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Abstract— Bipedal locomotion has several key challenges,
such as balancing, foot placement, and gait optimization. We
reach optimality from a very early age by using natural
supports, such as our parent’s hands, chairs, and training
wheels, and bootstrap a new knowledge from the recently
acquired one. In this paper, we propose a scaffolded learning
method from an evolutionary robotics perspective, where a
biped creature achieves stable and independent bipedal walking
while exploiting the natural scaffold of its changing morphology
to create a third limb. Hence, we compare three conditions
of scaffolded learning to reach bipedalism, and we prove
that a performance-based scaffold is the most conducive to
accelerate the learning of ontogenetic bipedal walking. Beyond
a pedagogical experiment, this work presents a powerful tool
to accelerate learning on robots.

Index Terms— Bipedalism, Ontogeny, Scaffolded Learning,
Bootstrapping

I. INTRODUCTION

Compared to wheeled and multi-legged robots, bipedal
robots are more adaptable to complex terrain, have higher
mobility, and receive increased attention from researchers.
However, bipedal walking [1] is a notoriously tricky task
due to its inherent instability and dynamics. In [2] seven
intrinsic difficulties are listed, such as non-linear state space,
the effect of gravity, the influence of semi-structured and
unknown environments, nominally instability, multiple inputs
and multiple outputs, dynamic characteristics over time, and
requiring continuous and discrete control. In the face of such
challenges, the design of physical prototypes and complex
control algorithms for bipedal walking is costly and time-
consuming, and these will continue to be the main bottleneck
for the deployment of affordable bipedal robots [3].

Scaffolding is a learner-centered teaching method based
on the constructivist learning theory, aiming at cultivating
students’ problem-solving ability and autonomous learning
ability. Pedagogy explains it as providing small-step clues
or hints (scaffolds) for students to learn step by step to
discover and solve problems gradually. This method leads to
students mastering the knowledge to be learned, improving
their problem-solving ability, and eventually growing into
independent learners. Vygotsky, a famous psychologist in
the former Soviet Union, derived this teaching idea from
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the “zone of proximal development” theory [4]. Pedagogi-
cal applications have actively used scaffolding to bootstrap
knowledge [5] [6], and some researchers tried to understand
its associations with human locomotion: the ontogenetic
development [7] of bipedal walking in human infants [8],
and the mechanism of acquiring general motor skills and
of human walking [9] [10]. Besides, reaching bipedal lo-
comotion during early childhood requires individuals to be
strong enough to support their weight, stable enough to
resist unstable gravitational force, and to move in a state of
dynamic balance when the body alternates between double
support and single support [11] [12]. Along these lines,
the work from [13] simulated a supported infant walking
by applying linear springs and dampers to a bipedal walk-
ing model, which was controlled by a rhythm-generation
mechanism called central pattern generator (CPG) [14]. As
this simulated infant learned to walk, it naturally became
upright and prescinded from the spring support, but A. the
mechanisms deciding the amount of/need for supports to be

Fig. 1: The general idea of scaffolded learning can be exem-
plified with a child on training wheels. A biped creature’s
body length can be adjusted to act as a tripod with shorter
legs, sacrificing speed to gain stability, while a longer leg
and short body would be optimal bipedalism.
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given or B. the benefits compared to the absence of such
supports were not investigated.

In this article, we present a scaffolded learning method
for bipedalism to bootstrap its ontogenetic development with
gradual morphological and control changes. Inspired by the
mechanisms of a child learning to ride a bike with training
wheels, as shown in Fig. 1, our simulations consist of a two-
legged creature with a long body that can be dragged through
the floor as a tripod, providing a scaffold during the learning
of bipedalism. In addition, we use a genetic algorithm [15] to
evolve both morphology and control (virtual model control
[16]). We define the fitness function as the walking distance
in fifteen seconds divided by the leg length. In our initial
simulations, the creature tries to maximize its walking speed
while evolving freely, and later we introduce two evolving
conditions where we force the creature to reduce its body
length (abdicate from its scaffold) over fixed time intervals or
once the creature makes gradual performance improvements.
We show that the performance-based scaffold is superior to
the time-constrained case and the free scaffolded case, as it
allows the controller to mature before becoming independent
from the morphological support. We explain the effectiveness
of the bootstrapping mechanism, draw parallels to robotic
implementations of ontogeny [17], and propose a framework
where real-world robots can use a similar approach to
bootstrap knowledge [18]. In Section II, we describe our
adopted methods and propose the performance metrics for
our simulation, along with three scaffolded learning cases.
We show the results in Section III and discuss the implication
of these results in Section IV. We conclude our work in
Section V.

