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Abstract  

The microbiome plays a central role in biochemical cycling and nutrient turnover of most ecosystems. 

Because it can comprise myriad microbial prokaryotes, eukaryotes and viruses, microbiome 

characterization requires high-throughput sequencing to attain an accurate identification and 

quantification of such co-existing microbial populations. Short-read next-generation-sequencing (srNGS) 

revolutionized the study of microbiomes and remains the most widely used approach, yet read lengths 

spanning only a few of the nine hypervariable regions of the 16S rRNA gene limit phylogenetic resolution 

leading to misclassification or failure to classify in a high percentage of cases. Here we evaluate a 

synthetic long-read (SLR) NGS approach for full-length 16S rRNA gene sequencing that is high-

throughput, highly accurate and low-cost. The sequencing approach is amenable to highly multiplexed 

sequencing and provides microbiome sequence data that surpasses existing short and long-read 

modalities in terms of accuracy and phylogenetic resolution. We validated this commercially-available 

technology, termed LoopSeq, by characterizing the microbial composition of well-established mock 

microbiome communities and diverse real-world samples. SLR sequencing revealed differences in aquatic 

community complexity associated with environmental gradients, resolved species-level community 

composition of uterine lavage from subjects with histories of misconception and accurately detected strain 

differences, multiple copies of the 16S rRNA in a single strain’s genome, as well as low-level 

contamination in soil cyanobacterial cultures. This approach has implications for widespread adoption of 

high-resolution, accurate long-read microbiome sequencing as it is generated on popular short read 

sequencing platforms without the need for additional infrastructure. 
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Introduction 

Next-generation sequencing (NGS) has revolutionized microbiome research in the 21st century 

(Berg et al., 2020). Considerable recent research has leveraged its power, which, coupled with 

the remarkable decrease in sequencing costs over the past two decades, has led to an explosion 

in microbiome research, making it possible to access rare microbial community members (so-

called ‘microbial dark matter’) (Turner et al., 2013, Lloyd-Price et al., 2016). As the fidelity and 

accuracy of these technologies continue to increase, so too do the number of microbiome-related 

hypotheses that become testable using NGS methodologies. 

Characterizing the bacterial (and to a broader extent, the prokaryotic) component of the 

microbiome routinely relies on 16S ribosomal RNA (rRNA) gene sequencing. The 16S rRNA gene 

sequence, which contains nine hypervariable regions (V1-V9) in an ~1,550 bp sequence, is used 

as a classifier to identify distinct phylogenies and document their relative abundances within 

mixed, complex populations, offering a window into community composition, contributing to our 

understanding of microbes and their relationship to human health and the environment, typically 

through high-throughput, cost-effective short-read NGS (srNGS)  

However, srNGS sequencing suffers from a few notable shortcomings. Critically, even the longest 

paired-end reads generated by srNGS typically only sequence ~500 bp fragments after merging 

reads (Martijn et al., 2019), which only cover a few (e.g. V3-V4) of the 16S rRNA’s nine 

hypervariable regions (or some 16-33% of its sequence) that allow to differentiate sequence 

variants for taxonomic classification. And yet, accurate classification of 16S rRNA gene 

sequences is advantageous for evaluating the composition of microbiome samples, yet short-

read coverage of the 16S hypervariable regions typically only enables confident sequence 

classification at the genus or sometimes species level (Johnson et al., 2019). This often impedes 

interpretation of closely-related yet functionally distinct species. Moreover, the inability to resolve 

16S rRNA gene copy numbers (GCNs) from mixed microbial populations biases sequence variant 

counts towards members that contain more GCNs per genome (Louca et al., 2018). 

An alternative approach to overcome some of these limitations could be long-read sequencing. 

Platforms offered by Pacific Biosciences® (i.e. Single Molecule Real-Time sequencing, and 
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Oxford Nanopore (such as the MinION) provide sequence data that encompasses regions V1 - 

V9 and dramatically improve taxonomic classification to the strain level (Benítez-Páez et al., 2016, 

Callahan et al., 2019). However, long-read technologies are not without shortcomings. Notably, 

long-read raw sequences harbor very high error rates (up to 15% of nucleotides per sequence) 

and have a lower throughput than short-read sequencing which can limit utility in large-scale 

studies. Furthermore, high costs impede their wider application (Kuleshov et al., 2016). 

To circumvent these challenges, here we perform a technical evaluation of LoopSeq 16S 

sequencing, a synthetic long-read (SLR) technology that builds on previous work in the SLR 

domain (Hong et al., 2014, Stapleton et al., 2016) and addresses the shortcomings of short-read 

16S rRNA gene sequencing for microbiome characterization. SLR sequencing leverages the high-

throughput, base call accuracy and the low cost of short-read sequencing to generate long-read, 

high fidelity sequence data that capture all nine hypervariable regions in a single molecule 

readout, covering the full-length 16S ribosomal RNA gene. We evaluated LoopSeq 16S 

sequencing using a two-pronged approach. First, we validated the method’s reliability (error rates, 

composition bias, classification accuracy) using three commercially available microbiome mock 

communities with well-characterized bacterial compositions produced by two independent 

manufacturers. Second, we tested the method’s utility and performance using multiple samples 

from highly diverse natural environments including aquatic (lake, pond, and aquarium), uterine 

lavage microbiomes, and non-axenic cyanobacterial cultures isolated from biological soil crust 

communities (biocrusts). We then demonstrate how LoopSeq 16S sequencing can overcome 

some of the limitations associated with the use of traditional short read NGS approaches.
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 Materials & Methods 

Mock community from Zymo Research 

The ZymoBIOMICSTM Microbial Community Standard D6306 (termed ‘Zymo’ throughout) is 

commercially available from Zymo Research (Zymo Research, Orange, CA, USA) and comprises 

eight bacterial species and two fungal species. The fungal component of the standard was not 

sequenced in this study as our analysis is focused exclusively on sequencing the 16S rRNA gene.  

Mock communities from ATCC 

Two mock community samples representing the human gut (termed ‘ATCC-gut’ throughout; MSA-

1006) and the human oral cavity (termed ‘ATCC-oral’ throughout; MSA-1004) were used for 

microbiome analysis. Reference sequences were retrieved from American Type Culture 

Collection (ATCC); ATCC Genome Portal (https://genomes.atcc.org/). For any strains not in this 

database, we used the strain name to find identical or similar strain references in other genome 

repositories (i.e. NCBI RefSeq CG database). 

