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Figure 5: Estimating timescale by manipulating the context length (CL) is a less interpretable method.
A stateless LSTM was used to create encoding models for CLs [0, 2, 4, 8, 16, 32, 64]. The timescale
of each voxel was estimated with a CL preference index [8]. Only voxels significant in all CL models
are shown. In AC, some voxels have long CL preferences. Further analysis reveals that long CL
representations still retain short-timescale information. Similar maps for other subjects are shown in
Supplementary Section 1.

Broader Impact

Researchers working to understand temporal phenomena may consider the problems raised in this
work, and may find the proposed methods useful for their analysis. More importantly, this work is a
stepping stone towards building better models for language processing in the brain that can not only
help investigate cortical language processing but also simulate brain responses. This could be useful
for diagnosing, treating, and assisting people with language deficits like aphasia, especially since
processing information at different timescales is critical to human language. On the contrary, these
tools may also serve as a stepping stone toward unethical brain decoding practices that could be used
by, for example, insurance companies or attorneys for erroneous evidence collection on a trial. In
general, advances in brain-reading technology may raise issues in neuroethics, especially regarding
mental privacy.

Negative consequences from this research may affect the participants themselves. The fMRI data
for this work was acquired in accordance with IRB protocols, which included informed consent
of the risks involved with MRI. In addition to physical risks, such as peripheral nerve stimulation,
participants were informed about the steps taken to protect their data. While personal identifying
information about participants is stored in a physical, locked, separate location from the neuroimaging
data, a failure in this system could potentially lead to a breach of confidentiality.

As with much of the research submitted to NeurIPS, training neural network models consumes large
amounts of energy. If this energy was generated by non-renewable fuel, this would have a negative
impact on the environment.
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