Abstract
The microbiome plays a central role in biochemical cycling and nutrient turnover of most ecosystems. Because it can comprise myriad microbial prokaryotes, eukaryotes and viruses, microbiome characterization requires high-throughput sequencing to attain an accurate identification and quantification of such co-existing microbial populations. Short-read next-generation-sequencing (srNGS) revolutionized the study of microbiomes and remains the most widely used approach, yet read lengths spanning only a few of the nine hypervariable regions of the 16S rRNA gene limit phylogenetic resolution leading to misclassification or failure to classify in a high percentage of cases. Here we evaluate a synthetic long-read (SLR) NGS approach for full-length 16S rRNA gene sequencing that is high-throughput, highly accurate and low-cost. The sequencing approach is amenable to highly multiplexed sequencing and provides microbiome sequence data that surpasses existing short and long-read modalities in terms of accuracy and phylogenetic resolution. We validated this commercially-available technology, termed LoopSeq, by characterizing the microbial composition of well-established mock microbiome communities and diverse real-world samples. SLR sequencing revealed differences in aquatic community complexity associated with environmental gradients, resolved species-level community composition of uterine lavage from subjects with histories of misconception and accurately detected strain differences, multiple copies of the 16S rRNA in a single strain’s genome, as well as low-level contamination in soil cyanobacterial cultures. This approach has implications for widespread adoption of high-resolution, accurate long-read microbiome sequencing as it is generated on popular short read sequencing platforms without the need for additional infrastructure.
Competing Interest Statement
Hee Shin Kim, Evan Hurowitz, Michael Balamotis, Indira Wu, Tuval Ben-Yehezkel are employees of Loop Genomics, the vendor for the synthetic long-read sequencing technology analyzed in this manuscript.