑑  measures the deviation of the model output 𝑟 from the data 

𝑑 and is computed using 

𝐸𝑑(p) = ∑  

CT

∑(𝑑𝑖 − 𝑟𝑖(p))2 

𝑖

 

with the first sum going over the different CT concentrations, the second sum going over 𝑖 ∈ {FB, MB, HB} and 

the parameter set 𝒑. An optimal set of parameters is found by minimising 𝐸𝑑(𝒑) with respect to 𝒑 using a L-

BFGS-B algorithm (44). The parameter set used in this article is shown in Table 1. 

Differential equations of in vitro gene regulatory network 

The set of differential equations describing the in vitro model mathematically was constructed using the Hill 

formalism and resulted in 
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𝑑[FB]

𝑑𝑡
=

𝑐1[GSK3]𝑛1

1 + 𝑐1[GSK3]𝑛1 + 𝑐2[MB]𝑛2 + 𝑐3[HB]𝑛3
− 𝛿1[FB]

𝑑[MB]

𝑑𝑡
=

𝑐4[MB]𝑛4

1 + 𝑐4[MB]𝑛4 + 𝑐5[FB]𝑛5 + 𝑐6[HB]𝑛6 + 𝑐7[GSK3]𝑛7
− 𝛿2[MB]

𝑑[HB]

𝑑𝑡
=

𝑐8[HB]𝑛8

1 + 𝑐8[HB]𝑛8 + 𝑐9[FB]𝑛9 + 𝑐10[MB]𝑛10 + 𝑐11[GSK3]𝑛11
− 𝛿3[HB]

𝑑[GSK3]

𝑑𝑡
=

𝑐12[GSK3]𝑛12

1 + 𝑐12[GSK3]𝑛12 + 𝑐13[CT]𝑛13
− 𝛿4[GSK3]

𝑑[CT]

𝑑𝑡
= 0

 

The set of differential equations defining the in vivo model are  

𝑑[P]

𝑑𝑡
 =  

𝛼

1 + (
[𝑁]

𝑁𝑐𝑟𝑖𝑡𝑃
)

ℎ1

+ (
[𝑂]

𝑂𝑐𝑟𝑖𝑡𝑃
)

ℎ2 − 𝑘1[𝑃]

𝑑[O]

𝑑𝑡
=

𝛽[𝐺]

1 + [𝐺]
⋅

𝛼

1 + (
[𝑁]

𝑁𝑐𝑟𝑖𝑡𝑂
)

ℎ3 − 𝑘2[𝑂]

𝑑[N]

𝑑𝑡
 =

𝛾[𝐺]

1 + [𝐺]
⋅

1

1 + (
[𝑂]

𝑂𝑐𝑟𝑖𝑡𝑁
)

ℎ4

+ (
[𝑃]

𝑃𝑐𝑟𝑖𝑡𝑁
)

ℎ5 − 𝑘3[𝑁]

 

𝑑[GSK3]

𝑑𝑡
=

𝑐12[GSK3]𝑛12

1 + 𝑐12[GSK3]𝑛12 + 𝑐13[U]𝑛13
− 𝛿4[GSK3]

𝑑[U]

𝑑𝑡
 =

𝑐14[WNT]𝑛14 +  𝑐15[U]𝑛15

1 + 𝑐14[WNT]𝑛14 + 𝑐15[U]𝑛15 + 𝑐16[U]𝑛16
− 𝛿5[U] 

𝑑[𝐺]

𝑑𝑡
=

𝛿[𝑆𝐻𝐻]

1 + [𝑆𝐻𝐻]
⋅  

1

1 + (
[𝑊𝑁𝑇]
𝑊𝑐𝑟𝑖𝑡𝐺

)
ℎ6  − 𝑘4[𝐺] 

𝑑[WNT]

𝑑𝑡
= 𝐷𝑊𝑁𝑇𝛥[𝑊𝑁𝑇] −  𝛿𝑊𝑁𝑇[𝑊𝑁𝑇]

𝑑[𝑆𝐻𝐻]

𝑑𝑡
=  𝐷𝑆𝐻𝐻𝛥[𝑆𝐻𝐻] −  𝛿𝑆𝐻𝐻[𝑆𝐻𝐻]

 

with the parameters in Table 1. The self-activation term of FB used during the model selection is not shown in 

the equations above, since it is not used after this step. The term was implemented in the ODE for FB expression 

following the Hill formalism, i.e. in the denominator for repression and in both numerator and denominator for 

activation. 

