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Abstract:
As the emergence of bacterial resistance is outpacing the development of new antibiotics, we
must find cost-effective and innovative approaches to discover new antibacterial therapeutics.
Antimicrobial  peptides  (AMPs)  represent  one  promising  solution  to  fill  this  void,  since  they
generally  undergo faster  development,  display  rapid onsets of  killing,  and most  importantly,
show lower  risks of  induced resistance.  Despite prior  success in  AMP design with physics-
and/or knowledge-based approaches, an efficient approach to precisely design peptides with
high activity and selectivity is still lacking. Toward this goal, we have invented a novel approach
which  utilizes  a  generative  model  to  predict  AMP-like  sequences,  followed  by  molecular
modeling  to rank the candidates.  Thus,  we can identify  peptides with desirable  sequences,
structures,  and  potential  specific  interactions  with  bacterial  membranes.  For  the  proof  of
concept, we curated a dataset that comprises 500,000 non-AMP peptide sequences and nearly
8,000 labeled AMP sequences to train the generative model. For 12 generated peptides that are
cationic and likely helical, we assessed the membrane binding propensity via extensive all-atom
molecular  simulations.  The  top  six  peptides  were  promoted  for  synthesis,  chemical
characterizations, and antibacterial assays, showing various inhibition to bacterial growth. Three
peptides  were  validated  with  broad-spectrum  antibacterial  activity.  In  aggregate,  the
combination of AMP generator and sophisticated molecular modeling affords enhanced speed
and accuracy in AMP design. Our approach and results demonstrate the viability of a generative
approach to develop novel AMPs and to help contain the rise of antibiotic resistant microbes. 
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Antibiotic  resistance,  which arises when bacteria  develop  the ability  to  defeat  small-
molecule drugs designed to kill them, has become a severe threat to our society and industries.
According to CDC’s Antibiotic Resistance Threats Report in 2019,1 over 2.8 million antibiotic-
resistant infections occur in the US each year, over 35,000 deaths as a result. In fact, bacteria
never stop finding ways to resist new antibiotics, and can even share their resistance with one
another.  Thus,  persistent efforts are required to discover new molecules and to contain the
spread  of  dangerous  resistant  bacteria.  With  advantages  over  traditional  small-molecule
antibiotics (e.g., broad-spectrum activity, rapid onset of killing, low levels of induced resistance,
etc.), antimicrobial peptides (AMPs) show promise for treating infectious diseases caused by
bacteria, viruses, or fungi,2-5 which are detrimental to our society and the healthcare, veterinary,
and  agriculture  industries.  Unlike  traditional  small-molecule  antibiotics,  AMPs  are  biological
polymers predominantly containing 4 to 40 natural amino acids. So far, over 8000 AMPs6 have
been found in animals and plants as a first-line defense of the host immune systems. However,
the known AMPs represent only a small fraction of the vast chemical space — e.g., 20N possible
chemical compositions for a  N-residue peptide composed of 20 natural amino acids. Recent
methods  have  focused  on  quantitative  structure  activity  relationship  (QSAR)  and  machine
learning (ML) predictions in order to seek new AMPs (see recent reviews7-8). Such approaches
often rely on sequences to be generated randomly or evolved from known sequences,9-14 which
can be computationally demanding to afford reasonable sampling in the vast peptide sequence
space. Instead, it is more efficient to utilize a generative model to create new peptide sequences
from the underlying distribution of possible AMPs. However, a prior study based on a variational
autoencoder (VAE) model15 showed only two confirmed AMPs out of 20 predicted peptides,
suggesting that improvements remain needed in the design accuracy to lower false positive rate
and higher activity of generated AMPs. In this work, we have developed, for the first time, a
generative adversarial network (GAN) conjugated with molecular modeling to design AMP-like
sequences, which is fundamentally distinct from previous AMP design approaches. Validated by
experiments,  we have obtained three AMPs out  of  six  tested peptides,  which indicates  the
potential of our approach to be applied as a useful tool for future AMP discovery.

Figure 1. Illustration of the organization of AMP-GAN.