Environmental samples 

Water samples 

Four water samples were collected from several sources in Madison, WI, USA. Specifically, 

samples were collected from an aquarium (“Aquarium”), a pond (“FeynmanPond”, GPS 

coordinates 43°00'19.7"N, 89°25'10.8"W), a barrel collecting roof rain runoff (“RainBarrel”) and a 

garden pond (“RivaPond”, GPS coordinates 43°01'46.8"N, 89°29'01.6"W). The water samples 

were filtered through a 0.2 μm pore size polycarbonate disc filter (Whatman® Nuclepore™ Track-

Etched Polycarbonate Membrane, Sigma) to collect microbial biomass. Filters were transferred 

to 2 mL microfuge tubes for further processing using the Maxwell® RSC PureFood GMO and 

Authentication Kit (Promega Corporation) with a modified version of the kit protocol. Following the 

addition of 1 mL of CTAB Buffer, samples were incubated at 95°C for 5 minutes, cooled for 2 

minutes at room temperature, and vortexed for 1 minute. Samples were treated with RNase A 
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and Proteinase K at 70°C for 10 minutes. DNA from 300µl of the resulting lysates was purified 

with the Maxwell® RSC Instrument according to manufacturer’s kit instructions. DNA eluates were 

cleaned up using Zymo Research OneStep PCR Inhibitor Removal Kit, according to 

manufacturer’s instructions.  

Cleanup steps during LoopSeq library preparation were performed with ProNex® Size-Selective 

Purification System (Promega Corporation), using manufacturer’s binding and washing 

instructions and the elution volume specified in the LoopSeq kit. Specifically, the volumes of 

ProNex® Chemistry used for each cleanup step were as follows: 55.9 µl (1.075x) for post-

barcoding cleanup, 132 µl (1.1x), 137.8 µl (1.3x) for post-activation cleanup, 135 µl (1.35x) for 

post-ligation cleanup, and 55 µl (1.1x) for post-indexing cleanup. ProNex® NGS Library Quant Kit 

(Promega Corporation) was used for library quantification prior to sequencing on a MiSeq® 

instrument. The library of pooled samples was denatured and diluted to 15 pM. PhiX was 

denatured and diluted to 20 pM and added to the library at 5% of the total diluted library volume, 

according to Illumina Document #1000000061014 v00. DNA samples were stored at -20°C until 

further processed for sequencing with LoopSeq kit. 

Uterine lavage samples 

Human-derived uterine lavage samples were prepared from two patients with complications 

related to conception. Patient 1: aged 48, secondary infertility (2x spontaneous abortion, 1x 

induced abortion for interstitial pregnancy, multiple unsuccessful attempts of assisted 

reproduction (6x embryo transfer, multiple intrauterine inseminations). Patient 2: aged 35, long-

term unsuccessful effort for natural conception. To examine unique microbial communities from 

human-derived sources, the uterine lavage samples were prepared using the ZymoBIOMICS™ 

DNA Microprep Kit from Zymo Research (D4301). Notably, we included a mechanical lysis bead 

beating procedure to release genetic material from microbes that produce endospores (such as 

Firmicutes) that are recalcitrant to chemical lysis alone. 
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Cyanobacterial enrichment cultures from biological soil crust communities 

Enrichment cultures for soil cyanobacteria were obtained and maintained in the lab according to 

Giraldo‐Silva et al. (2019). Genomic DNA was extracted using the DNeasy® PowerSoil® Kit 

(Qiagen), reference number 12888-100, following manufacturer’s instructions from two non-

axenic cyanobacterial enrichments from soils in the Great Basin Desert (Giraldo‐Silva et al., 

2019); HSN023 - Sample7 [well G1]) and from the Sonoran Desert (Fernandes et al. in prep; 

CYAN3 - Sample-16 [well H2]). Final eluted genomic DNA was stored at -20 °C until further 

process using the LoopSeq 16S long-read kit. 

LoopSeq Library Sequencing 

All mock community and environmental samples were prepared with LoopSeq kits and sequenced 

on the Illumina NextSeq 500 platform run in 150 bp paired-end mode. For each LoopSeq 16S kit, 

which can process up to 24 samples simultaneously and capturing ~12,000 16S long-read per 

sample (~300k 16S molecules from a complete kit run), 100-150M PE reads (50-75M clusters 

passing filter) were dedicated for each sequencing run, yielding ~20 Gb of data. The Zymo-V3V4 

and uterine lavage libraries were sequenced using the Illumina MiSeq platform run in 300 bp 

paired-end mode, yielding ~15 Gb of data. 

Library preparation of LoopSeq (V1-V9) and short-read (V3V4) libraries 

Sequencing libraries were made from the Zymo mock community using the LoopSeq 16S long-

read kit (referred to throughout as ‘Zymo-Loop’). This preparation was also followed for the ATCC-

gut and ATCC-oral communities as well as the uterine lavage and cyanobacterial enrichment 

samples. For the water samples, libraries were made using the LoopSeq 16S & 18S long-read 

kit, which captures both prokaryotic and eukaryotic rDNA long-read targets, but only the 

assembled 16S contigs from the final sequencing output were analyzed here. 

To compare LoopSeq SLR technology against Illumina-based short-read sequencing for 

classifying a bacterial population, a sequencing library that captured the V3V4 hypervariable 

region of the 16S rRNA gene was made from the Zymo mock community (named ‘Zymo-V3V4’). 

To generate this comparison library, primers that flanked the V3 and V4 16S gene region were 
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used to directly PCR amplify from genomes in the Zymo mock community (primer sequence 

available upon request). The following PCR protocol was used to generate V3V4 amplicons: 95°C 

for 5 mins then 98°C for 20 s, 58°C for 20s, and 72°C for 30s for 25 cycles, followed by clean up 

with SPRI (0.8x) and elution in 50 μl of 10 mM Tris buffer, pH 8.0. Following elution, amplicons 

underwent a PCR-based addition of Illumina indexing adapters (P5-R1 and P7-index-R2; 

sequence available upon request). The following PCR protocol was used for indexing: 95°C for 3 

minutes then (98°C for 30s, 58°C for 30s, 72°C for 30s) for 8 cycles and ending with a 72°C step 

for 5 minutes, followed by clean up with SPRI (1.2x) and final elution in 25 μl of 10mM Tris buffer, 

pH 8.0. For all PCR reactions, a KAPA 2x HiFi HotStart ReadyMix (Roche, 89125-040) was used. 

Detailed description of the materials and methods and procedures used to prepare the LoopSeq 

libraries are available at: https://bit.ly/3bQMAzt. 

Bioinformatic analyses 

For the Zymo-Loop data, full-length 16S contigs were filtered by matching to gene-specific forward 

(27F: AGAGTTTGATCMTGGCTCAG) and reverse (1492R: TACCTTGTTACGACTT) primer 

sequences using the DADA2 v1.14.0 package in R (Callahan et al., 2016). Zymo-Loop was 

mapped to the given mock community references using Bowtie2 v2.2.9 (Langmead & Salzberg, 

2012) in end-to-end mode on the very-sensitive setting.  

