
Implementation of a Computing Pipeline for

Evaluating the Extensibility of Boolean

Networks’ Structure and Function

Rémi SEGRETAIN † (remi.segretain@univ-grenoble-alpes.fr),
Sergiu IVANOV # (sergiu.ivanov@ibisc.univ-evry.fr),

Laurent TRILLING † (laurent.trilling@univ-grenoble-alpes.fr),
Nicolas GLADE† (nicolas.glade@univ-grenoble-alpes.fr) ∗

† University Grenoble Alpes, CNRS UMR5525, CHU Grenoble
Alpes, Grenoble INP, TIMC-IMAG, F-38000 Grenoble, France, #

IBISC, Univ Évry, Paris-Saclay University, 91025, Évry, France

September 1, 2020

Abstract

Formal interaction networks are well suited for representing complex
biological systems and have been used to model signalling pathways, gene
regulatory networks, interaction within ecosystems, etc. In this paper, we
introduce Sign Boolean Networks (SBNs), which are a uniform variant of
Threshold Boolean Networks (TBFs). We continue the study of the com-
plexity of SBNs and build a new framework for evaluating their ability to
extend, i.e. the potential to gain new functions by addition of nodes, while
also maintaining the original functions. We describe our software imple-
mentation of this framework and show some first results. These results
seem to confirm the conjecture that networks of moderate complexity are
the most able to grow, because they are not too simple, but also not too
constrained, like the highly complex ones. Biological Regulation, Biologi-
cal Networks, Sign Boolean Networks, Complexity, Extensibility, Network
Growth

1 Note about this document

This document comes with our article A Methodology for Evaluating the Exten-
sibility of Boolean Networks’ Structure and Function published in the Proceed-
ings of the Complex Networks 2020 conference, Madrid, Spain[1]. It contains

∗Contact. Tel. +33 (0)4 56 52 00 42 – nicolas.glade@univ-grenoble-alpes.fr

1

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 5, 2020. ; https://doi.org/10.1101/2020.10.02.323949doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.02.323949
http://creativecommons.org/licenses/by-nc/4.0/

two parts: (i) the description of the manner we implement the computation of
our extension problem in a Java-driven pipeline with Answer Set Programming
(ASP) calls, (ii) and to the ASP code of the modules used to infer networks.

2 Implementation of the extension problem

In section 2.2 of our article [1] we formulate our network extension problem in
a logical way, i.e. we need to fix a given binary sequence S1 played by at least
one node of a SBN N1, a suffix Sk (S1, Sk ∈ {0, 1}∗), the dimension d, and a
set of constraints over the quadruplet (N1, S1, N, S), notably the fact that N1

is a sub-network of N , and S is a binary sequence played by at least the same
node of the sub-network N1 plunged into N and is formed by the concatenation
of S1 and Sk. As mentioned in the article, such formulation is not effectively
usable in its raw form. In practice, we first enumerate exhaustively all networks
N1, all their behaviours S1 and all the extended behaviours S, then find all
corresponding extended networks N that satisfy the constraints enumerated in
section 2.2 of article [1].
In the following, we first give an overview of the software architecture and then
show how to solve the crucial issue of inferring efficiently only different networks
N .

2.1 Overall software architecture

We used a combination of two programming languages, Answer Set Program-
ming (ASP) [3], a non-monotonic logical based programming language, and
Java, a classical imperative language. The main software, written in Java, or-
chestrates the execution and uses multiple ASP modules when needed.

2.1.1 Inference modules in ASP

We first give here a very short introduction to ASP. This logical language al-
lows to express facts and rules, like Prolog, with the help of logical literals. For
example, the following rules p(1). p(2). and c :- p(1), p(2). mean that
the two facts p(1) and p(2) are true and that their conjunction implies c.
An ASP program infers all logical models (sets of literals) that comply with the
facts and rules it specifies: they are called Answer Sets (AS). With the help of
integrity constraints, logically expressed as rules producing false, some AS can
be eliminated. For example, let us consider the two rules a :- not b. and b

:- not a. ; they accept the two different AS {a} and {b} (i.e. as b cannot be
inferred, b is considered to be false in ASP, then not b is true and a is also true).
If we add the fact c. and the integrity constraint :- c, not b. then only the
AS {b, c} is valid and not {a, c}: the integrity constraint discriminates the
ASs where the conjunction of c and not b is be false, then b should be true
(and a is rejected to be true).
The ASP solver that we use, namely clingcon [4], proceeds in two steps. First,

2

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 5, 2020. ; https://doi.org/10.1101/2020.10.02.323949doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.02.323949
http://creativecommons.org/licenses/by-nc/4.0/

a grounder translates the rules to a propositional form (with only Boolean vari-
ables). Then a SAT-like algorithm is applied to this program. We greatly benefit
from a recent improvement based on [5] which uses a lazy approach for ground-
ing and then allows the use of numerical variables with a very large range.
In order to increase the flexibility and the re-usability of our ASP code, we
cut it into several inference modules dedicated to specific tasks and compatible
between each others. Each one introduces a main literal that can be set to
configure its module :

• sbn(N, D) : implies literals describing a SBN N of dimension D.

• composedSbn(Na, Nb) : constrains two given SBNs Na and Nb so that one
SBN is an extension of the other as defined in section 2.2 of [1].

