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Abstract

Gene deletion and gene expression alteration can lead to growth defects that 
are amplified or reduced when a second mutation is present in the same cells. We 
performed 154 genetic  interaction mapping (GIM) screens  with  mutants  related 
with RNA metabolism and measured growth rates of about 700 000 Saccharomyces  
cerevisiae double mutant strains. The screens used  the gene deletion collection in 
addition to a set of 900 strains in which essential genes were affected by mRNA 
destabilization (DAmP). To analyze the results we developed RECAP, a strategy that 
validates  genetic  interaction  profiles  by  comparison  with  gene  co-citation  fre-
quency, and identified links between 1 471 genes  and 117 biological processes. To 
validate  specific  results,  we  tested  and  confirmed  a link  between  an  inositol 
polyphosphate hydrolase complex and mRNA translation initiation. Altogether, the 
results  and the newly developed analysis  strategy should represent  a  useful  re-
source for discovery of gene function in yeast.
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Introduction
The process of assigning function to a gene involves switching it off, partially 

or totally, and evaluating a phenotype.  A major  limitation of this approach is that 
genes do not function in isolation and evolved from other genes, sometimes follow-
ing cataclysmic events, such as whole genome duplication, or more restricted chro-
mosome segment duplication  (reviewed by Dujon, 2010; Marsit  et al,  2017).  As a 
consequence, removal or alteration of a gene from a duplicated pair might show no 
effect under standard culture conditions. The presence of duplicated genes can in-
crease fitness, a phenomenon that was confirmed by testing single gene deletion 
mutants in yeast (Gu et al, 2003), by performing experimental evolution under ran-
dom mutagenesis conditions (Keane et al, 2014) or by comparing the effect of dupli-
cated gene pair deletion in comparison with singletons in  S. cerevisiae versus  S.  
pombe (Qian & Zhang, 2014). Gene duplication is just the simplest illustration of 
how cells can adapt to mutations. In  many other cases, the flexibility and robust-
ness of cellular pathways allows adaptation of cells to gene loss.

A way to identify and study gene redundancy and robustness against muta-
tions is to combine perturbations for several genes in a single strain and look at the 
resulting phenotype. This strategy worked well for studies such as the identification 
of genes involved in the secretory pathway (Kaiser & Schekman, 1990). It only be-
came a systematic way to study gene function when methods to identify and quan-
tify growth of combinations for thousands of mutants became available (Tong et al, 
2004; Decourty et al, 2008; Pan et al, 2004; Schuldiner et al, 2005; reviewed in Dixon 
et al, 2009). Simultaneous perturbation of two genes can result in various effects on 
growth.  Sometimes,  the  combination  is  neutral,  sometimes  it  leads  to  a  strong 
growth inhibition (synthetic  lethality)  and sometimes one mutation can hide or 
overcome the effects of the other  (reviewed in Costanzo  et al,  2019).  Altogether, 
these effects are covered by the convenient umbrella term of 'genetic interactions' 
(GI).

The behavior  of  a  gene variant  over many  screens establish a GI profile 
(Schuldiner et al, 2005; Decourty et al, 2008; Costanzo et al, 2010). A similarity of GI 
profiles  can predict  physical  interactions  of  the corresponding proteins in com-
plexes and subcomplexes. For example, the analysis of proteasome component mu-
tants,  allowed to correctly assign proteins to the corresponding proteasome sub-
complexes (Breslow et al, 2008). Large scale double mutant screens can also asso-
ciate previously uncharacterized genes with specific pathways.  For example, the 
RNA exosome co-factor Mpp6 was identified on the basis of the observed synthetic 
lethality between its gene deletion and the absence of the nuclear exosome compo-
nent Rrp6 (Milligan et al, 2008). Thus, description of GIs serves several goals. It can 
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identify the potential function of genes and find combinations of mutants that un-
cover phenotypes otherwise hidden by gene redundancy. It can also help in under-
standing the evolutionary trajectory of duplicated genes towards redundancy or to-
wards unrelated cellular processes  (for example, Kuzmin  et al, 2020). These goals 
require high quality and validated large scale results, based on independent studies 
performed under a variety of culture conditions.

Early systematic gene deletion combination screens were  restricted to the 
study of non-essential genes. To investigate essential gene mutants, several strate-
gies have been used, including mRNA destabilization, the study of mutations lead-
ing to thermosensitivity, CRISPR genome editing and transposon insertion analysis. 
The "decreased abundance by mRNA perturbation", DAmP, strategy was the first to 
be used for systematic investigation of hypomorphic alleles of essential genes in 
yeast and is based on the addition of a long extension downstream the stop codon 
position of targeted genes. This extension leads to mRNA destabilization through 
nonsense-mediated mRNA decay (NMD, Schuldiner et al, 2005). Three independent 
systematic yeast libraries were built using variations of this strategy, for large scale 
genetic or chemogenomic screens. One did not include molecular barcodes in the 
strains (Breslow et al, 2008) and can not be directly used for growth estimation in 
pooled mutant assays. For such assays, a second collection was generated in which 
"molecular barcodes",  unique artificial  short  sequences flanked by universal  se-
quences allowing their amplification, were included at a specific genomic locus for 
each strain (Yan et al, 2008). However, since the modified locus and the barcode are 
not physically linked, this second collection was not usable for genetic interaction 
mapping (GIM) screens, which depend on co-segregation of mutant and barcodes in 
a pooled population of mutants  (Decourty  et al, 2008). To solve this problem, we 
generated a third DAmP collection, where barcodes are present at the modified lo-
cus. These strains can be used both for measuring cell numbers in GIM screens and 
for transcript quantitation, by reverse transcription and barcode amplification (De-
courty et al, 2014).