To determine the accuracy of LoopSeq SLR contigs, we examined the intragenomic copy ratios 

for the ten 16S rRNA genes present in the B. subtilis genome (with 5 non-redundant copies: #1, 

#4, #8, #9, #10 are identical; #2, #3 are identical; #5, #6, #7 are individually unique). Mapped 

contigs were extracted and matched to a sequence database containing the different copies of 

the B. subtilis 16S rRNA genes. The error profile was assessed with Alfred v0.1.17 (Rausch et 

al., 2019).  

The Zymo-V3V4 short-reads were filtered for the PhiX spike-in sequence using Bowtie2 v2.2.9 

(Langmead & Salzberg, 2012), quality filtered and trimmed using Trimmomatic v0.36 (Bolger et 

al., 2014). Paired reads were merged with FLASH v1.2.11 (Magoč & Salzberg, 2011) primers 

trimmed using Cutadapt (Martin, 2011), and filtered by length (min = 440 bp, max = 450 bp) using 
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DADA2 v1.14.0. These processed fragments were then mapped to the Zymo whole genome 

references to determine relative species abundances against the known reference composition. 

The reads that mapped to B. subtilis were extracted and re-mapped to non-redundant B. subtilis 

16S rRNA gene copy references using Bowtie2. The error profile was assessed using the 

sequence alignment QC program Alfred (Rausch et al., 2019). 

The eight bacterial species in the Zymo mock community are sufficiently phylogenetically distant 

such that reads and contigs are unlikely to be erroneously mapped to the wrong species given 

their length and accuracy. However, it is often not the case that the species within a sample are 

known a priori while reference sequences for those species may be unavailable. It is more 

common that samples with unknown taxonomic composition must be compared to a more general 

database. To determine how well 16S rRNA sequences can be used to accurately identify the 

correct species using a general database, full-length Zymo-Loop contigs were mapped using 

Bowtie2 v2.2.9 to all bacterial genomes in the NCBI RefSeq CG (complete genomes) database 

(obtained October 2019). The database contains genomes of the same species as those in the 

Zymo sample although it is unclear if the strains are the same since this information is lacking. 

Importantly, there are many genomes of closely related species (i.e. from the same genus) that 

could potentially confound a direct mapping approach to species identification. 

Whereas the species in the Zymo samples are all represented in NCBI RefSeq bacterial 

database, it is more likely the case that real samples will contain novel species. As such, it may 

be more pertinent to use k-mer based lowest common ancestor (LCA) classification methods. 

Novel species not represented in the database may nonetheless be classified with some degree 

of confidence to the genus taxonomic level. However, commonly used k-mer based LCA methods 

such as mothur (Schloss et al., 2009) or QIIME (Caporaso et al., 2010) use curated 16S rRNA 

gene databases such as SILVA (Pruesse et al., 2007), Greengenes (DeSantis et al., 2006), or 

the Ribosomal Database Project (RDP; (Cole et al., 2005) that typically do not contain all 16S 

rRNA gene copies from represented species which may lead to skewed estimates of taxonomy. 

Assembled long contigs from the two ATCC mock communities were filtered for full-length 16S 

rRNA genes and mapped using Bowtie2 to exact strain references. The Madison water samples 
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were filtered for full-length 16S rRNA genes and classified using Kraken 2 and Bracken with the 

standard database. Kraken 2 (Wood et al., 2019) is a k-mer based LCA method that can use 

whole genome references, thus allowing all 16S rRNA gene copies to be represented. The 

standard Kraken 2 database contains (accessed October 2019), the entire NCBI RefSeq 

complete genomes for bacteria, archaea, virus, and humans. Since Kraken 2 is an LCA method, 

it may assign sequences to any taxonomic level. Therefore, the results cannot necessarily provide 

overall species ratios with confidence. To evaluate the accuracy of mapping LoopSeq SLR contigs 

to expected species ratios, a companion program to Kraken 2, Bracken (Lu et al., 2017), was 

used to redistribute contigs to the appropriate species level. 

The water samples, and uterine lavage full-length 16S rRNA gene sequences were classified with 

Kraken 2 and Bracken. The two biocrust cyanobacterial enrichments were sequenced on 

LoopSeq 16S architecture and processed as above. Here we consolidated all full-length ASVs to 

represent strain-level taxonomies at 100% nucleotide identity. Resulting feature tables, with full 

length 16S rRNA genes, were used to assign taxonomy to each of the 16S rRNA sequences 

obtained for each of the used strains. Full 16S rRNA genes of the most abundant sequences from 

each enrichment were blasted to NCBI database (Clark et al. 2016) for initial ID. Sequences with 

confirmed cyanobacterial identity, were further analyzed using the comprehensively curated 

Cydrasil (https://github.com/FGPLab/cydrasil) database of cyanobacterial 16S rRNA diversity by 

placement on a pre-calculated tree. 

Data Summary 

In keeping with FAIR principles (Findable, Accessible, Interoperable, Reusable data), all analyses 

presented in this paper can be reproduced and inspected with the associated GitHub repository 

https://nico-chung.github.io/loopseq/.
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Results 

LoopSeq long-read sequencing 

The Zymo community genomic DNA (gDNA) quantities from the eight bacterial species were 

evenly distributed by mass, and the species within the standard vary widely in genome size, G+C 

content and 16S ribosomal copy number (GCN). Five of the eight Zymo strains were replaced by 

the manufacturer with similar strains, starting with Lot ZRC190633. For this study, we used a 

Zymo mock community sample after this update had been applied (Lot ZRC190811). While the 

Zymo mock community is a widely used standard in microbiome studies some of the references 

provided do not perfectly match the strains included in the standard (McGovern et al., 2018). As 

noted in other analyses of the Zymo standard, the complete sequences of all the 16S rRNA genes 

of each strain present in the mock community are not disclosed by the manufacturer and the 

reference sequences that are provided do not exactly correspond to the actual 16S rRNA gene 

sequences provided in the standard (Nicholls et al., 2019). Nevertheless, full-length 16S contigs 

are sufficiently discerning to allow for mapping to the correct species references. The whole 

genome references that contain all 16S rRNA gene copies in the genome were used to ensure 

greater mapping specificity, since individual 16S rRNA gene copies within a bacterial genome can 

diverge in their sequence (Sun et al., 2013). 

The American Type Culture Collection (ATCC) offers extensive support materials that 

characterize their mock community samples (Biodefense and Emerging Infections Research 

Resource Repository (BEI Resources), VA, USA). Two mock community samples were 

sequenced here, the first contains 12 bacterial species endemic to human gut (‘ATCC-gut’; MSA-

1006), and the second contains six bacterial species commonly found in the human oral cavity 

(‘ATCC-oral’; MSA-1004). Many of the species in the ATCC mock communities can be linked to 

exact strain references including assembly details and genome annotations. Whenever strain 

references were not available from the ATCC Genome Portal (https://genomes.atcc.org/), we 

used the strain name to find identical or similar strain references in other genome repositories 

(i.e. NCBI RefSeq CG database). 
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Both ATCC-gut and ATCC-oral (Table S1) mixes contain equimolar quantities of gDNA of their 

constituent species. The expected distribution of 16S rRNA genes per species in the community 

is calculated based on the number of 16S gene copies and the genome size of each species. For 

these mock communities, exact strain names were known. For all six strains in the ATCC-oral 

community whole genome references from the ATCC Genome Portal were used. For the 12 

strains in the ATCC-gut community, whole genome references from the ATCC Genome Portal 

were used for six strains and exact strain references for the remaining species were obtained 

from NCBI RefSeq CG. 