• sequencePlayedBySbn(N, S, I) : constrains a SBN N to play a given
sequence S on his node of index I.

• orderedSbn(N) : from a given SBN N, generates the equivalent ordered
one by permutation of nodes (see section 2.2.3).

2.1.2 Processing Pipeline

Figure 1: Overview of the processing pipeline, jobs division and or-
dering. Initial jobs use inference modules to find the SBFs, which are used to
generate the SBNs. Then, all SBN behaviors are analysed. The complexity of in-
dividual SBFs, SBNs and behaviors is determined and every reachable extended
behaviors are listed (the program generates sequence with S1 as sub-sequence).
At this point we have got all the triplets (N1, S1, S). For each of them, inference
modules are called another time to find all the extended networks N .

The main software is organized as a pipeline of processors (called jobs):
each job, programmed in Java, does its own part of the work, then furnishes

3

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 5, 2020. ; https://doi.org/10.1101/2020.10.02.323949doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.02.323949
http://creativecommons.org/licenses/by-nc/4.0/

its results to the next job, etc. Using a custom Java library [2], the workload
is divided into tasks that we scatter across the different jobs, allowing to make
the execution parallel on any number of CPU cores, thus enhancing the overall
performances. An overview of this pipeline is given figure 1. The potential of
the combination of an imperative language and inference modules lay in the
facts that we can take advantages from both: efficiently find data sets by ASP
inference, filter and enrich them in the Java pipeline. Moreover, those enriched
data set can be used in return to configure other calls to inference modules.
This could not have been easily done using only ASP.
The jobs use inference modules by generating literals that link the modules they
need. In practice, such a job generates an ASP file that imports and configures
the needed modules. Here is a casual example: a job knows a SBF f and aims
to find all SBNs that contain f and play the sequence s = (100)∗. This job
configures the necessary inference modules this way:

// i m p l i e s the gene ra t i on o f a SBN n o f dimension 3
sbn (n , 3) .
// c o n s t r a i n s n to conta in f
:− not sb f (n , f) .
// c o n s t r a i n n to play the sequence s
:− not sequencePlayedBySbn (n , s) .
// d e f i n e the b i t s o f s and t h e i r order
sequence (s , 1 , 1) . // the f i r s t element o f s i s 1 .
sequence (s , 2 , 0) .
sequence (s , 3 , 0) .

To infer ASs different only on specified predicates, jobs that call inference mod-
ules take advantage of an option of the solver: project, If several AS are formed
by the sames atoms belonging to a list of literals, this option will force the pro-
gram to keep only one of those AS. For example, let us consider the two following
AS AS1 : {p(a), q(b), r(c)} and AS2 :{ p(a), q(b), r(d)}. The pro-
jection on p(X) and q(X) will only provide us either AS1 or AS2 as they both
contains the same literals for p(X) and q(X).

2.2 SBF and SBN generation issues

When generating SBF and SBN we encountered several issues that needed par-
ticular implementation solutions:

1. How to find all unique SBFs of dimension d ?
Within multiple sets of weights like {w1, w2, w3} to define several SBFs,
their truth table output may be equal or equivalent through inputs per-
mutation, so they belong to the same equivalence class A. To avoid dupli-
cates, we must use only one representative per equivalence class. The core
problem is then how can we found all those equivalence classes reliably ?

2. How to enumerate only unique SBNs from those SBFs ?

4

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 5, 2020. ; https://doi.org/10.1101/2020.10.02.323949doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.02.323949
http://creativecommons.org/licenses/by-nc/4.0/

(a) Given a set of d SBFs, redundant SBNs can be enumerated by way of
permutation of the SBFs over the nodes, e.g. f1 associated to node
1 and f2 associated to node 2 or the alternative.

(b) There are also two others sources of variations that produce the same
sets of SBNs. Both correspond to layout variations, but they are
obtained in two different ways:

• Permutation of the source node for the inputs of the SBF, e.g.
input 1 from node 1 and input 2 from node 2 or the alternative.

• Two SBFs can also be obtained from each other through per-
mutation of their input weights. For example Weights(f1) =
〈−1, 2, 1〉 is equivalent to Weights(f2) = 〈2,−1, 1〉 by permuta-
tion of w1 and w2.

As we must avoid the exploration of duplicate SBNs, which would
alter the results and be very costly in computational power, we must
take into account only one of these variations in our SBN enumera-
tion. For performance issues detailed below, we choose to keep the
layout variation due to input’s source node permutations and neu-
tralize the other.

2.2.1 Inference of SBFs

Satisfiable answer sets of SBFs are generated using both an inference mod-
ule and job post-processing. During these operations, we must generate only
one SBF per equivalence class and neutralize the redundancy induced by input
weight permutations.
Within the inference module in ASP, a SBF is addressed by its abstract form
A(f). Thanks to the project option of clingcon (see remark 2.1.2 above) the
SBFs from different layouts Lij(f) but belonging to the same Ai(f) are re-
grouped in only one equivalent class Ai(f). Since a A(f) is by definition a set
of constraints over the SBF weights, it is particularly easy to specify A(f) in
ASP, particularly when using integer linear constraints, a new ASP improve-
ment. We can then infer a set of SBFs classified by A(f) and by the sum of
absolutes values of weights. Once inference of SBFs is done, Java keeps only one
minimal representative in each equivalence class (see article [1], section 2.1).
The generated set of SBFs solve the two issues 1 and 2b presented in 2.2. By
dealing with the 2b issue from the beginning, we limit the number of processed
SBFs in the future jobs, saving both CPU time and RAM consumption. In
addition of the minimal representative, several others SBFs may be kept from
an equivalent class if they have weights set to zero. Edges with w = 0 are con-
sidered as non-existing edges. In consequence, even if two SBFs belong to the
same equivalence class, different directed graphs can be obtained when some
edges are absent. As the structural complexity is based on the topology of the
interaction graph, this lead to different and unique SBNs that we must also
explore.