The morphogen diffusion of the in vivo model was implemented using the discrete version of Fick’s law 
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𝑑[𝑋𝑖]

𝑑[𝑡]
= 𝐷 ∑ [𝑋𝑗] − [𝑋𝑖]

𝑁𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠

𝑗

 

with the index of the current cell i, the diffusion constant D, and [X] being the concentration of either WNT or 

SHH. For each time step, the morphogen gradient pattern was updated prior to the intra-cellular network. The 

model reaches a steady state pattern, as shown in Figure 3 C. 

Model parameters and initial conditions:  

The model parameters are summarized in Table 1. Unlisted parameters of the dorsoventral model are listed in 

(27). 

Table 1 Model Parameters. 

𝑖  1 2 3 4 5 6 7 8 

𝑐𝑖  0.015 8 1000 0.2 0.5 0.201 0.0048 0.205 
𝑛𝑖  4 4 4 1 2 1 3 1 
𝛿𝑖 0.169 0.169 0.171 0.171   0.1         

 
      

 

i  9 10 11 12 13 14 15 16 

𝑐𝑖  2 0.05 0.051 0.248 0.152 50 0.14 25 
𝑛𝑖  3 1 3 1 1 2.5 1 4 
         
𝛿 𝛿𝑊𝑁𝑇 𝛿𝑆𝐻𝐻 𝐷𝑊𝑁𝑇 𝐷𝑆𝐻𝐻 WcritG h6 𝑘4 

5.0 
 

0.04 0.1 150.7 133.4 1.0 1.0 0.15 

The FB self-interaction parameters were c0 = 0.0005 and 𝑛0 = 1. 

For the in vitro simulations, the system was initialised with FB = MB = HB = GSK3 = 1. The 3D in vivo 

simulations were initialised with WNT = SHH = U = P = O = N = 0, FB = GSK3 = 1, MB = HB = 0.001, G = 3. 

Morphogen producing cells were held constant at WNTprod = 2, SHHprod = 1. 

Kd and oex implementation 

The simulation of knockdown and overexpression in vitro was achieved by fixing the respective kd/oex node’s 

derivative to 0. The initial expression of the node then determined its behaviour, with kd being simulated by [ ]0 =
0 and oex [ ]0 = 1. The morphogen secretion overexpression in vivo was implemented by increasing the 

morphogen level of the secreting cells ten-fold. In all cases, the steady state expression pattern is considered the 

model output. 

Morphogen diffusivity 

The morphogens’ diffusion coefficients 𝐷𝑊𝑁𝑇, 𝐷𝑆𝐻𝐻 were estimated following a method proposed by He and 

Niemeyer based on the radius of gyration 𝑅𝐺  of the protein (45). 𝑅𝐺  was estimated according to (46) for 

physiological conditions: 
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𝑅𝐺 ≈ 3𝑁
2
5Å 

with N being the protein chain length (number of amino acids). Inserting the protein lengths 𝑁𝑊𝑁𝑇 = 370 and 

𝑁𝑆𝐻𝐻 = 462 (47) yields 

𝑅𝑊𝑁𝑇  ≈  32Å =  3.2nm and       𝑅𝑆𝐻𝐻  ≈  35Å =  3.5nm. 

Subsequently, we applied the estimate 

𝐷 =
6.85 × 10−15𝑇

𝜂 ⋅ √𝑀
1

3⁄ ⋅ 𝑅𝐺

 

with 𝐷 in units of m2⋅s-1, temperature 𝑇 = 310 𝐾, viscosity 𝜂 = 0.75 cP (48) and the molecular Mass 𝑀 (𝑀𝑊𝑁𝑇 =
40.98𝑘𝐷𝑎, 𝑀𝑆𝐻𝐻 = 49.61𝑘𝐷𝑎 ) in kg ⋅kmol-1, yielding 

𝐷𝑊𝑁𝑇 = 150.7𝜇𝑚2𝑠−1  and    𝐷𝑆𝐻𝐻 = 133.4𝜇𝑚2𝑠−1. 

Computational methods 

The in vitro model equations were solved numerically using a fourth order Runge-Kutta algorithm with temporal 

step size ℎ =  2. The equations of the in vivo model were solved using the explicit Euler method.  

All computational work was performed in Python 3.7 with the extensions NumPy (49), SciPy (50) and Matplotlib 

(51). The neural tube model and the sources of morphogen secretion were set up in MagicVoxel, an open source 

voxel editor software. Cells were approximated as cubes with side length 10µm with the morphogen secretions 

sites positioned as illustrated in Figure 3 B. 
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