Extracted DNA samples were processed into sequence-ready libraries using LoopSeq library 

preparation kits that capture 16S ribosomal DNA (rDNA) targets (Loop Genomics, San Jose, CA, 

USA). The core principle behind LoopSeq technology involves attaching a unique molecular 

identifier (UMI) DNA tag to the end of each ‘parent’ molecule in a sample. Additionally, a sample-

specific tag (i.e. Loop Sample Index) is incorporated into each molecule from the same physical 

sample. Through SLR sample prep chemistry, the UMI is distributed to random positions within 

each parent molecule but not to other molecules. After this step, samples are multiplexed into one 

reaction tube and molecules that contain a UMI tag are then broken into smaller units at the 

junction adjacent to the UMI, creating a library of UMI-tagged fragments that are compatible with 

a short-read Illumina sequencing. Short-reads that contain the same UMI were derived from the 

same parent molecule, and are binned and informatically reassembled back into the full-length 

sequence of the original molecule, producing a synthetic, high-quality, curated long-read that 

covers all 9 variable regions of the 16S rRNA gene. 

Raw short-reads prepared with the LoopSeq kit were uploaded to the Loop Genomics cloud 

platform for processing (https://www.loopgenomics.com/16s-readcloud). Within this analysis 

pipeline, reads are first trimmed to remove adapter sequences that are not part of the original 16S 

molecule. The pooled reads are then de-multiplexed based on the Loop Sample Index attached 

to each read, which segregates reads based on the sample from which they originated, thus 

resolving the Loop multiplexing step. Next, sample-specific reads are grouped by UMI such that 

reads with an identical UMI are binned and reassembled with SPAdes genome assembler 

(Bankevich et al., 2012) to produce a synthetic long-read (i.e. a contig). 
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Each contig is assembled from a collection of short-reads with the same UMI, indicating their 

shared origin from a single parent molecule, with each short-read covering a different sequence 

region of the parent molecule. Given sufficient short-read coverage across the full length of a 16S 

rRNA gene molecule, it is possible to re-assemble the entire sequence of the original long 

molecule by linking reads. Short-reads whose sequences partially overlap can be linked through 

shared sequence identities, which can be arranged in the correct order for assembling the original 

long molecule sequence. Each assembled contig thus represents an original 16S rRNA gene. 

Contigs assembled with fewer reads results in shorter sequences with lower sequence accuracy. 

Assembled contigs that are full length are then mapped for classification against the SILVA 

database (Pruesse et al., 2007). The pipeline outputs both FASTA and FASTQ files that contain 

every contig generated regardless of mapping status, a CSV file that summarizes assembly 

statistics for each assembled contig by sample (including taxonomic classification), and a run 

summary in HTML format that provides charts for identified species per sample, species 

distributions, and other important statistics. 

LoopSeq long-reads accurately quantify a mock microbiome 

After LoopSeq 16S sequencing of the Zymo mock community, a total of 38,629 unique molecular 

identifiers (UMIs) were assembled into 16S rRNA long-reads (mean length = 1,430 bp; median = 

1,508 bp). We considered 27,123 of these (70.2%) to be meaningful long-reads after filtering for 

full-length 16S molecules (mean length = 1,474 bp; median = 1,472 bp). The long-reads were 

then mapped back to the references of the Zymo mock community which showed taxonomic ratios 

expected in the community (Table S2). All 27,123 full-length Zymo-Loop long contigs could be 

mapped to the NCBI RefSeq general bacterial database at approximately the expected species-

level ratios (Table 4). Only 0.4% of the contigs (n=104 contigs) mapped to an incorrect species 

reference. Almost all these contigs mapped to the correct genus (n=103), with a single instance 

of mapping to an unexpected genus (Klebsiella). Similarly, as a positive control, Illumina short-

read V3-V4 sequencing of the Zymo mock community produced 3,278,936 paired-end reads 
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which were merged into 2,239,559 reads. Of these, 2,237,457 were mapped to the Zymo mock 

community at approximately expected ratios (Fig. 1 and Table S2). 

Figure 1. | Quantification of Zymo mock community. Expected vs. observed abundance of 

known species for Zymo-Loop and Zymo-V3V4 sequencing inferred by mapping sequencing 

reads to known references provided by Zymo Research. 

LoopSeq long-reads identify a non-redundant 16S rRNA gene copy number ratio signature 

LoopSeq can accurately resolve 16S rRNA GCNs from mixed microbial populations. As a proof 

of concept, we analyzed the GCNs within the B. subtilis genome from the Zymo community. A 

total of 5,692 Zymo-Loop full-length long-reads and 348,730 Zymo-V3V4 short-reads that initially 

mapped to the B. subtilis strain B-354 genome from the Zymo community were re-mapped to a 

database containing only non-redundant B. subtilis 16S rRNA gene sequences. B. subtilis B-354 

contains the highest copy number of 16S rRNA genes (n=10, Table S2) per genome of any strain 

in the Zymo sample. Multiple sequence alignment consolidated the genomic 16S copies into 5 
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unique 16S rRNA gene sequences (full-length exact sequence variants or ESVs). The first group 

contains 5 members comprising 16S rRNA gene copies #1, #4, #8, #9 and #10 (which are 

identical), the second has two members (identical copies #2 and #3), while the remaining three 

copies (#5, #6, #7) are all unique to one another and to the other 16S rRNA groups (Fig. 2a). We 

used this information to examine if the intragenomic 16S rRNA gene copy ratios were accurately 

reported by LoopSeq SLR contigs. Correct mapping to these unique, non-redundant copies 

should produce a mapping ratio of 5:2:1:1:1. The Zymo-Loop long-read data was derived from 

experimental sampling of 10 ng of gDNA (which contains thousands of bacterial genomes) and 

reflected the actual ratio of non-redundant 16S rRNA gene copies contained within a single 

genome (5:2:1:1:1). In contrast, the results generated using Zymo-V3V4 short-reads yielded an 

erroneous 16S rRNA gene copy ratio (~2:2:2:2:1) as the V3-V4 region does not capture many of 

the relevant base pair differences that exist among the 16S rRNA gene copies in this species. 
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Figure 2. | Bacillus subtilis gene copy numbers. a, Mapping Zymo-Loop, and Zymo-V3V4 B. 

subtilis sequences to non-redundant 16S gene references. b, Overlapping distribution of 

mismatch errors of Zymo-Loop contigs across all five non-redundant copies of the B. subtilis B-

354 16S rRNA genes. Identified ESV are color-coded. c, Genomic placement of the 10 copies of 

the 16S rRNA gene within the B. subtilis B-354 genome, colored by ESV. d, Loop 16S detects 10 

16S rRNA genes as 5 distinct full-length ESVs at a ratio of 5:2:1:1:1. Sequencing of the identical 

V3-V4 regions of the 16S rRNA gene in only sensitive enough to resolve a single ESV, and misses 

single base pair differences that distinguish the full-length ESVs. 