Our AMP-GAN approach (Figure 1) utilized a modified conditional generative adversarial
network (CGAN).16-17 CGAN represents a powerful approach for creating generative models, as
it gives instructions to two networks that are pitted against each other in a zero-sum game. We
have  utilized  this  framework  and  a  set  of  only  four  fundamental  conditions  (or  labels)  to
generate new AMP sequences, in contrast to the large number of descriptors in prior QSAR
studies.10,  13 The  discriminator  was  trained  to  distinguish  between  authentic  and  generated
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sequences, and the generator was tasked with generating sequences that fool the discriminator.
In order to trick the discriminator successfully, the generator must learn the underlying AMP
distribution.  By  generating  sequences  from  the  underlying  AMP  distribution  and  providing
conditioning variables that allow the generation process to be directed, we are able to exert
control  over  the  properties  of  generated  sequences.  Furthermore,  the  conditional  vectors
provided a distinct capability to target particular pathogens, mechanisms, and even sequence
lengths. This directed generation approach moves machine learned AMP discovery away from a
rejection  sampling  methodology  and  towards  precision  design,  which  allows  for  increased
accuracy towards discovering novel AMPs with desirable activity, selectivity, and safety profile.

With a large number of AMP-like peptides designed by a generator, it  is essential to
assess their structures and potential interactions, for example using molecular modeling and
simulation. Recent advances in force fields18-19 and solvent models20-21 have greatly enhanced
the accuracy of peptide modeling. For example, current tertiary structure prediction can obtain
near-native models for up to 95% of peptides within 52 residues in length.22-24 Also, molecular
dynamics  (MD)  simulations  have  provided  valuable  structural  and  mechanistic  insight  into
peptide interactions with biomolecules, including AMP aggregation in solution and membranes25-

27, AMP-induced membrane disruption and poration,28-39 etc. In particular, free-energy simulation
techniques have become available for reliable semi-quantitative or quantitative assessment for
membrane binding,40 membrane permeation,41 and membrane pore size,42 as well as peptide
mutations.43 Therefore, we carried out free-energy simulations to verify the potential interactions
of the AMP candidates with a lipid bilayer membrane, and estimated the relative membrane
binding propensity. Our experimental validation indicates the success of our in silico approach
to combine sequence-based generation and structure-based ranking/selection.  In aggregate,
with a comprehensive consideration of both AMP sequences, structures, and interactions, our
approach and discovery may open a novel avenue for future AMP discovery.  

Results 
1. AMP-GAN generated peptides with high sequence diversity.  

We constructed AMP-GAN to produce a large number of AMP-like sequences. AMP-
GAN was trained over a data set comprised initially of 8,005 known AMPs from the DBAASP6

and AVPdb44 databases as well as nearly 500,000 non-AMP peptides selected from the Uniprot
database.45 Four  conditions  were  chosen  based  on  their  fundamental  nature  and  data
abundancy: sequence length, microbial target, target mechanism, and MIC50 (the concentration
of peptide which inhibit 50% of bacterial growth). Distinct from prior research, we designed two
novel labels regarding the microbial target (Gram-positive/negative bacteria, fungi, viruses, or
others) and the target mechanism (e.g., disrupting the lipid membrane, inhibiting vital proteins,
or interfering with DNA/RNA), which allowed us not only to train our network on the broadest set
of  AMPs,  but  also  to  capture  the  potential  connections  between  them.  As  a  result,  each
generated  sequence  was  associated  with  specific  microbial  target(s)  and  potential
mechanism(s), which greatly facilitated subsequent selection and experimental validation. As a
matter of practice, we focused on AMPs within 32 amino acids in length due to the affordable
synthetic cost.  Thus, we applied a maximal 32-residue length constraint to both the training
sequences  and  generated  sequences  (Figure  2A).  Notably,  while  helicity  or  secondary
structures were commonly included in the descriptors in several QSAR models,13-14, 46-47 there is
no  structural  constraint  in  our  AMP-GAN.  Thus,  AMP-GAN  can  produce  novel  peptide
sequences that fold into different three-dimensional (3D) structures.