5

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 5, 2020. ; https://doi.org/10.1101/2020.10.02.323949doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.02.323949
http://creativecommons.org/licenses/by-nc/4.0/

2.2.2 Order over SBF

Using A(f) makes it possible to determine an order over the SBFs.
A(f) = 〈y1, y2, ...yd〉 is composed of a unique ordered set of numerical values
(yi), each value bounded between 0 and the number of configurations Card(Xi)
of X in Naii. Each digit of the vector A(f) is encoded using a different numer-
ical base Basei in such a way this vector could be converted into a number in
decimal base A(f)10. The numerical base corresponds to the number of configu-
rations Card(Xi) of X in Naii, increased by 1 to include 0 (yi ∈ [0;Card(Xi)])
: Basei = Card(Xi) + 1.
In A(f) = 〈y1, ..., yd−1, yd〉, yd code for the units, yd−1 for the decades, yd−2 for
the hundreds, etc, so it matches with the conventional order in which number
are read. To convert A(f) into a A(f)10 we have:

A(f)10 = yd +
1∑

i=d−1

(yi ×
i+1∏
j=d

Basej)

Every different A(f) of the same dimension will be converted into a unique
A(f)10, as illustrated with 2 SBFs in table 1, that we can use to define a order
over SBFs such that :

f1 ≤ f2 if A(f1)10 ≤ A(f2)10

y1 y2 y3 A(f1)10
A(f1) 2 2 1

21Card(Xi) 3 3 1
Basei 4 4 2

y1 y2 y3 A(f2)10
A(f2) 1 2 0

12Card(Xi) 3 3 1
Basei 4 4 2

Table 1: Examples of conversion of A(f) into a A(f)10 with A(f1) = 〈2, 2, 1〉
and A(f2) = 〈1, 2, 0〉

2.2.3 SBN enumeration

In order to avoid the generation of multiple SBN composed of the same SBFs
but assigned to different nodes (issue 2a in section 2.2.3), we use the order over
SBFs and follow a simple rule to assign the SBFs to labelled nodes, the one
after the other: the unassigned SBF with the lower A(f)10 is always linked to
the unassigned node with the lower index, and so forth.
The last step is the construction of the network layout, i.e. the assignation of a
source node to each SBF input. For a given dimension, the number of different
layouts is fixed and equal to d!d. Figure 2 gives the 4 different layouts available
in dimension 2 and shows how nodes are assigned to SBF inputs.
The generation of layouts is independent to both the assignment of the SBFs fi

6

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 5, 2020. ; https://doi.org/10.1101/2020.10.02.323949doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.02.323949
http://creativecommons.org/licenses/by-nc/4.0/

L1 L2

x1 x2

f1 n1 n2

f2 n1 n2

x1 x2

f1 n1 n2

f2 n2 n1

L3 L4

x1 x2

f1 n2 n1

f2 n1 n2

x1 x2

f1 n2 n1

f2 n2 n1

Figure 2: List of the 4 possible layouts for 2-dimension SBNs: L1 to L4. There
is a directed edge going from the node ni to the node associated to the SBF fi
when an input xi of fi reads the value of ni. The two diagrams below illustrate
the input assignments of SBFs f1 and f2 to nodes n1 and n2 according to layout
L2.

to the nodes ni, and that of the nodes ni to the inputs xi of SBFs. Consequently
we only need to generate these layouts once before SBF-node assignment. This
lead to a huge saving in CPU time and RAM consumption.
Once all layouts are obtained, we combine every composition SBFs/nodes to
all layouts to finally generate all possible SBNs. In the end we obtain the
set of all unique SBN such that they are built with minimal weights and that
there is no other SBN figuring the same set of SBFs with the same layout. As
zero-weighted edges are considered absent, we may obtain networks figuring dis-
connected nodes. Those ”networks” are not considered as functional networks,
so they are discarded.

3 Inference modules in ASP

The following sections contain the ASP code of the modules listed in 2.1.1.

3.1 SBN

%*

* Constructs all the possibilities for the network sbn(Name, Dimension)

* At least one predicate of this from must exist.

*%

% means that constraints operated by clingcon 2017 are involved.

#include <csp>.

%% LIMIT CONSTRAINTS

maxDim(4).

possibleDim(1..MaxDim) :- maxDim(MaxDim).

7

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 5, 2020. ; https://doi.org/10.1101/2020.10.02.323949doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.02.323949
http://creativecommons.org/licenses/by-nc/4.0/

possibleIdx(1..MaxDim) :- maxDim(MaxDim).

:-

not sbn(_, _)

.