Extremely low error rates observed in LoopSeq SLR contigs 

The B. subtilis B-354 genome contains 10 copies of the 16S rRNA gene of identical length (1,558 

bp; Fig. 2c). Therefore, the full-length contigs generated from the Zymo-Loop sequencing data 

can be overlaid on the same plot to visualize base pair differences along their length (Fig. 2b). 

Most mismatch errors are randomly distributed along the length of the contig. The nucleotide 

differences that produced the two highest variant ratio peaks (gene copy #2 & #3 c. 285G>A and 
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gene copy #1, #4, #8, #9 & #10 c.1268G>A) tentatively represent real variants in the non-

redundant 16S rRNA genes as these exact same nucleotide mutations were previously identified 

(McIntyre et al., 2019). Consequently, the true mismatch error rate, after excluding these two false 

positive mutations which together account for 454 of 1691 total ‘mismatch’ errors, is very low (Fig. 

2d). Altogether, the Zymo-Loop 16S dataset was at least an order of magnitude more accurate 

than Zymo-V3V4 across the frequency of mismatches, insertions, and deletions (Table 1). 

ATCC-gut sample: LoopSeq SLR results 

After sequencing the ATCC-gut mock community, reads were assembled into 20,027 contigs 

(mean length = 1,376 bp; median = 1,462 bp). After filtering for full-length 16S rRNA genes, 9,087 

contigs remained (45.4%) with a mean length of 1451 bp. Of these, 9,084 (99.9%) contigs could 

be mapped to one of the 12 reference sequences at approximately the expected ratios barring 

Bifidobacterium adolescentis, which was below expectation (Table 2). We speculate that this was 

the result of a sequencing artefact arising from an imperfect PCR primer match at the B. 

adolescentis primer region used to amplify the 16S rRNA gene (Frank et al., 2008). Using Kraken 

2, all 9,087 contigs could be taxonomically classified (Table 2). Of the 12 species in the sample, 

11 were classified correctly to the species level, of which seven were classified down to the strain 

level. Among the seven detected strains, three were exact matches to the ATCC strain 

designations. 

ATCC-oral sample: LoopSeq SLR results 

After sequencing the ATCC-oral mock community, reads were assembled into 33,222 contigs 

(mean length = 1,372 bp; median 1,478 bp). After filtering for the full-length 16S rRNA gene, 

16,392 contigs remained (49.3%) with a mean length of 1,460 bp and a median length of 1,462 

bp. Kraken 2 taxonomically classified all 16,173 contigs (Table 3). Here, 16,172 contigs (99.9%) 

could be mapped to one of the six known references at approximately the expected ratios, 

although Schaalia odontolytica was substantially lower in proportion than expected (Table 3). 

Notably, all six species in the sample were detected and classified correctly to the species level. 

Fusobacterium nucleatum subsp. nucleatum could be further classified to the strain level (ATCC 

25586) and was an exact match to the ATCC strain designation. 
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Read depth required for contig assembly 

The ability to reconstruct a long contig from overlapping short-reads requires, in addition to UMI 

tagging, sufficient read depth to cover the entire length of a 16S molecule with short-reads. Fig. 

3 shows the relationship between the number of reads needed to generate a contig (of any length) 

and the fraction of total contigs (i.e. UMIs) that achieve full-length status. The x-axis marks 

individual UMIs that represent ~9,000 original 16S molecules arranged from shortest to longest. 

The y-axis indicates the number of reads that shared the same UMI (binned by UMI) that were 

used to assemble that contig. The color indicates contig length (16S full-length is ~1500 bp). Full-

length contigs are displayed in yellow, clearly showing the reads/UMI transition point where the 

synthetic assembly achieves complete reconstruction of the 16S rRNA gene. This value is ~100 

reads/contig on average for LoopSeq 16S kits. 

 

 

 

 

 

 

 

 

Figure 3. | LoopSeq produces full-length contigs. Contig length histogram showing all 

LoopSeq contigs as a function of the number of short-reads required to assemble full-length 

contigs. The color legend indicates assembled contig length scaled from dark blue (short contigs) 

to bright yellow (long contigs). 
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Water microbiome analysis 

Water samples were collected from four different locations in Madison, WI, USA and processed 

using LoopSeq 16S kits. The resulting data sets were filtered to include only full-length contigs 

for the following samples: Aquarium (6,428 contigs), FeynmanPond (8,251 contigs), RainBarrel 

(4,673 contigs), and RivaPond (3,564 contigs). All LoopSeq SLR contigs across the four samples 

could be classified using Kraken 2 after running the standard database. Although many contigs 

were classified to the species-level, some contigs were classified at higher taxonomic levels. This 

did not permit a comparison of relative species abundance between samples. To obtain an 

approximation of species abundance, Bracken was used to redistribute contigs to the species 

level. The total species counts and top three ranking species by abundance for each sample are 

shown in Table 5 and a rank abundance plot in Fig. 4a. The Aquarium sample had the lowest 

species diversity and the most uneven species distribution as it was dominated by Limnohabitans 

sp. By contrast, the FeynmanPond sample was the most evenly distributed sample and had the 

highest species diversity (Fig. 4b). 

Figure 4. | Microbiome analyses using 16S rRNA gene sequencing via SLR. a, Species rank 

abundance plot of water samples. The Aquarium sample had the lowest species diversity and the 

most uneven species distribution. The Feynman Pond sample was the most evenly distributed 

and had the highest species diversity. b, Bar chart of species-level relative abundance for each 

aquatic sample c, Relative abundances of bacterial species within the endometrium of two 

patients exhibiting different clinical presentations relating to complications with conception. 
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Human uterine lavage microbiome analysis 

With the use of an optimized method for DNA extraction (see supplemental methods), uterine 

lavage samples were collected from two patients exhibiting complications with conception. 

Samples were prepared for LoopSeq 16S processing to investigate the bacterial composition of 

the dysbiotic endometrium. Previous work with mock communities validated the efficacy and 

reliability of this method (see Results above and Supplemental Results). Thus, we isolated patient 

samples and processed them using the LoopSeq workflow and Loop Genomics cloud platform-

powered taxonomic analysis. 