AMPs are diverse in sequences and structure, and therefore an important indicator for a
good  AMP generative  model  is  the  reproduction  of  generated  sequences  similar  to  known
AMPs, but unique enough to be novel. Thus, it is a major challenge for many models trained on
relatively scarce and sparsely labeled data to generate new sequences that are distinct, both
from known sequences and from each other in the data set. In this work, we generated 50,000
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sequences with AMP-GAN using condition vectors drawn from the training data (known AMPs
and known non-AMPs).  We compared the training data (known AMPs) and generated data
(AMP candidates) in terms of length, formal charge (FC), and helicity penalty (HP) as shown in
Figure  2A.  HP  was  determined  by  the  sum  of  energy  scores48 associated  with  the  helix
propensity of each residue,  e.g. no penalty for alanine as (0 kcal/mol) and high penalty for
glycine (1 kcal/mol) and proline (3.6 kcal/mol). Overall, the 50,000 AMP candidates displayed
normal distributions in terms of length, FC and HP (Figure 2C.). As shown in Figure 2A, the two
distributions overlap sufficiently to imply a consistency between generated peptides and known
AMPs. To assess the sequence diversity within the AMP candidates, we calculated the pairwise
similarity  using  the  ratio  from  SequenceMatcher in  the  difflib  python  package
(https://docs.python.org/3/library/difflib.html),  which was defined as the fraction of  contiguous
matching subsequences between two given peptides. With the 3829 20-residue peptides as an
example, the majority of peptides are distinct from each other, as indicated by the low sequence
matcher  ratio  (Figure  2B).  In  addition,  low  similarity  was  found  between  our  generated
sequences and known proteins and peptides in the UniprotKB45 database, using the Basic Local
Alignment Search Tool (BLAST). For sequences below 10 residues in length (Table S1), we
found  73% of  our  AMP candidates  with  accidental  homology  to  regions  of  larger  proteins
(E-value 0.1-10), while the rest were novel sequences unrelated to known proteins (E-value >>
10). For longer AMP candidates (10 to 32 residues), we estimated that no more than 3% of
sequences generated by AMP-GAN had significant homology (E-value < 0.1) to known peptides
or  proteins.  Generally,  these  analyses  indicate  a  strong ability  of  AMP-GAN to  generate  a
diversity of novel AMP-like sequences and to explore new areas in the vast peptide chemical
space. 

Figure 2.  Diversity of AMP-GAN-generated peptide sequences and structures.  (A) Comparison of the
training set (blue dots) and the generated data set (orange dots) in terms of peptide length (in residue),
formal  charge  (in  electron  charge  unit),  and  helicity  penalty  (in  kcal/mol).  (B) Heatmap to  show the
sequence diversity among the generated peptides of 20 residues in length (3829 peptides in total). X-Y
axes  represent  numbering  of  the  20-residue  peptides  in  a  list.  The  long  contiguous  matching
subsequences were identified between two given peptides (see the example). A ratio of 1 shows exact
identical sequences (the diagonal in the heatmap), while the sequence matcher ratio remains low among
most of our generated data, an indicator of sequence diversity within our data set. (C) Histograms to show
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the distribution of peptide length (in residue), formal charge (in electron charge unit), and helicity penalty
(in kcal/mol) in our generated data set.

2. AMP-GAN  -  generated peptides with high structural diversity.  
Generation of diverse AMP structures is notably more difficult  than the generation of

sequences  alone.  However,  the  sequence  diversity  from  AMP-GAN  does  serve  as  a  firm
foundation  for  the  generation  of  structurally  diverse  AMP  candidates.  Although  the  vast
structural  diversity of  AMPs has been long known, currently  the ~1200 known structures of
AMPs (collected in APD3  49 until  June 2020) show that near 1/3 of the AMP structures are
classified as helical. Most helical AMPs are believed to exert bactericidal effects via irreversible
rupture of bacterial membranes, while a small but increasing number of non-helical AMPs are
revealed to modulate vital bacterial proteins.50-52 This suggests a critical need to explore new
areas in the chemical space and to seek not only helical but also non-helical AMP designs. Most
prior  studies  of  AMP  design  were  restricted  to  a-helices  or  simply  ignored  the  peptide
structures.10,  13,  53-54 Distinct  from  these  studies,  the  generator  of  our  AMP-GAN,  while  not
explicitly trained on information about secondary or tertiary structure, can infer through implicit
sequence-structure relationships the underlying diversity of AMP structures. Thus, AMP-GAN is
allowed to generate a  broad range of  peptide  sequences,  which likely  fold  into diverse 3D
structures  as  well  as  result  in  various  potential  interactions  and  selectivity  against  the
pathogenic targets. 

Figure  3.  (A) Predicted  structures  of  12  cationic  AMP candidates  (formal  charge  >  +3).  Each
structure in the orange cartoon is from the final snapshot of a 10-ns MD simulation. The structure in
grey is the initial model that is either predicted by Pep-Fold55 or restricted to be helical. The peptides
with low HP/res are more likely to adopt stable helical structures while the peptides with high HP/res
may fold into b-hairpin structures (without disulfide bonds) or other motifs. (B) Distribution of known
AMPs that are classified as  a or β structures in terms of HP per residue, which included ~400 a-
helical and ~80 b-hairpin AMPs.