%% NETWORK GENERATION

% Generation of possible indices for a network based on the dimension

possibleNetworkIndex(NetworkName, Idx) :-

sbn(NetworkName, Dimension)

, possibleDim(Dimension)

, Idx > 0

, Idx <= Dimension

, possibleIdx(Idx)

.

% Generation of network nodes

node(NetworkName, Idx) :-

sbn(NetworkName, Dimension)

, possibleNetworkIndex(NetworkName, Idx)

.

% Generation of node inputs

{

nodeInput(NetworkName, NodeIdx, InputIdx, SrcNodeIdx) :

node(NetworkName, NodeIdx)

, node(NetworkName, SrcNodeIdx)

, possibleNetworkIndex(NetworkName, InputIdx)

}.

% A node only has a single input coming from any other given node

:-

nodeInput(NetworkName, NodeIdx, InputIdx1, SrcNodeIdx)

, nodeInput(NetworkName, NodeIdx, InputIdx2, SrcNodeIdx)

, InputIdx1 != InputIdx2

.

% A node receives any given input from a single other node

% (an input arc cannot originate at more than one source node)

:-

nodeInput(NetworkName, NodeIdx, InputIdx, SrcNodeIdx1)

, nodeInput(NetworkName, NodeIdx, InputIdx, SrcNodeIdx2)

8

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 5, 2020. ; https://doi.org/10.1101/2020.10.02.323949doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.02.323949
http://creativecommons.org/licenses/by-nc/4.0/

, SrcNodeIdx1 != SrcNodeIdx2

.

% For every node, an input coming from every other node in the network must exist.

% Therefore, Dimension^2 nodeInputs must exist for each network.

:-

#count{ NodeIdx, InputIdx, SrcNodeIdx :

nodeInput(NetworkName, NodeIdx, InputIdx, SrcNodeIdx)

} != Dimension**2

, sbn(NetworkName, Dimension)

.

% Generation of weights for every input of every node

&dom{-Dimension..Dimension} = weight(NetworkName, NodeIdx, InputIdx) :-

node(NetworkName, NodeIdx)

, possibleNetworkIndex(NetworkName, InputIdx)

, sbn(NetworkName, Dimension)

.

% Enumeration of the inequalities of the functions implemented by the nodes

{

ineq(NetworkName, I, Input1) :

node(NetworkName, I)

, possibleNetworkIndex(NetworkName, Input1)

;ineq(NetworkName, I, Input1, Input2) :

node(NetworkName, I)

, possibleNetworkIndex(NetworkName, Input1)

, possibleNetworkIndex(NetworkName, Input2)

, Input1 < Input2

;ineq(NetworkName, I, Input1, Input2, Input3) :

node(NetworkName, I)

, possibleNetworkIndex(NetworkName, Input1)

, possibleNetworkIndex(NetworkName, Input2)

, possibleNetworkIndex(NetworkName, Input3)

, Input1 < Input2

, Input2 < Input3

;ineq(NetworkName, I, Input1, Input2, Input3, Input4) :

node(NetworkName, I)

, possibleNetworkIndex(NetworkName, Input1)

, possibleNetworkIndex(NetworkName, Input2)

, possibleNetworkIndex(NetworkName, Input3)

9

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 5, 2020. ; https://doi.org/10.1101/2020.10.02.323949doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.02.323949
http://creativecommons.org/licenses/by-nc/4.0/

, possibleNetworkIndex(NetworkName, Input4)

, Input1 < Input2

, Input2 < Input3

, Input3 < Input4

}.

% Constraints between the weights and the inequalities

&sum{weight(NetworkName, NodeIdx, Input1)} > 0 :-

ineq(NetworkName, NodeIdx, Input1)

.

&sum{weight(NetworkName, NodeIdx, Input1)} <= 0 :-

not ineq(NetworkName, NodeIdx, Input1)

, node(NetworkName, NodeIdx)

, possibleNetworkIndex(NetworkName, Input1)

.

&sum{weight(NetworkName, NodeIdx, Input1); weight(NetworkName, NodeIdx, Input2)} > 0 :-

ineq(NetworkName, NodeIdx, Input1, Input2)

.

&sum{weight(NetworkName, NodeIdx, Input1); weight(NetworkName, NodeIdx, Input2)} <= 0 :-

not ineq(NetworkName, NodeIdx, Input1, Input2)

, node(NetworkName, NodeIdx)

, possibleNetworkIndex(NetworkName, Input1)

, possibleNetworkIndex(NetworkName, Input2)

, Input1 < Input2

.

&sum{weight(NetworkName, NodeIdx, Input1); weight(NetworkName, NodeIdx, Input2); weight(NetworkName, NodeIdx, Input3)} > 0 :-

ineq(NetworkName, NodeIdx, Input1, Input2, Input3)

.

&sum{weight(NetworkName, NodeIdx, Input1); weight(NetworkName, NodeIdx, Input2); weight(NetworkName, NodeIdx, Input3)} <= 0 :-

not ineq(NetworkName, NodeIdx, Input1, Input2, Input3)

, node(NetworkName, NodeIdx)

, possibleNetworkIndex(NetworkName, Input1)

, possibleNetworkIndex(NetworkName, Input2)

, possibleNetworkIndex(NetworkName, Input3)

, Input1 < Input2

, Input2 < Input3

.