Patient 1 exhibited secondary sterility (3 spontaneous pregnancy losses and 6 IVF attempts) 

which may manifest in the presence of a dysbiotic microbiome composition (Franasiak et al., 

2016). The uterine lavage community was dominated by a single Firmicutes species. More than 

90% of full-length 16S rRNA genes were assigned to Lactobacillus crispatus (Fig. 4c, 

endometrium1). Patient 2 also had a history of repeated, unsuccessful attempts at conception, 

yet presents a very different microbiome composition: 19.8% Bacillus subtilis, 18.2% L. 

fermentum, 13.2% Enterococcus faecalis, 12.7% L. crispatus, 7.4% Listeria monocytogenes and 

5.7% Salmonella enterica (Fig. 4c, endometrium2).  

Cyanobacterial cultures from biological soil crust 

For the two cyanobacterial enrichments, we targeted the establishment of uni-cyanobacterial 

cultures from motile filamentous cyanobacteria (i.e. Microcoleus vaginatus and those in the 

Microcoleus steenstrupii complex) that pioneer the formation of biocrust communities in arid 

lands, particularly in the Southwestern US. Initial identification of the cyanobacteria present in 

each enrichment was performed by means of Sanger sequencing of the 16S rRNA gene using 

cyanobacteria- specific primers (CYA359F/CYA781R; (Nübel et al., 1997). This yielded (~600 bp) 

single sequences for each of the two enrichments: HSN023 (sample 7) and CYAN3 (sample 16). 

Both were then classified as belonging to the M. steenstrupii complex of genera. After LoopSeq 

sequencing however, we uncovered that HSN023 was a) not uni-cyanobacterial and b) contained 

significant amounts of heterotrophic contaminants. Of the 1703 contigs obtained, 69% were 
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cyanobacterial, the remaining 31% assigned to non-cyanobacterial contaminants. We could 

resolve three cyanobacterial ESVs, assignable to two distinct family-level clades (Fig. 5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. | Phylogenetic relationships of biocrust isolates are accurately resolved. Biocrust 

Sample 7 (HSN023) and Sample 16 (CYAN3) cyanobacterial full-length 16S rRNA ESVs in 

resolved into 3 distinct cyanobacterial ASVs. 

Two of the ESV’s , which accounted for the majority of contigs, were assignable to the Microcoleus 

sociatus clade (a member of the M. steenstrupii complex; Fernandes et al., in prep) and the third, 

which accounted for some 18% of cyanobacterial contigs, to the M. vaginatus clade (Fig. 5). Post-

hoc microscopic inspection of HSN023 confirmed the presence of low-level populations of M. 
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vaginatus morphotypes. The two M. sociatus ESVs (molecules 677 and 971) were very similar to 

each other (98.7%) and occurred at a frequency ratio very close to 1:1 among contigs, suggesting 

they represent variants of multiple ribosomal operons within a single genome. Hence HSN023 

was composed of two cyanobacterial strains, with one having two slightly divergent ribosomal 

operons.  In the case of enrichment (CYAN3 - sample 16) LoopSeq resolved two ESV’s 

accounting for 67% of all contigs. Two were 99.73 % similar (one a bit shorter) and we take it to 

be different molecules of the same sequence, and their sum was close to a 1:1  (56/45) proportion 

to the third ASV, likely representing two distinct operons within a genome. We interpret these 

results as confirming the uni-cyanobacterial status of the enrichment.  

Discussion 

LoopSeq SLRs have improved mapping and reduced errors 

Previous work has shown that substantial improvements in species and strain-level taxonomic 

resolution are achieved by analyzing the full-length 16S rRNA gene compared to ~500 bp regions 

of the gene (Martijn et al., 2019) and that ultra-low error rates are required in order to cluster long-

read microbiome sequencing data into ESV’s (Callahan et al., 2019). LoopSeq technology uses 

unique molecular identifiers (UMIs) for each parent 16S rRNA molecule, which allows accurate 

long-reads to be constructed from amplicon sequencing data, overcoming the critical constraint 

of amplicon sequencing, i.e. short read lengths, by sequencing the entire 1.5 kb 16S rRNA gene 

and providing at least an order-of-magnitude lower error rates compared to existing short and 

long read modalities in reading microbial community DNA.  

 Identifying intragenomic 16S variation using LoopSeq SLR contigs 

The initial mapping of Zymo-Loop and Zymo-V3V4 to a known sample database quantification 

differences from the expected abundances for both approaches (Fig. 1). However, where the two 

methodologies differ greatly is in their resolution of intragenomic variation. We observed the most 

striking example among the 10 B. subtilis B-354 16S rRNA gene copies, where many single 

nucleotide differences were detected along the length of the 16S rRNA gene, and critically, not 

within the V3-V4 region of the gene (range from positions 348-792). Within the V3-V4 region, only 
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copy #5 is unique (pos: 373 C>A) from copies #1, #2, #6 and #7, which are identical. As such, 

reads corresponding to these identical sequences map equally well to any of the 16S gene copies, 

and thus can be randomly assigned to a reference. This results in incorrectly assigning equal 

ratios for copies #1, #2, #6 and #7 after V3-V4 sequencing, in contrast to the correct 5:2:1 ratio 

assignment using the Loop-Zymo long-read data (Fig. 2a).  

These results highlight a major shortcoming in sequencing hypervariable regions with short-reads 

alone; they do not permit an accurate assessment of intergenomic 16S rRNA gene ratios as the 

necessary sequence information required to distinguish unique copies from one another is 

missing. This limits the use of short-read sequencing for inferring bacterial subtypes based on 

their intergenomic 16S gene copy ratios. In general, the use of short hypervariable regions (V1V2, 

V1-V3, V4, etc.) has limited utility in identifying prokaryotes to the species level (Johnson et al., 

2019) which is consistent with the results presented here.  

Simplified error reduction: correction by consensus  

Another major advantage of the LoopSeq technology for accurate 16S rRNA gene sequencing is 

the ability to correct for sequencing errors at nucleotide resolution through base-position 

consensus. As shown in Table 1, the error rates for Loop-Zymo data were extremely low 

considering these long contigs have only been filtered to be full-length 16S rRNA genes, with no 

additional error-reducing methods applied. By all metrics, including rates of indels and mutations, 

the SLR contigs are at least an order-of-magnitude more accurate than traditional short-read 

sequencing alone. Even though SLR contigs were not quality filtered, denoised or processed 

using algorithmic error correction, the indel rates were extremely low, thereby increasing the 

confidence in classifications at the species- or strain-level. 