Using peptide structure prediction,55 we showed that  the generated sequences likely
adopt  various  folded  structures  such as  a-helices,  b-hairpins,  and  other  prototypical  motifs
(Figure 3A). Focusing on peptides shorter than 32 residues, the structural diversity observed in
selected cases was in agreement with what was expected from known AMP structures. For
example,  several  sequences with  high HP (HP/res > 0.7)  were more likely  to  adopt  stable
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hairpin structures, which were confirmed by 10-ns MD simulations. In contrast, almost all the
peptides with low HP (HP/res < 0.5) formed helical structures. Thus, HP provided a simple, fast
estimation of the AMP secondary structures in our studies (Figure 3B). Notably, natural hairpin
AMPs typically contain one to three disulfide linkages.56 Although we did not include the redox
information in the current design of AMP-GAN, our MD simulations confirmed that several AMP
candidates could adopt stable b-hairpin motifs, even in the absence of disulfide bonds (Figure
3A). With the high structural diversity of the generated peptides, AMP-GAN can be a useful tool
to identify new AMP-like sequences and to allow ad hoc studies to model the structural stability,
design  chemical  modifications,  and  predict  potential  interactions  with  key  components  (like
membranes, vital proteins, and DNA/RNA) of the pathogen cells.

3. Molecular modeling to select potent helical AMPs against bacteria.  
We first obtained 50,000 AMP-like peptides from AMP-GAN (Figure 1A), from which we

selected a smaller set of candidates for synthesis and experimental validation. Compared with
experiments,  molecular  modeling  and  simulations  are  still  affordable  with  a  relatively  large
number of AMP candidates and thus can be useful to eliminate false positives from AMP-GAN
and improve our accuracy in the selection process. To show the effectiveness of molecular
modeling, we focused on a-helical AMP candidates potentially against Gram-positive/negative
bacteria, the main mechanism of which has been well accepted as membrane disruption and
interaction.57 Based on the information provided by AMP-GAN (activity, sequence charge, HP,
etc.), we narrowed down to 12 AMP candidates (sequences and conditional labels shown in
Table S2), six of which were further identified by a free-energy simulation approach to estimate
the membrane binding propensity, which is described as follows. 

Firstly, we eliminated all sequences which had targets against mammalian, cancer, or
fungal  groups in  their  conditioning  vector.  We further  excluded  all  peptides  that  had labels
above the lowest band of predicted MIC50 activity (~5.76 μg/ml) from our conditioning vectors,
in order to keep the most potent AMP candidates. Then, two selection criteria were applied to
identify  chemically  relevant  candidates  for  antibacterial  tests.  (i)  The structure rules: a  total
formal  charge  greater  than  +2  or  a  calculated  HP <  5  kcal/mol;48 (ii)  The  chemical  rules:
elimination of sequences with multiple adjacent Ser or Gln or ones which had selenocysteine or
pyrrolysine and sequences which did not  contain  adjacent  Arg and Trp (known as the RW
pattern commonly seen in many AMPs). The structural rules were used to select sequences
likely to be charged or helical which would be easier for us to confidently model the peptide
structures  and  interactions,  while  the  chemical  rules  helped  identify  chemically  relevant
antibacterial peptides that avoided unstable and difficult to synthesize peptides. At the end, 12
sequences passed all of these filters.

To quantitatively  rank the 12 candidates  and select  the most-likely  membrane-active
peptides, we carried out all-atom free-energy simulations and calculated the membrane-binding
propensity. For each peptide, an estimate of the free energy change ΔG (from embedding in a
model  E. coli bacterial inner membrane) was obtained via a quick set of MD simulations with
umbrella  sampling (US).58 US restrained the helical  peptides to different  heights above and
below the membrane surface, and used the weighted histogram analysis method to estimate
ΔG.  The  determined  ΔG for  each  peptide  was  used  to  obtain  a  score  correlated  to  the
membrane-binding propensity, given by Equation 1, which compares a candidate sequence to a
known membrane-active peptide,  magainin  2 (ΔG+)  and a known non-AMP sequence (ΔG-,
sequence in the SI).