II. MATERIAL AND METHODS
A. Genetic Algorithm

Genetic Algorithms (GA) [15] use simulated evolution to
search for solutions to complicated problems. The algorithm
works applying selection, recombination, and mutation pro-
cesses on encoded genotypes, and evaluate the fitness of each
individual to evolve it over generations. We started GA with
a default individual in our work, which has a long body
touching the floor as a support, and then we recombined and
mutated it to produce a generation. We adopted a subset of
the generation containing the fittest individuals to create the
new generation. The algorithm used an array of individuals
to remember the fittest ones ever produced and utilized these
to mutate new generations under an exploration-exploitation
trade-off so that GA could find a globally optimal solution.
The pseudo-code of this algorithm can be found in Algorithm
1.

B. Virtual Model Control

Virtual Model Control (VMC), developed by Pratt et al. [2]
[16], is a motion control framework that uses a desired virtual
force, combined with the kinematics model and its Jacobian,
to generate desired joint torques on the stance leg. The
combination of these joint torques creates the same output
that the virtual force would have created, thereby creating

Algorithm 1 Genetic Algorithm
Input: population size nP, number of generations nG, mu-
tation probability MP, standard deviation SD
1: Generate the initial population of size nP by default
parameter sets of the individual
Create an empty array of the fittest individual F
fori=1,2,---,G, g+ g+1do
Evaluate all individuals according to the fitness cri-
teria
5: if current individuals fitter than the individual in F
then
6: Replace inferior individuals in F with superior
individuals until g > nG
else
8: Create new generations by crossover and muta-
tion MP with Gaussian noise N(0, SD) in F
9: end if
10: end for
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the intended motion on the robot/creature. Such forces can
be emulated as products from many components, such as
springs, dampers, dashpots, masses, dissipative fields, or any
other imaginable component.

Here, we applied VMC as an intuitive controller algo-
rithm of the tripod creature to perform a forward walking
with horizontal, vertical, and torsional springs, and dashpots

FORWARD

Fig. 2: The virtual model in the simulation. We attach linear
springs and dashpots to the individual’s hip position as the
granny walker mechanism, proposed by [2], to maintain a
constant height, and the dog-track bunny mechanism applies
a virtual force in the forward horizontal direction to help
obtain the desired velocity. Also, it has a torsional spring
and a rotary dashpot acting on the hip joint to keep the upper
body straight in the standing phase, while in the step phase,
the hip joint only has a torsional spring to swing the leg.
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Fig. 3: The walking state machine [19] in the genetic
algorithm. There are three states during the walking cycle to
allow transitions of different virtual models. The first state
is double support, which means both feet are contacting the
floor, and the second state of left support means only the
left foot contacting the floor. Similarly, the third state right
support only has the right foot on the floor.

components, as shown in Fig. 2. VMC'’s benefits are that it is
compact, requires relatively small amounts of computation,
and can be implemented in a distributed manner. We could
also implement a high-level controller as a state machine that
changes virtual component connections or parameters at the
state transitions. Even though we use a discrete high-level
controller, the overall motion can be smooth if the virtual
components have a low-pass filter effect.

C. Walking State Machine

We chose a finite state machine to allow transitions
between different virtual models during the walking cycle. It
allowed the controller to use a virtual model suitable for the
individual’s current position and the walking cycle phase.

Fig. 3 shows the finite state machine used in the algorithm,
and the Table I shows the transitions of three states. The first
state is the standing phase. When the individual is stable, a
test is done to see which foot is in front of the other. If the
left foot is in front, then we move into the left support state.
In this state, the step phase virtual model is activated. When
the right foot moved in front of the left foot and was close
to the ground, the state machine progressed to the step phase
of the right support state, in which torques in the swing leg
became zero. Then, when the right foot landed on the floor
in front of the left foot, the state machine returned to the
double support state’s standing phase.