&sum{weight(NetworkName, NodeIdx, Input1); weight(NetworkName, NodeIdx, Input2); weight(NetworkName, NodeIdx, Input3); weight(NetworkName, NodeIdx, Input4)} > 0 :-

ineq(NetworkName, NodeIdx, Input1, Input2, Input3, Input4)

.

&sum{weight(NetworkName, NodeIdx, Input1); weight(NetworkName, NodeIdx, Input2); weight(NetworkName, NodeIdx, Input3); weight(NetworkName, NodeIdx, Input4)} <= 0 :-

not ineq(NetworkName, NodeIdx, Input1, Input2, Input3, Input4)

10

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 5, 2020. ; https://doi.org/10.1101/2020.10.02.323949doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.02.323949
http://creativecommons.org/licenses/by-nc/4.0/

, node(NetworkName, NodeIdx)

, possibleNetworkIndex(NetworkName, Input1)

, possibleNetworkIndex(NetworkName, Input2)

, possibleNetworkIndex(NetworkName, Input3)

, possibleNetworkIndex(NetworkName, Input4)

, Input1 < Input2

, Input2 < Input3

, Input3 < Input4

.

% Determines the components of the abstract representations of the functions

% implemented by the nodes.

% sbf(NetworkName, NodeIdx, IneqInputs, IneqCount)

sbf(NetworkName, NodeIdx, 1, X) :-

#count{

Input1 :

ineq(NetworkName, NodeIdx, Input1)

} = X

, node(NetworkName, NodeIdx)

, sbn(NetworkName, Dimension)

, Dimension >= 1

.

sbf(NetworkName, NodeIdx, 2, X) :-

#count{

Input1, Input2 :

ineq(NetworkName, NodeIdx, Input1, Input2)

} = X

, node(NetworkName, NodeIdx)

, sbn(NetworkName, Dimension)

, Dimension >= 2

.

sbf(NetworkName, NodeIdx, 3, X) :-

#count{

Input1, Input2, Input3 :

ineq(NetworkName, NodeIdx, Input1, Input2, Input3)

} = X

, node(NetworkName, NodeIdx)

, sbn(NetworkName, Dimension)

, Dimension >= 3

.

sbf(NetworkName, NodeIdx, 4, X) :-

#count{

Input1, Input2, Input3, Input4 :

ineq(NetworkName, NodeIdx, Input1, Input2, Input3, Input4)

} = X

11

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 5, 2020. ; https://doi.org/10.1101/2020.10.02.323949doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.02.323949
http://creativecommons.org/licenses/by-nc/4.0/

, node(NetworkName, NodeIdx)

, sbn(NetworkName, Dimension)

, Dimension >= 4

.

% There must exist as many SBFs as there are nodes.

:-

#count{ NodeIdx, IneqInputs :

sbf(NetworkName, NodeIdx, IneqInputs, _)

} != Dimension**2

, sbn(NetworkName, Dimension)

.

% Compute the factorial values needed for the SBF/Node assignation

factorial(0, 1).

factorial(1, 1).

maxFactorial(MaxFactorial) :- maxDim(MaxFactorial).

factorial(X, Value1) :-

Value1 = X * Value2

, factorial(X-1, Value2)

, maxFactorial(Max)

, X <= Max

.

% Compute the maximum number of configuration in each ineqInputs category (Nai)

maxIneq(NetworkName, IneqInputs, MaxValue) :-

sbn(NetworkName, Dimension)

, sbf(NetworkName, _, IneqInputs, _)

, factorial(Dimension, FactDim)

, factorial(IneqInputs, FactIneqInputs)

, factorial(Dimension - IneqInputs, FactDimMinusIneqInputs)

, MaxValue = (FactDim/(FactIneqInputs * FactDimMinusIneqInputs))

.

% compute the numerical base of each category if IneqInputs (Nai)

weightNbIneq(NetworkName, IneqInputs, Weight) :-

maxIneq(NetworkName, IneqInputs, MaxValue)

, sbn(NetworkName, Dimension)

, IneqInputs = Dimension

, Weight = (MaxValue+1)

.

weightNbIneq(NetworkName, IneqInputs, Weight) :-

maxIneq(NetworkName, IneqInputs, MaxValue)

, weightNbIneq(NetworkName, IneqInputs+1, WeightPrec)

, Weight = (MaxValue+1) * WeightPrec

.

12

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 5, 2020. ; https://doi.org/10.1101/2020.10.02.323949doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.02.323949
http://creativecommons.org/licenses/by-nc/4.0/

% compute the SBF decimal "value"

nodeFunctionValue(NetworkName, NodeIdx, FunctionValue) :-

#sum{ NbIneq * Weight :

sbf(NetworkName, NodeIdx, IneqInputs, NbIneq)

, weightNbIneq(NetworkName, IneqInputs, Weight)

} = FunctionValue

, node(NetworkName, NodeIdx)

.

% ensure that the attribution of the SBFs over the nodes follow the SBF order and the node index order.

:-

nodeFunctionValue(NetworkName, NodeIdx1, FunctionValue1)

, nodeFunctionValue(NetworkName, NodeIdx2, FunctionValue2)

, NodeIdx1 < NodeIdx2

, FunctionValue1 > FunctionValue2

, orderedNodeFunction(NetworkName)

.