Score = (ΔG+- ΔG)/(ΔG-- ΔG+)                 (Eq. 1)

In Equation 1, a positive (or negative) score represents an AMP sequence with a higher (or
lower) propensity to bind the membrane than magainin 2. This difference is then scaled by the
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range of the positive and negative controls for relative comparison. US was repeated in three
replicas for the control sequences and showed they have significantly different ΔG values with
ΔG+ 7 kcal/mol lower than ΔG- and a 5-13% relative error (calculated ΔG values in Table S3),
suggesting this methodology can distinguish poor from good membrane binding peptides. It is
noted that  the  significance  of  our  free-energy calculation  is  in  the relative  values,  which is
confirmed by the control sequences following in the expected trend that a known AMP would
have a more negative change in energy upon membrane binding than a non-AMP (i.e. known
AMPs have a more favorable change in energy upon binding to anionic membranes). Based on
their membrane-binding propensity scores, we ranked the 12 helical peptides (Table S3) and
decided to promote the top six peptides for synthesis and experimental validation (Table 1).

Table 1. Properties of six selected AMP candidates. The E-value and sequence identity were
obtained from BLAST, while MIC50 values were measured by serial dilution growth inhibition
assays. All the peptides are amidated in the synthesis.

Pep Sequence
MW
(kD)

Length
(residues)

Formal
Charge

Helicity
Penalty

(kcal/mol)

Score
from
Eq. 1

E-
value

E. coli
MIC50
(μg/ml)

1 SGRIASHFTQLWRWLRGYYKLM 2.77 22 +4 9.4 0.23 0.5 64
2 QSGIFMHLKQLCRWLRGYMQWAGIG 2.98 25 +3 11.6 -0.25 0.5 >256
3 QSNVFLSHFMQPCRWLRGKMG 2.52 21 +3 12.6 -0.52 0.4 >256
4 MHKTQLRWFRCHLSQYPGAGL 2.53 21 +3 12.1 -0.65 6.8 >256
5 CSKWELRWRRYQGKVSYQLAL 2.67 21 +4 8.3 -1.23 4.8 256
6 WHLRRTRWRFEHLWSYGV 2.48 18 +3 8.2 -1.23 0.1 256

Note: It is common for short peptides to show high sequence identity to large proteins collected in the UniproKB database. However,
the high expectation value (>0.1) denied the biological significance of the sequence similarity. Thus, these six peptides are novel
AMPs.

Figure 4. Bacterial growth assays for the six synthesized peptides against E. coli (left) and S. aureus
(Right).  The  growth  of  the  bacteria  was  measured  by  optical  density  at  600  nm  (OD600)  and
normalized as a percentage to bacterial growth with no peptide. These normalized values are plotted
against AMP concentration. Dashed lines to judge MIC50 concentrations are shown. Error bars are
from three independent experiments. Each experiment was carried out with 3 replicas, with shaded
error bars.

4. Experiments to validate activity and toxicity of AMP candidates   
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The six peptides with the most preferred membrane-binding propensity were purchased
from Genscript (> 90% HPLC purity) and tested against four microbes, Gram-negative E. coli, K.
pneumoniae.,  P.  aeruginosa,  and  Gram-positive S.  aureus,  in  order  to  validate  our
methodology. We used a serial dilution method from 256 μg/mL to 0.01 μg/mL in an attempt to
find  the  value  for  which  approximately  50% of  the  bacterial  growth  was  inhibited  (MIC50).
Almost all of the six peptides show growth reduction to different extents against Gram-positive
and -negative  microbes (Figure  4).  Their  antibacterial  activity  increased  with  the increasing
concentration, but increases in light scattering (due to peptide aggregation) might also increase
the apparent bacterial growth at high concentrations. While this was partially controlled for by
subtracting peptide-alone optical density from corresponding growth measurements, this effect
does reduce the accuracy of the assays at higher peptide concentrations. For E. coli, Pep1 at
64 mg/ml and Pep5 and Pep6 at 256  mg/ml inhibited over 50% of bacterial growth, while the
others achieved less than 40% inhibition at the concentration below 256 mg/ml. For S. aureus,
four  of  the six  peptides  inhibited  ~50% bacterial  growth at  the concentration of  256  mg/ml,
except  Pep3  and  Pep4.  In  addition,  most  of  our  peptides  inhibited  P.  aeruginosa and  K.
pneumoniae growth by 20-30% at a concentration below 256 mg/ml (Figure S4). Interestingly,
AMP specificity was achieved with Pep3 which targeted S. aureus but not the Gram-negative
bacteria which we tested (Figure S4),  while  more broad-spectrum activity  was observed for
other peptides. In general, the AMP-GAN model produced novel and active peptides against the
variety of bacteria tested. Two of the most interesting peptides, Pep1 and Pep6, were further
tested for toxicity with A549 human cells. At concentrations below 300 μg/mL, both Pep1 and
Pep6 had near 90% viability compared to our control. At 300 μg/mL, Pep1 displayed notable
toxicity with less than 5% of the cells still viable compared to our control, but the less potent
Pep6 appeared to be less toxic with near 90% viability (Table S4). 