D. Simbody Simulation Environment

Simbody is a high-performance, open-source C++ library
providing sophisticated treatment of articulated multibody
systems with particular attention to biomedical simulations’
needs. It is useful for predictive dynamic simulations of
diverse biological systems such as neuromuscular biome-
chanical models and coarse-grained biomolecular modelling.
It is also well suited to related simulation domains such as
robotics, avatar simulations, and controls, and provides real-
time capabilities that make it useful for interactive scientific
simulations and virtual worlds [20].

TABLE I: Transitions of Walking State Machine

State Trigger Virtual
Event Components
Double Support | Delay after left or right support | VCI1 & VC2
Left Support Move right foot forwards VCI & VC3
Right Support Move left foot forwards VC1 & VC4

2Granny walker (VC1), Dogtrack bunny (VC2), Swing the right leg (VC3),
Swing the left leg (VC4).

The simulation was conducted in a DELL OptiPlex 7060
series desktop with Ubuntu 18.04 system, i7-8700 processor,
12 threads, and 32GB internal memory. We will terminate
the learning process of bipedal walking early if the individual
fell, while the upper body fell to below one half of the total
body height, and they overran a time limit of fifteen seconds.

E. Performance Metric

Our ultimate goal in this work is to evolve independent
bipedal walking in fifteen seconds duration simulation, where
the fitness is equal to the walking distance divided by
the total leg length. Here, we referred the walking Froude
number [21], which is the ratio of the centripetal force and
the weight of the animal walking:

my” 2
Fr=-L=— (1)
mg gl

where m is the mass, ! is the characteristic length, g is
the acceleration due to gravity and v is the velocity. The
characteristic length [ is chosen to be the total leg length.

Since we start the simulation at a supported tripod walk-
ing, there will be tripod walking individuals, bipedal walking
individuals, and even individuals with alternating gaits during
the ontogenetic development. We use this behaviour as a
metric to measure the performance of bipedal walkers. Also,
we observe the growth rate of the fitness and the degree
of body length decay as the other two performance metrics.
We will conduct the following three cases in different body
length constraints in 4000 generations. To verify our results’
repeatability and reliability, we decide to do three replicates
for each case.

1) Free body length scaffold: According to the current
fittest, the genetic algorithm will choose the appropriate
combination of body parameters and control parameters,
benefiting from the algorithm’s advantages. Therefore, we
let it evolve freely without any restrictions.

2) Time-constrained body length scaffold: To speed up
the evolution of independent bipedal walking, we have
artificially restricted the body length by shortening the max-
imum range of body length proportionally as the generations
increase.

3) Performance-based body length scaffold: Considering
the limitation of the number of generations, it is likely
that bipedal walkers’ learning cannot be better explored.
Therefore, we have balanced exploitation and exploration and
designed a brace that limits the body length according to the
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(b) Five seconds snapshots of two creatures.

Fig. 4: (a) Fitness of the best biped and best tripod creatures.
The best biped has a femur length of 0.36 m and a tibia length
of 0.81 m, while the values for the best tripod are 0.20 m
and 0.21 m. (b) The trajectory is generated by the motion
analysis, with blue and red lines showing the path of the
center of the body.

Fig. 5: Individuals of tripods and bipeds with different leg
lengths, body sizes and foot sizes evolved in the simulation.
The upper figure of individuals performed supported tripod
walking gaits, and the lower figure of individuals are all
bipedalism.

current performance, which allows it to explore better at the
beginning and focus on exploitation when achieving better
results to maximize performance.

III. RESULTS

We started with a comparison between the best biped
and tripod’s fitness from our simulations, as shown in Fig.
4(a). Although these two presented a very similar fitness
initially, the biped gradually outperformed the tripod from
the four-second mark on-wards and reached a fitness value
37.5% larger than the tripod. We then generated their body
trajectories and plotted snapshots of these two creatures
walking for five seconds (instead of the total fifteen seconds),
as shown in Fig. 4(b). From the figure, the stride length
from the best biped was gradually increasing while the best
tripod’s stride length was almost constant. In Fig. 5, we
demonstrated a variety of tripodal and bipedal creatures
obtained during generations, and all their body lengths
were gradually decreasing. Interestingly, we observed that
most tripod creatures had long and broad feet, while the
feet of bipedal creatures were continuously shrinking over
generations.