3.2 SBN Composition

%%% Constraint a network to be composed by a other one.

%%% composedSbn(Sbn1, Sbn2) : Sbn1 is composed of Sbn2

%%% Can be use only once per call in this actual form

% means that constraints operated by clingcon 2017 are involved.

#include <csp>.

% force the presence of this predicates to use the module

:-

not composedSbn(_, _)

.

% there can be only one use of this module per call

:-

not #count{ Sbn1, Sbn2 : composedSbn(Sbn1,Sbn2) } = 1

.

% the given SBNs must exists

:-

composedSbn(Sbn1, Sbn2)

, not sbn(Sbn1, _)

.

:-

13

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 5, 2020. ; https://doi.org/10.1101/2020.10.02.323949doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.02.323949
http://creativecommons.org/licenses/by-nc/4.0/

composedSbn(Sbn1, Sbn2)

, not sbn(Sbn2, _)

.

% The dimensions of the given SBNs must be compatible

:-

composedSbn(Sbn1, Sbn2)

, sbn(Sbn1, Dimension1)

, sbn(Sbn2, Dimension2)

, not Dimension1 >= Dimension2

.

% creation of a subnetwork called "extrusion" include in Sbn1

sbn(extrusion, Dimension) :-

composedSbn(Sbn1, Sbn2)

, sbn(Sbn2, Dimension)

.

% constraint the extrusion weights to be the same as Sbn1

:-

sbn(extrusion, Dimension)

, &sum{weight(Sbn1, NodeIdx, InputIdx)} = W1

, &sum{weight(extrusion, NodeIdx, InputIdx)} = W2

, not W1 = W2

, limitWeights(Sbn1, W1)

, limitWeights(Sbn1, W2)

, possibleNetworkIndex(extrusion, NodeIdx)

, possibleNetworkIndex(extrusion, InputIdx)

.

% constraint the structure of the extrusion to be the same as Sbn1 and Sbn2

:-

sbn(extrusion, Dimension)

, composedSbn(Sbn1, Sbn2)

, sbn(Sbn2, Dimension)

, nodeInput(extrusion, NodeIdx, InputIdx, SrcNodeIdx1)

, nodeInput(Sbn2, NodeIdx, InputIdx, SrcNodeIdx2)

, not SrcNodeIdx1 = SrcNodeIdx2

.

% constraint the SBFs of the extrusion to be the same as Sbn2

:-

sbn(extrusion, Dimension)

, composedSbn(Sbn1, Sbn2)

, sbn(Sbn2, Dimension)

14

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 5, 2020. ; https://doi.org/10.1101/2020.10.02.323949doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.02.323949
http://creativecommons.org/licenses/by-nc/4.0/

, sbf(extrusion, NodeIdx, NbIneqInputs, IneqCount1)

, sbf(Sbn2, NodeIdx, NbIneqInputs, IneqCount2)

, not IneqCount1 = IneqCount2

.

% specify the weight limit for a SBN according to his dimension

limitWeights(NetworkName, -Dimension..Dimension) :-

sbn(NetworkName, Dimension)

.

3.3 Sequence played by SBN

%%% Check the network behavior to match a given music (sequence) on a given node.

% means that constraints operated by clingcon 2017 are involved.

#include <csp>.

% forbid the use of the module without the presence of this predicate

:-

not musicPlayBySbn(_, _, _)

.

% the given network and music must exists

:-

musicPlayBySbn(_, MusicName, _)

, not music(MusicName, _, _)

.

:-

musicPlayBySbn(NetworkName, _, _)

, not sbn(NetworkName, _)

.

% the given node must exist in the network

:-

musicPlayBySbn(NetworkName, _, NodeIdx)

, sbn(NetworkName, Dimension)

, not possibleNetworkIndex(NetworkName, NodeIdx)

.

% the music length must fit with the network dimension

:-

musicPlayBySbn(NetworkName, MusicName, _)

, sbn(NetworkName, Dimension)

, musicSize(MusicName, MusicSize)

, not MusicSize <= Dimension**2

.

15

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 5, 2020. ; https://doi.org/10.1101/2020.10.02.323949doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.02.323949
http://creativecommons.org/licenses/by-nc/4.0/

% tell the music length

musicSize(MusicName, Size) :-

music(MusicName, _, _)

, Size = {music(MusicName, _, _)}

.

% give the possible index for the note of the music

musicStep(MusicName, StepIdx+1) :-

musicSize(MusicName, StepIdx)

.

musicStep(MusicName, StepIdx) :-

StepIdx > 0

, musicStep(MusicName, StepIdx+1)

.

% give the State of node NodeIdx at the step StepIdx of a music MusicName : nodeState(NodeIdx, MusicName, StepIdx, State)

% initialise the first state

1{nodeState(NetworkName, NodeIdx, MusicName, 1, 0);nodeState(NetworkName, NodeIdx, MusicName, 1, 1)}1 :-

possibleNetworkIndex(NetworkName, NodeIdx)

, musicStep(MusicName, 1)

.