Our experimental MIC50 are higher than the predictions from AMP-GAN, which may  be
impacted by several chemical and biological  factors. For example,  Pep2 and Pep4 with low
solubility  (< 5 mg/ml  in  water)  likely  aggregate in  the aqueous solution,  which  reduces the
effective  peptide  concentrations.  Further,  despite  the  helical  assumption,  some  of  these
peptides  may  undergo  significant  conformational  changes  during  the  membrane  binding
process,  which  can  affect  our  selection  accuracy.  Similarly,  the  AMP-GAN  generated
sequences of length that varied from the input label (R2=-1.37). Length is the only label that can
be verified on a large-scale without experimentation. This poor correlation implies that while the
AMP-GAN in this current version may have learned the underlying distribution, it still needs to
better interpret the significance of the labels — a direction which we will  pursue to improve
AMP-GAN. In addition,  it  has been reported that  some Gram-negative bacteria can secrete
outer membrane vesicles to prohibit AMP acting on the cellular membrane.59 Despite various
impacts to the actual AMP activity,  our best  peptide,  Pep1 has comparable broad-spectrum
bactericidal activity to some natural AMPs like amphibian AMP magainin 2 and human AMP LL-
37, which demonstrates the potential of our approach to rationally design active AMPs.

Discussion
1. Synergy of the sequence-based generation and structure-based modeling  .

There  are  two  distinct  ways  to  achieve  AMP  sampling  with  machine  learning  —
classifiers (which provide a yes/no answer  for  a given peptide  sequence)  and  generators
(which directly provide new predicted active sequences). While classifier models9-10, 13-14, 54 are
often more accurate than generator models,15, 58 they can be inefficient to discover diverse AMP
candidates and requires lots of human expertise and effort to construct the descriptors when
combined with QSAR. Compared with the classifiers, AMP-GAN can be more efficient to design
AMP-like sequences according to an approximation of the underlying distribution in the AMP
chemical space. Our review of current classifier and generator approaches suggested a trade-
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off between sampling diversity and prediction accuracy: restricted AMP sampling can achieve
higher  accuracy  to  identify  active  AMP-like  sequence,  while  AMP-GAN  and  another  deep
generative model (VAE) can produce much more novel sequences, with the prediction accuracy
to be improved. 

In this work, our combination of sequence-based generation (AMP-GAN) and structure-
based modeling (US sampling) offers a solution to the trade-off. First of all, a feature in AMP-
GAN,  is  that  useful  information  (like  potential  activity,  potential  pathogenic  target,  etc.)  is
included in the design of peptides for specific tasks (antibacterial, antifungal, anticancer, etc.).
The  subsequent  molecular  modeling  (especially  free  energy  simulations),  as  shown in  this
study, is useful to quantitatively rank the AMP candidates. Compared with a prior study using
conventional MD simulations,15 our free-energy simulation approach is more effective to reduce
the high false positive rate.  Our overall approach is fundamentally distinct from previous ones
which employed both sequence- and structure-dependent descriptors or labeling. In principle,
the limited number of labels allow for a greater focus on purely exploring the sequence space as
labels do not need to be fine-tuned. Furthermore, we can obtain a higher accuracy in selection
of AMP candidates with simulations based on molecular structures and interactions. Last but not
least, the sequence-based generator and structure-based scoring are well integrated. Although
in this work, we provide the proof of principle to seek helical AMP to target the membranes of
bacterial pathogens, our approach, with some fine tuning of the AMP-GAN in order to better
observe labels and to ensure more stable training, is ready to be used to study helical or non-
helical AMPs with many other therapeutic targets (like proteins and DNA/RNA) beyond bacteria.

2. Potential molecular mechanism of Pep1.
The 22-residue Pep1 was shown to be the most  active AMP in our  design,  and its

sequence is novel with only accidental similarity to larger proteins (fragment < 10 residues). We
further examined the interactions between Pep1 and lipids in our simulations and via Circular
Dichroism (CD) spectra (Figure 5). It is shown by CD that without the surfactant sodium dodecyl
sulfate (SDS), Pep1 was only 7% helical and largely unordered in solution.  With the presence
of  SDS,  Pep1  dramatically  increased  its  helicity  to  74%  in  the  SDS  micelles,  which  was
consistent  with  our  observation  from  MD  simulations  (55-77%  helicity).  Analysis  of  our
simulations provided the molecular detail of Pep1 interactions with a lipid bilayer model.
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Figure 5.  Membrane binding motifs and solution structures of Pep1  (A) side view,  (B) top view.
(C) CD spectra of Pep1 with and without SDS.