These extremely low error rates stem from correction by consensus. At any nucleotide position 

where multiple short-reads overlap, a majority base call from all the short reads that span that 

position is used to arrive at the most common call, which filters out non-systematic errors (e.g. 

polymerase errors during PCR). Correction by consensus allows for a more faithful identification 

of which microbes are in a population by reducing false-positives, such that genuine sequencing 

errors are not counted as unique 16S molecules, which would artificially inflate the number of 
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predicted species. Lower error rates are particularly important for reliably detecting 16S 

sequences of low abundance, which are hard to distinguish from sequencing errors/artifacts. The 

number of UMIs per sample does not impact the fidelity of a consensus call, since UMI-tagged 

fragments are assembled independently from different clusters of overlapping short reads. Lastly, 

since consensus accuracy is contingent on read depth, higher per base accuracy and a higher 

proportion of full-length 16S contigs is expected with increased sequencing yield. 

Based on our comparative analysis between full-length SLR and V3V4 PE300 Illumina 

sequencing of the 16S rRNA gene we found that 16S SLRs provide: 1) significantly reduced error 

rates, which affect false positive identification rates, 2) accurate quantification of bacterial 

communities and 3) the ability to detect intragenomic unique 16S gene copy ratios. Furthermore, 

we found that despite the denoising of short read sequencing using e.g. DADA2 (Callahan et al., 

2016), UNOISE2 (Edgar, 2016) and Deblur (Amir et al., 2017), as well as clustering similar 

sequences into OTUs and using k-mer based LCA methods, short read sequences do not contain 

sufficient information to consistently and accurately resolve microbiome communities with species 

or strain-level resolution in most cases. Our analysis shows that directly mapping full length 

LoopSeq SLRs that span all nine hypervariable regions to a reference database without any 

denoising it is possible to classify bacteria within a complex sample down to the species level with 

high accuracy. 

While the application of denoising techniques to LoopSeq SLRs could potentially improve on 

these results even further our analysis has shown that even in the absence of such methods, 

analyzing full-length 16S SLRs is sufficient for precise classification. Bacterial genomes harbor 

many 16S rRNA gene copies that differ at specific nucleotide positions across multiple 

hypervariable regions, spanning distances much longer than the length of short read sequencing. 

Long reads that span all 9 hypervariable regions in a single molecule readout can detect variation 

along the entire set of 9 variable regions and capture the intragenomic species/strain signatures 

encoded in 16S gene ratios (Fig. 3C). Another critical of NGS methods is the inadvertent 

introduction of bias during sample preparation. Methods that rely on PCR amplification, which 

includes LoopSeq as well as short-read V3V4 prep kits, introduce potential biases as certain 

molecules can amplify with variable efficiently compared to others. NGS methods that employ 
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UMI’s to do so by back-tracking to the starting 16S molecule counts at UMI tagging. LoopSeq 

SLR technology employs UMIs and negates at least some of this amplification bias. Post-

sequencing short read data is collapsed such that short reads that share a UMI (once binned) 

represent the sequence of a single long read. Bias negatively impacts the detection of low 

abundance species (i.e. those constituting <1% of the community), including those found in 

complex and highly diverse environmental samples shown in this study (e.g. FeymanPond 

sample; Fig. 3A). 

Characterization of complex systems benefits from LoopSeq SLRs 

Water samples 

Aquatic environments are teeming with complex, dynamic microbial communities that influence 

global carbon cycling by absorbing ~30% of anthropogenically produced carbon dioxide 

(Kottmeier et al., 2016). Due to their high phylogenetic complexity (Fig. 3B), analyzing water 

samples served as a good testbed for verifying the limits of accurate detection using LoopSeq 

16S sequencing. The aquarium sample was dominated by a single species that accounted for 

~50% of reads, yet the entire community was much more complex than the simplified mock 

communities. The most diverse sample, FeymanPond, contained hundreds of unique species, of 

which the majority were considered rare at ≤ 2% relative abundance in the population. LoopSeq 

SLRs were able to faithfully reproduce the nuances of a complex microbial community while 

providing accurate classifications of microbes to the species or even strain level throughout the 

gradient of community complexity. 

Uterine lavage microbiomes 

The human endometrium microbiome has been the focus of several recent clinical studies, with 

goals of elucidating the role of microbiome composition in reproduction (Bracewell‐Milnes et al., 

2018). Notably, srNGS data from patients having undergone in vitro fertilization (IVF) suggest that 

the microbial composition of the endometrium can serve as a biomarker of reproductive health. 

Specifically, the phylum Firmicutes is frequently the most abundant in the endometrium, with 

Lactobacillus the dominant genus in the healthy uterus (Moreno et al., 2016, D’Ippolito et al., 
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2018). In pathological states, such as recurrent pregnancy losses, chronic endometritis, or in 

recurrent embryo implantation failure, there is a significantly reduced representation of 

Lactobacillus with a concomitant increased prevalence of pathogenic genera such as 

Streptococcus, Staphylococcus, and the family Enterobacteriaceae (Gammaproteobacteria) 

(Franasiak et al., 2016, Franasiak & Scott, 2017).  

Our data corroborate previous research on the microbial communities in the human vagina 

(Brooks et al., 2017) indicating that remarkable differences in community can manifest in the 

uterine lavage of two patients with a history of complications with conception. Previous work has 

shown that Lactobacillus crispatus can dominate in these niches under healthy conditions (Ravel 

et al., 2011) and our work further implicates L. crispatus and L. fermentum as prominent colonists 

following progression to a dysbiotic state. Accurately resolving species and strains within the 

endometrium with the use of longer and more accurate sequencing reads may inform strategies 

for combating dysbiosis. As we move beyond basic community characterizations to linking 

bacterial populations to human disease or dysbiosis, the next generation of sequencing 

technologies will need to expertly characterize the species (or ideally strains) that become 

prevalent alongside a clinical indication. From the studies conducted here, the LoopSeq method 

delivered species-level resolution of the bacterial populations in clinical uterine lavage samples. 

Analyses of enrichment cultures from biocrusts 

Biological soil crusts are organosedimentary microbial assemblages that colonize the soil surface 

of arid lands (Belnap et al., 2016). These photosynthetically driven microbial communities 

physically stabilize the soil surface and thus provide a habitable environment for further microbial 

colonization (Garcia-Pichel & Wojciechowski, 2009, Couradeau et al., 2019) increasing carbon 

and nitrogen cycling (Elbert et al., 2012) in nutrient-poor arid lands soils. Filamentous 

cyanobacterial such as Microcoleus vaginatus and those in the M. steenstrupii complex are 

pioneer species that initiate biocrust formation across the continental US. Their targeted isolation 

in uni-cyanobacterial cultures is a prerequisite to produce inoculum in efforts to restore biocrust 

communities (Giraldo‐Silva et al., 2019, Roncero-Ramos et al., 2019, Giraldo-Silva et al., 2020) 

under ecological pressure from human activities (Zaady et al., 2016). Because biocrust 
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cyanobacterial components are biogeographically distinct (Garcia-Pichel et al., 2013) and are 

adapted to local conditions (Muñoz‐Martín et al., 2019, Giraldo-Silva et al., 2020), inoculation 

must be done using local strains (Ayuso et al., 2017, Giraldo‐Silva et al., 2019) to increase 

success rates (Giraldo-Silva et al., 2020). In this study we showed that LoopSeq SLR’s enabled 

the characterization of potential sources of inoculum with respect to identity and purity of cultured 

materials. For example, highly resolved identification of different 16S ASV’s turned out to be 

critical in detecting the polyclonal nature of the cyanobacterial enrichment HSN023, which lead to 

its exclusion from downstream use and its targeting for further purification. Studies utilizing the 

identification of full-length ASV’s and 16S gene copy number variation will be increasingly used 

as an additional layer of information for strain detection based on gene identity and copy ratios, 

as demonstrated for HSN023 and also potentially for CYAN3.   
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Conclusion 