% transfom the enumerated weight into predicates

limitWeights(NetworkName, -Dimension..Dimension) :-

sbn(NetworkName, Dimension)

.

inputWeightForStep(NetworkName, NodeIdx, MusicName, InputIdx, StepIdx, Value) :-

State = 1

, &sum{weight(NetworkName, NodeIdx, InputIdx)} = Value

, limitWeights(NetworkName, Value)

, nodeInput(NetworkName, NodeIdx, InputIdx, SrcNodeIdx)

, nodeState(NetworkName, SrcNodeIdx, MusicName, StepIdx-1, State)

.

inputWeightForStep(NetworkName, NodeIdx, MusicName, InputIdx, StepIdx, 0) :-

State = 0

, nodeInput(NetworkName, NodeIdx, InputIdx, SrcNodeIdx)

, nodeState(NetworkName, SrcNodeIdx, MusicName, StepIdx-1, State)

.

% specify the state of a node at a given step

nodeState(NetworkName, NodeIdx, MusicName, StepIdx, 1) :-

musicStep(MusicName, StepIdx)

, musicStep(MusicName, StepIdx-1)

16

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 5, 2020. ; https://doi.org/10.1101/2020.10.02.323949doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.02.323949
http://creativecommons.org/licenses/by-nc/4.0/

, #sum{Value, InputIdx : inputWeightForStep(NetworkName, NodeIdx, MusicName, InputIdx, StepIdx, Value)} > 0

, sbn(NetworkName, _)

, possibleNetworkIndex(NetworkName, NodeIdx)

.

nodeState(NetworkName, NodeIdx, MusicName, StepIdx, 0) :-

musicStep(MusicName, StepIdx)

, musicStep(MusicName, StepIdx-1)

, #sum{Value, InputIdx : inputWeightForStep(NetworkName, NodeIdx, MusicName, InputIdx, StepIdx, Value)} <= 0

, sbn(NetworkName, _)

, possibleNetworkIndex(NetworkName, NodeIdx)

.

% force the state of the playing node to match the music

:-

nodeState(NetworkName, NodeIdx, MusicName, StepIdx, NodeState)

, musicPlayBySbn(NetworkName, MusicName, NodeIdx)

, music(MusicName, StepIdx, MusicNote)

, musicSize(MusicName, MusicSize)

, StepIdx <= MusicSize

, NodeState != MusicNote

.

% specify the network state at a given step : networkState(MusicName, StepIdx, State)

possibleState(NetworkName, 0..(2**Dimension)) :-

sbn(NetworkName, Dimension)

.

networkState(NetworkName, MusicName, StepIdx, State) :-

State = #sum{(2**(NodeIdx-1))* NodeState :

nodeState(NetworkName, NodeIdx, MusicName, StepIdx, NodeState)

}

, possibleState(NetworkName, State)

, musicStep(MusicName, StepIdx)

.

% ensure different network state for each step of the music

:-

networkState(NetworkName, MusicName, StepIdx1, State)

, networkState(NetworkName, MusicName, StepIdx2, State)

, musicPlayBySbn(NetworkName, MusicName, _)

, musicSize(MusicName, MusicSize)

, StepIdx1 <= MusicSize

, StepIdx2 <= MusicSize

, StepIdx1 != StepIdx2

.

17

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 5, 2020. ; https://doi.org/10.1101/2020.10.02.323949doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.02.323949
http://creativecommons.org/licenses/by-nc/4.0/

% ensure the path along the transition graph is a cycle

:-

networkState(NetworkName, MusicName, 1, State1)

, networkState(NetworkName, MusicName, MusicSize+1, State2)

, musicPlayBySbn(NetworkName, MusicName, _)

, musicSize(MusicName, MusicSize)

, State1 != State2

.

3.4 Ordered version of SBN

% means that constraints operated by clingcon 2017 are involved.

#include <csp>.

% forbid the use of the module without this predicate

:-

not generateOrderedFunctionsVersionOfSbn(_)

.

% the concerned network must exist

:-

generateOrderedFunctionsVersionOfSbn(NetworkName)

, not sbn(NetworkName, _)

.

% map the function over the node

% save the index mapping

2{orderedNodeFunctionValue(NetworkName, NewNodeIdx+1, FunctionValue); mapIndex(NetworkName, OldNodeIdx, NewNodeIdx+1)}2 :-

#count{ NodeIdx, ValueX :

nodeFunctionValue(NetworkName, NodeIdx, ValueX)

, ValueX < FunctionValue

, NodeIdx != OldNodeIdx

} = NewNodeIdx

, possibleNetworkIndex(NetworkName, NewNodeIdx+1)

, nodeFunctionValue(NetworkName, OldNodeIdx, FunctionValue)

, sbn(NetworkName, _)

, generateOrderedFunctionsVersionOfSbn(NetworkName)

, not nodeFunctionValue(NetworkName, OldNodeIdxB, FunctionValue) :

OldNodeIdxB < OldNodeIdx

, possibleNetworkIndex(NetworkName, OldNodeIdxB)

.