The helical conformation of Pep1 resembles a typical amphipathic helix, with a relatively
hydrophobic face (Leu11, Leu14, Tyr19, and Met22) and a cationic face (Arg3, His7, Gln10,
Arg13, Arg16, and Lys20). In our simulations, the hydrophobic sidechains on helical Pep1 were
embedded in the non-polar environment of the membrane core (Figure 5A-B) This orientation
coincided  with  charged  sidechains  interacting  with  the  charged  phosphate  groups  on  the
membrane surface, establishing a combination of strong interactions on all sides of the helical
segment. Taken together, Pep1 likely undergoes a disorder-to-helix transition during membrane
binding. The folding of Pep1 results in an amphipathic helix, with strong interactions with the
anionic  lipids  in  the  membrane.  Supported  by  collaborated  simulation  and  spectroscopic
evidence, Pep1 likely adopts a mechanism of a typical helical AMP like melittin. Interestingly, we
did not observe the other five peptides which we synthesized with a similar transition like Pep1
(Figure S5). However, the various level of helicity of these peptides indicates the capacity of
AMP-GAN to generate structurally diverse AMP-like sequences.

Concluding Remarks
In summary, we have invented and demonstrated an efficient and accurate AMP design

methodology. By curating a dataset that comprises ~500,000 non-AMP peptide sequences and
~8000  labeled  AMP  sequences  to  train  the  AMP-GAN  model  for  generating  new  AMP
sequences, we created a general generator that can be used to target more than just one type
of microbe or one mechanism. We then demonstrated a proof-of-concept method for evaluating
peptide candidates by evaluating membrane binding tendency toward a model  E. coli  inner
membrane. This technique can be extended to different membrane compositions and therefore
different microbes, thus retaining the generality of our generator in our screening as well. This
synergy  of  sequence-based  generation  and  structure-based  ranking  represents  a  new
methodology  toward  flexible,  precision  AMP  design.  Extensive  analysis  of  the  generated
antimicrobial sequences reveals that the proposed framework, beyond being general, is indeed
capable of learning and generating from a richer representation than trained upon and yields
AMPs that are both diverse in sequence and structure. Our methodology as an entity will be
valuable in the ever-necessary rational design of AMPs with the potential to be expanded to
even broader classes of biologics.  

Materials and Methods
1. Computational Methods

We utilized a GAN approach that incorporates several elements from recent research.
The base of our model is a Wasserstein GAN with Gradient Penalty (WGAN-GP), which claims
to mitigate many of the pathological  learning dynamics that can occur when training GANs,
including dissociation and mode collapse. Next, we add conditioning information following the
structure outlined by Conditional  GANs (CGAN),  allowing human designers to influence the
features of the generated peptide sequences. Additionally, we include an encoder component
following work on Bidirectional GANs (BiGAN), which greatly simplifies the implementation of
latent space interpolations and allows for more effective exploration of the learned latent space
through the use of known AMPs. Figure 5 provides a flow diagram that depicts the high-level
organization of our AMP-GAN, which is similar to what was investigated by Perarnau et. al. 60,
excluding  the  label/conditioning  vector  encoder.  Architecture  details  for  the  generator,
discriminator, and encoder networks are shown in Figs. S1, S2, and S3 respectively.

For our training data we utilized the Database of Antimicrobial Activity and Structure of
Peptides (DBAASP) as our known good AMPs 6. For those AMPs with multiple MIC50 readings
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we converted  all  readings  into  μg/mL and  averaged them these were  then binned  into  10
deciles and those deciles which were provided to the AMP-GAN. We also combined categories
of  different  microbes  into  a  reduced  set  of  Gram-positive,  Gram-negative,  Viral,  Fungal,
Mammalian,  and  Cancer.  Similarly,  we  collapsed  targets  into,  Lipid  Bilayer,  RNA/DNA,
Cytoplasmic Protein, Membrane Protein, and Virus Entry. We also removed any sequences of
length greater than 32 amino acids. For any sequences with a wildcard FASTA symbol (X, B, Z,
or J) the symbol was replaced with a randomly selected concrete symbol during training. For our
null data set we selected sequences from the Uniprot database, filtering any sequences that
were present in DBAASP or were longer than 32 residues. The conditioning vectors for our null
database were constructed to indicate  no target  microbes,  no target  mechanisms,  maximal
MIC50, and the appropriate sequence length. We trained AMP-GAN on 100,000 batches with
128 samples per batch.  Each batch was composed of 64 randomly sampled AMPs and 64
randomly sampled non-AMP peptides. This translates to approximately 1,000 epochs of training
over the positive dataset and 13 epochs over the negative dataset. Implementation details for
the data processing, model creation, and model training elements can be found on GitLab.