We obtained the gait information from the relative Center
of Gravity (CoG) position, the relative horizontal velocity,
and the relative vertical velocity for both creatures, shown
in Fig. 6. Here, we defined the relative displacement unit as
a leg length (//), and the unit of the relative velocity as a leg
length per second (/I/s) to fairly compare the locomotion
from the best biped and the best tripod. Therefore, as for the
CoG, the best biped first fell to -0.35 /I and then returned to 0
I1, finally oscillating at the original position. The best tripod
first fell to -0.2 Il and oscillated for the first eight seconds.
Then, it fell again to -0.3 I/, gradually rose back to -0.15
/1, and stabilized at that height. About the relative horizontal
velocity, the best biped creature reached a maximum of 8
11/s, while the best tripod creature merely obtained 6 11/,
so the relative horizontal velocity from bipeds was 30%
higher than tripods. Regarding the relative vertical velocity,
the best biped creature reached a maximum of 2 /I/s while
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Fig. 6: Gait analysis of best biped and best tripod. We pre-processed all data and divided by the leg length to eliminate
the biped creature’s inherent advantage with longer leg length than the tripod creature. About the unit, I/ represents the leg
length, and /1 /s represents the leg length per second. The upper three blue lines (a) (b) (c) are the relative Center of Gravity
(CoG) position, relative horizontal and vertical velocities of the best biped while the lower red lines (d) (e) (f) are for the
best tripod. Here, the relative CoG position is calculated based on the biped and tripod’s original CoG from the simulation’s

beginning.

the best tripod creature was half of it, at 1 ///s. We plotted the
variations that happened with body, femur and tibia length
throughout the evolution of the bipedal creature, and we
show it at Fig. 7. The body length gradually decreases from
0.9 m to 0.1 m over 1000 generations, while the femur and
tibia lengths had very few changes in this interim. After 1000
generations, the body length continued decreasing, reaching
0.05 m (the minimum value set in the simulation), while
the tibia length increased 0.15 m and the femur length kept
oscillating stably at 0.4 m.

The results described above were based on the best crea-
tures, and those motivated us to create three cases (described
at Section ILE) to understand the mechanisms leading to
that difference. Initially, we wanted to identify the bipedal
and tripodal creatures in our simulation, and we plot Fig.
8 to help us visualize the relationship between their gait
and fitness. Over the course of 4000 generations for each
run, these creatures present a strong tendency to evolve from
tripod to biped while also drastically decreasing their body
length. We run each case three times, and observe that tripod
creatures rely on a bigger body to support their gait, never
reaching the minimum length possible. After averaging the

results from those three trials for each case, we plot Fig. 9,
where we show the mean and standard deviation from each
case. We observed that Case 1 (free scaffold) and Case 3
(performance-based scaffold) presented the bipedal results,
while two-thirds of the runs from Case 2 (time-constrained
scaffold) produced tripods as their best solutions.

In a comparison between Case 1 and Case 3 we can
notice, from Fig. 9, that Case 3 has steeper progress in the
first 800 generations, and ultimately reaches a higher fitness
value (10% higher than Case 1). Case 2, on the other hand,
struggles to evolve and only reaches 66% of the fitness from
Case 1.

IV. DISCUSSION
A. Body Length Supports Leg Growth

During the learning process of the best creature observed,
the tripodal gait phase started with a long body and a short
leg length, as shown in Fig. 7. The definition of long and
short for the body length and the leg length was relative to
the optimal body parameters. Upon analyzing our results,
we found that the creature experienced two stages before
achieving the optimal parametric combination of body and
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Fig. 7: Parameters for the body length and the leg length over
generations of the fast bipedal winner in the performance-
based scaffolded case. Here, we use a smoothness function
to draw the data clearly. The green curve and the orange
curve are the tibia length and the femur length parameters,
respectively. Their ranges are from 0.3 m to 0.9 m, and they
are set to mutate freely. The light-blue curve is the body
length parameter which is forced to decrease based on the
current performance observed, and the range is from 0.05 m
to 0.9 m.

leg lengths. From O generations to 1000 generations, we
observed a stability stage, with the body length rapidly
decreasing from 0.9 m to 0.1 m while the tibia and femur
lengths were near-constant. The second stage, marked by a
gradual speed increase, is defined by an increase in the femur
length while the body length reaches the minimum value set
in the simulation.