2{orderedNodeFunctionValue(NetworkName, NewNodeIdx + Shift + 1, FunctionValue); mapIndex(NetworkName, OldNodeIdx, NewNodeIdx + Shift + 1)}2 :-

#count{ NodeIdx, ValueX :

nodeFunctionValue(NetworkName, NodeIdx, ValueX)

18

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 5, 2020. ; https://doi.org/10.1101/2020.10.02.323949doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.02.323949
http://creativecommons.org/licenses/by-nc/4.0/

, ValueX < FunctionValue

, NodeIdx != OldNodeIdx

} = NewNodeIdx

, possibleNetworkIndex(NetworkName, NewNodeIdx+Shift + 1)

, nodeFunctionValue(NetworkName, OldNodeIdx, FunctionValue)

, #count{OldNodeIdxB :

nodeFunctionValue(NetworkName, OldNodeIdxB, FunctionValue)

, OldNodeIdxB < OldNodeIdx

, possibleNetworkIndex(NetworkName, OldNodeIdxB)

} = Shift

, sbn(NetworkName, _)

, generateOrderedFunctionsVersionOfSbn(NetworkName)

.

% every and each function must be remapped

:-

#count{ OldNodeIdx, NewNodeIdx :

mapIndex(NetworkName, OldNodeIdx, NewNodeIdx)

} != Dimension

, sbn(NetworkName, Dimension)

, generateOrderedFunctionsVersionOfSbn(NetworkName)

.

:-

#count{ NodeIdx, FunctionValue :

orderedNodeFunctionValue(NetworkName, NodeIdx, FunctionValue)

} != Dimension

, sbn(NetworkName, Dimension)

, generateOrderedFunctionsVersionOfSbn(NetworkName)

.

% SBFs remapping

orderedSbf(NetworkName, NewNodeIdx, IneqInputs, IneqCount) :-

sbf(NetworkName, OldNodeIdx, IneqInputs, IneqCount)

, mapIndex(NetworkName, OldNodeIdx, NewNodeIdx)

, generateOrderedFunctionsVersionOfSbn(NetworkName)

.

% network layout remapping

orderedNodeInput(NetworkName, NewNodeIdx, InputIdx, NewSrcNodeIdx) :-

nodeInput(NetworkName, OldNodeIdx, InputIdx, OldSrcNodeIdx)

, mapIndex(NetworkName, OldNodeIdx, NewNodeIdx)

, mapIndex(NetworkName, OldSrcNodeIdx, NewSrcNodeIdx)

, generateOrderedFunctionsVersionOfSbn(NetworkName)

.

19

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 5, 2020. ; https://doi.org/10.1101/2020.10.02.323949doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.02.323949
http://creativecommons.org/licenses/by-nc/4.0/

% weight generation for every input of each node

&dom{-Dimension..Dimension} = orderedWeight(NetworkName, NodeIdx, InputIdx) :-

possibleNetworkIndex(NetworkName, NodeIdx)

, possibleNetworkIndex(NetworkName, InputIdx)

, sbn(NetworkName, Dimension)

, generateOrderedFunctionsVersionOfSbn(NetworkName)

.

% networks weight’s remapping

:-

generateOrderedFunctionsVersionOfSbn(NetworkName)

, mapIndex(NetworkName, OldNodeIdx, NewNodeIdx)

, &sum{weight(NetworkName, OldNodeIdx, InputIdx)} = W1

, &sum{orderedWeight(NetworkName, NewNodeIdx, InputIdx)} = W2

, not W1 = W2

, limitWeights(NetworkName, W1)

, limitWeights(NetworkName, W2)

, possibleNetworkIndex(NetworkName, InputIdx)

.

limitWeights(NetworkName, -Dimension..Dimension) :-

sbn(NetworkName, Dimension)

.

Acknowledgements

Sergiu Ivanov is partially supported by the Paris region via the project DIM
RFSI n◦2018-03 “Modèles informatiques pour la reprogrammation cellulaire”.
The authors would also like to thank the IDEX program of the University Greno-
ble Alpes for its support through the projects COOL : this work is supported by
the French National Research Agency in the framework of the Investissements
d’Avenir program (ANR-15-IDEX-02). This work is also supported by the In-
novation in Strategic Research program of the University Grenoble Alpes. The
authors would thanks Ibrahim Cheddadi for fruitful discussions.

References

[1] Segretain, R., Ivanov, S., Trilling, L., Glade, N.,A Methodology for Evaluat-
ing the Extensibility of Boolean Networks’ Structure and Function, Proceed-
ings of the Complex Networks 2020 conference, Madrid, Spain

[2] Segretain R., Repository of the inference pipeline in ASP and java. https:
//gitlab.com/rsegretain/java-parallel-pipeline

20

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 5, 2020. ; https://doi.org/10.1101/2020.10.02.323949doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.02.323949
http://creativecommons.org/licenses/by-nc/4.0/

[3] Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T.,
Schneider, M.: Potassco: The Potsdam Answer Set Solving Collection; AI
Comm. 24, 107–124 (2011).

[4] Ostrowski, M., Schaub, T.: ASP modulo CSP: The clingcon system; Theory
and Practice of Logic Programming, (2012).

[5] Banbara, M., Inoue, K., Kaufmann, B., Okimoto, T., Schaub, T., Soh, T.,
Tamura, N. and Wanko, P. teaspoon: solving the curriculum-based course
timetabling problems with answer set programming. Ann. Oper. Res. 275,
3–37 (2019).

21

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 5, 2020. ; https://doi.org/10.1101/2020.10.02.323949doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.02.323949
http://creativecommons.org/licenses/by-nc/4.0/