For all atom molecular dynamics simulations, initial peptide structures were modeled as
a helix and translated 25 Å above a 3:1 mass-ratio POPE:POPG membrane. The CHARMM-
36m  18 forcefield was then applied  using CHARMM-GUI  61-62 and the systems solvated with
TIP3P water model and 120 mM NaCl. All  simulations were performed using the AMBER18
simulation package 63. The following US protocol was developed to enable rapid screening and
estimation of the relative free energy change upon peptide binding to the model membrane.
Each peptide was put through the multi-stage minimization and equilibration protocol. Short, 500
ps, steered molecular dynamics (SMD) trajectories were run with a very stiff spring constant of
500 kcal/molÅ  applied  to a custom collective  variable  representing  the z-component  of  the
center of mass position of the peptide, over a total distance of 80 Å into the membrane. While
this distance was larger than the membrane thickness, it was required to embed the peptide into
the membrane over the short period due to translation of the membrane during SMD. Following
SMD,  frames  most  closely  representing  eight  umbrella  sampling  windows  linearly  spaced
between 20 angstroms below the phosphorous atoms in the top leaflet of the membrane and the
initial position above the membrane were selected. To allow the membrane atoms and peptide
sidechains to relax from the SMD simulations each window was equilibrated for 1 ns using a stiff
spring constant of 1 kcal/mol Å. Following this period, 20 ns of production umbrella sampling
simulations were performed with a weaker spring constant of 0.1 kcal/molÅ that ensured proper
overlap of the umbrella windows. The final data was analyzed using the weighted histogram
analysis  method,  and  the  final  difference  between  the  first  and  last  window were  used  to
estimate the free energy difference for embedding the peptide in the membrane.

2. Experimental Methods
These  peptides  were  purchased  from Genscript  and  characterized  for  solubility  and

helicity. Helicity was determined by circular dichroism (CD) spectra with a peptide concentration
of  20μM in 1mL Milli-Q Water.  The Jasco J-815 spectropolarimeter  was set  to analyze the
peptides at a wavelength range of 260-190nm, a cell length of 2mm, and 3 scans. The resulting
spectra was then fed to Dichromweb 64 and the helicity was then calculated using the CDSSTR
method and a reference dataset.

Bacteria were stored as 15% glycerol stocks at -80 oC and routinely propagated on LB
agar or broth (Lysogeny broth, Lennox formulation). The specific species and strains used for
these  assays  were  Escherichia  coli K12,  Pseudomonas  aeruginosa PAO1,  Klebsiella
pneumoniae var. pneumoniae KPPR1, and  Staphylococcus aureus var. aureus ATCC 12600.
For antimicrobial testing, bacteria were streaked to an LB agar plate and incubated for 24 h at
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37  oC. Colonies from the resulting plates were used to start 3 ml LB broth cultures that were
grown at 37 oC for 18 h overnight. To the ‘no peptide’ wells, 75 ul of sterile deionized water were
added into the wells of tissue-culture treated 96-well polystyrene plates, and the remaining wells
were set up as two-fold serial dilutions of each peptide starting at 256 ug/ml. Optical density of
the  bacterial  cultures  was  measured  at  600  nm  (OD600)  and  cells  were  collected  by
centrifugation and normalized to an OD600 of 0.02 in LB and 75 ul of this suspension were
aliquoted into the 75 ul of water or peptide solution. Thus, the final well contained 150 ul of liquid
that was ½ strength LB and bacteria at a starting OD600 of 0.01. Identical plates were also
generated with no bacteria added (only LB broth) to assess peptide aggregation to subtract from
bacterial growth measurements. These 96-well plates were incubated with horizontal shaking at
120 rpm at 37 oC for 24 h and then OD600 was measured in a Biotek Synergy 2 plate reader.  

The AMP cytotoxicity was tested with human A549 cells. The A549 cells was plated in
24-well plates at 300,000 cells/well. When cells were ~85% confluent, we added three different
concentrations (30, 100, and 300 ug/ml) of the tested peptides for 24 hours. The cell viability
was measured using a fluorescent dye calcein AM.
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