In both mock communities and environmental datasets, LoopSeq 16S sequencing presents 

improved performance for obtaining accurate, full-length 16S rRNA genes from complex 

microbiomes. Our results show that synthetic long-read sequencing (SLR) outperforms short-read 

sequencing at documenting taxonomic diversity based on the 16S rRNA gene, both in synthetic 

and real-world data. In the aquatic experiment, SLR resolved taxonomy to the species level (if not 

the strain level) and was effective across a gradient of community complexities. In the uterine 

lavage study, SLR accurately identified indicator strains affiliated with dysbiosis following 

repeated misconceptions. We show in the example with cyanobacterial cultures from biocrust 

communities that SLR can reliably describe the strain (s) composition of bacterial enrichments, 

as well as to reveal the intra-genomic distribution of their 16S rRNA gene copies. Furthermore, 

SLR had extremely high accuracy across the 16S rRNA gene and ultimately allowed genuine 

transition mutations to be detected among the 10 16S rRNA gene copies within the B. subtilis 

genome. Finally, SLR faithfully reproduced the expected copy ratio of B. subtilis 16S genes while 

read length limitations of short-read sequencing failed to capture the segments of the 16S gene 

that were critical to capture the identity and copy number ratios of the different 16S genes within 

a genome. Collectively, our results indicate that synthetic long-reads generate sequencing reads 

that have the potential to lead to a more accurate and finely-resolved microbiome community 

characterization. 
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Table 1. Class profiles of Zymo-Loop and Zymo-V3V4 sequencing. 

 

Class Zymo-Loop Zymo-V3V4 

Match 1.00E+00 9.93E-01 

Mismatch 7.48E-05 7.49E-03 

Deletion 2.39E-06 8.37E-05 

Insertion 2.15E-06 3.12E-05 
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Table 2. Mapping ATCC-gut to exact strain whole genome references and classification of ATCC-

gut contigs using Kraken 2. 

 

Species Expected 
(%) 

Strain ATCC-
gut (%) 

Species-level 
classification? 

Strain-level 
classification? 

Strain detected 

Bacteroides fragilis 8.0 ATCC 25285 11.7 Yes No  

Bacteroides vulgatus 9.3 ATCC 8482 10.7 Yes Yes Bacteroides vulgatus 
ATCC 8482 

Clostridioides difficile 16.0 ATCC 9689 21.6 Yes Yes Clostridioides difficile 
M68 

Enterobacter cloacae 10.7 ATCC 13047 7.6 No No  

Escherichia coli 9.3 ATCC 700926 8.1 Yes Yes Escherichia coli O7:K1 

Salmonella enterica 
subsp. enterica 

9.3 ATCC 9150 
 

4.3 Yes Yes Salmonella enterica 
subsp. Enterica & 
Salmonella enterica 
subsp. Salamae 

Bifidobacterium 
adolescentis 

6.7 ATCC 15703 0.3 Yes Yes Bifidobacterium 
adolescentis ATCC 
15703 

Enterococcus faecalis 5.3 ATCC 700802 6.4 Yes No  

Lactobacillus plantarum 6.7 ATCC BAA-793 6.1 Yes No  

Helicobacter pylori 2.7 ATCC 700392 5.8 Yes Yes Helicobacter pylori 
Shi169 

Yersinia enterocolitica 9.3 ATCC 27729 7.4 Yes No  

Fusobacterium 
nucleatum subsp. 
nucleatum 

6.7 ATCC 25586 9.8 Yes Yes Fusobacterium 
nucleatum subsp. 
nucleatum ATCC 
25586 
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Table 3. Mapping ATCC-oral to exact strain whole genome references and classification of 

ATCC-oral contigs using Kraken 2. 

 

Species Expected 
(%) 

Strain ATCC-
oral (%) 

Species-level 
classification? 

Strain-level 
classification? 

Strain detected 

Schaalia 
odontolytica 

11.5 ATCC 17982 3.9 Yes No  

Prevotella 
melaninogenica 

15.4 ATCC 25845 13.7 Yes No  

Fusobacterium 
nucleatum subsp. 
nucleatum 

19.2 ATCC 25586 28.1 Yes Yes Fusobacterium 
nucleatum 
subsp. 
nucleatum ATCC 
25586 

Streptococcus mitis 15.4 ATCC 49456 15.4 Yes No  

Veillonella parvula 15.4 ATCC 17745 13.4 Yes No  

Haemophilus 
parainfluenzae 

23.1 ATCC 33392 25.6 Yes No  
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Table 4. Species-level ratios after mapping Zymo-Loop to a general whole genome database 

containing 35,494 bacterial species. 

 

Species Expected relative abundance (%) Zymo-LoopSeq 16S (%) 

Bacillus subtilis 17.4 21.0 

Enterococcus faecalis 9.9 9.7 

Escherichia coli 10.1 10.9 

Lactobacillus fermentum 18.4 11.3 

Listeria monocytogenes 14.1 17.4 

Pseudomonas aeruginosa 4.2 4.2 

Salmonella enterica 10.4 11.2 

Staphylococcus aureus 15.5 14.0 

Other species 0.0 0.4 
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Table 5. Water samples with species counts and top three ranked species by abundance, with 

the relative abundance for each species shown in brackets. 

 

Sample Unique species 
count 

Most abundant 
species 

2nd most 
abundant 
species 

3rd most abundant 
species 

Aquarium 118 Limnohabitans sp. 
63ED37-2 (0.55) 

Polynucleobacter 
necessarius (0.12) 

Novosphingobium 
ginsenosidimutans (0.05) 

FeynmanPond 332 Candidatus 
Planktophila limnetica 
(0.09) 

Arachidicoccus 
ginsenosidivorans 
(0.09) 

Limnohabitans sp. 
103DPR2 (0.05) 
 

RainBarrel 165 Steroidobacter 
denitrificans (0.25) 

Pseudomonas sp. 
SWI6 (0.11) 

Planctomycetes 
bacterium Pan189 (0.08) 

RivaPond 166 Scytonema sp. HK-05 
(0.09) 

Niabella soli (0.07) 
 

Planctomycetes 
bacterium Pan97 (0.06) 
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