In the first stage, the long body/short leg and its tripodal
gait guaranteed the system to be stable to form a simple
tripod control. Naturally, with an ever decreasing support,
the short legs transition to a bipedal gait with a mature biped
controller, and this triggers an increase in leg length to reach
higher fitness values with an upright posture. This gait anal-
ysis allowed us to hypothesize on on the internal mechanism
of a scaffolded learning approach, and also strongly agreed
with the work from [7], where it is stated that roboticists
could develop better systems by exploiting insights gained
from studies on ontogenetic development. In this work, we
state that A. stable tripodal gaits scaffold bipedal gaits and
B. stable walking scaffolds speed increases, as seen in the
transition from the first stage to the second, and our results
are in strong agreement with a gait study with infants [10].
In this study toddlers who are still incapable of walking are
supported on a treadmill and are capable of performing well-
coordinated alternate stepping movements, in a very strong
resemblance to an upright bipedal locomotion.
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Fig. 8: The scatter map of all three cases with different
body lengths at every bump of the current fitness. a) Case
1: body length with free constraint during generations. b)
Case 2: constraint body length with decreasing value during
generations. ¢) Case 3: constraint body length based on the
best fitness obtained so far during generations. Red stands
for tripods, green for a hybrid bipedal-tripods, and blue for
bipeds. Since the simulations started from a tripod individual
with the longest body length, the scatter map is red in the
beginning. By growing with different body length constraint
mechanisms, most individuals become bipeds (blue) at the
end.

B. Performance-based Scaffolds Bootstrap Learning

We proposed three cases of the scaffolded learning method
in this paper. From the results shown in Fig. 8 and Fig.
9, we can state that the time-constrained scaffold (Case 2)
hinders bipedal evolution, forcing the evolutionary process
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Fig. 9: Results for all three cases within 4000 generations
(three replicates for each case). The brown dashed, purple
dotted, and black lines stand for Cases 1, 2 and 3, respec-
tively.

into a local optimum. On the other hand, a performance-
based scaffold (Case 3) not only evolved bipedalism from
tripods but also bootstraps its self-growth. Here, we set Case
1 as the baseline of independent bipedal walking learning.
Although Case 1 is better than Case 2, the learning curve
seen in Case 3 is the steepest. Case 3 takes the correct
cues to transition from tripodal to bipedal, by shortening
its body length gradually to allow the controllers to mature,
in strong agreement to the results shown in [18], where the
role of morphology in the control development is studied.
Case 1 is free scaffolded learning, and the freedom provided
prevents the system from assigning a higher priority on the
contribution from the body parameter. Case 2 shows the
negative effects of a poorly conceived support system, where
the controller for the creature over-matures at a longer body
length and stagnating at a tripod gait in most of the times.
We can analogize these cases to the human ontogenetic de-
velopment for the performance of a cognitive task as a child.
One is that parents deliberately do not interfere with a child’s
learning, as seen in Case 1, another is that parents slowly
reduce their assistance for this child based on their age, as
seen in Case 2, and the other is that as this child performs
this task parents adjust their support based on their perceived
performance, as seen on Case 3. Broadening to pedagogical
applications, Al Mamu et al. [6] provides a positive example
of how to implement inquiry-based learning in an online
environment, considering the lack of direct teacher or peer
support. However, they mentioned that recent research rises
more attention as challenges increase when adopting a free
scaffold in the self-regulated learning environment without
direct support from teachers. Therefore, only by choosing a
suitable method can we effectively accelerate the learning
process, which is in agreement with our work of physical
robots [17], where we show the negative effects of an
improperly enforced developmental process on a robot.

V. CONCLUSIONS

In this paper, we introduced a scaffolded learning method
on a creature capable of adapting its body and controller,
hence bootstrapping a bipedal controller from a stable tripo-
dal gait. Our results show that scaffolded learning with the
right parameters is more productive than leaving a system
free to learn independently. However, we also show that
this is only true when the appropriate incentives behind
scaffolded learning exist, effectively shortening the learning
process with a performance-based scaffold, while a time-
constrained scaffold is worse than the free learning case.

As the field of Robotics suffers from the curse of di-
mensionality and the Reality Gap, our proposed method
should be used on robots for faster deployment of learning
algorithms and a bottom-up construction of this knowledge
base. The same concept explained herein could be transposed
to a simulation-scaffolded reality, with the eventual removal
of the training wheels to reproduce a reality-compatible
behavior. As is the case with humans, robots should also be
capable of using their previously acquired knowledge to aid
their learning of complex tasks. After all, if Newton could
see further, it was by standing on the shoulder of giants.
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