In addition to DAmP essential gene perturbations, recent methods that are 
able to generate collections of mutants analyzed by DNA sequencing became avail-
able.  For example,  CRISPR interference was used to generate new collections of 
yeast mutants  (Smith et al, 2017) and was adapted to the study of genetic interac-
tions under several  growth conditions  (Jaffe  et  al,  2019).  Alternatively saturated 
transposon insertion coupled with sequencing allows the exploration of a broad 
spectrum of mutations, including protein truncation or transcription deregulation, 
and can be used to characterize the function of essential genes (Michel et al, 2017). 
These new methods remain technically challenging and have not yet been used on 
a large scale. Thus, results about  GIs from systematic large-scale studies using es-
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sential gene variants in yeast are, for the moment, restricted to thermosensitive 
(TS) and DAmP alleles under the specific conditions of the synthetic genetic array, 
SGA (Tong et al, 2004), screens (Costanzo et al, 2016).

The modest overlap between SGA results and those obtained for the same 
pairs of mutant genes by CRISPRiSeq (Jaffe et al, 2019) confirmed previous demon-
strations that culture conditions might be crucial  for the detection and measure-
ment of GIs (Martin et al, 2015; St Onge et al, 2007). In this respect, the GIM screens 
(Decourty et al, 2008) performed under selection with antibiotics that affect mRNA 
translation, are particularly good at detecting GIs for factors involved in RNA me-
tabolism. For example, the strong effect observed in GIM screens for double dele-
tions involving components of the ribosome quality control complex and the SKI 
complex  (Brown et al, 2000), was validated on individual strains only in the pres-
ence of low concentrations of hygromycin B, a translation inhibitor (Defenouillère 
et al, 2013).

The specific conditions of GIM screens that had the potential to identify new 
GIs, and the availability of the barcoded DAmP collection, compatible with these 
screens  (Decourty  et al, 2008, 2014), motivated us to generate a new set of large-
scale GIs in yeast. We selected 154 genes, mostly related with RNA metabolism, and 
tested their GIs when combined with the 5500 gene deletions and 900 DAmP alleles 
for essential genes.

The size of the generated data set and the fact that RNA metabolism pertur-
bation directly or indirectly affects most cellular processes ensured that our results 
cover a large variety of functions. A major challenge was extracting meaningful in-
formation from the obtained results. SAFE, a recently developed method that is spe-
cific to GI networks (Baryshnikova, 2016), uses the local neighborhood in complex 
networks to identify enrichment for specific annotations. We present here a differ-
ent approach, called RECAP for "Rational Extension of Correlated Annotations and 
GI  Profiles" that starts instead from links between genes inferred from co-occur-
rence in publications, based on the set of scientific articles curated by the Saccha-
romyces Genome Database (Cherry et al, 2012).  This approach uses well annotated 
gene groups in combination with GI profile similarity to find which mutants behave 
"as expected" from previous studies. Only the validated mutants were then used to 
extend the network of related genes and predict the potential association of hun-
dreds of genes with specific cellular processes or multiprotein complexes.

4

112

114

116

118

120

122

124

126

128

130

132

134

136

138

140

142

144

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 4, 2020. ; https://doi.org/10.1101/2020.10.04.325191doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.04.325191
http://creativecommons.org/licenses/by-nc-nd/4.0/


Results

Correcting for pleiotropic behavior improves the specificity of GIs

The choice of the 154 mutants used to query the collections of gene deletion 
and DAmP strains was guided by published GI results and gene annotations, with a 
focus on RNA-related processes, as summarized in  Fig. 1 A and listed in  Supple-
mentary Table 1.  In addition to factors affecting RNA transcription,  export and 
degradation, a set of 25 mutants included genes that were either directly or indi-
rectly related with proteasome function, or had shown genetic interactions with 
proteasome deficiency. To limit the bias induced by the choice of tested mutants, we 
included 14 metabolism genes, 21 genes affecting other processes and 10 unanno-
tated or poorly annotated genes. Gene deletion strains from the collection of hap-
loid strains  (Giaever  et al, 2002) were modified to be suitable for GIM screens by 
changing  the  geneticin  resistance  cassette  with  the  MATα haploid  specific 
nurseothricin resistance cassette  (Malabat & Saveanu, 2016; Decourty  et al, 2008). 
The set of tested mutants (Fig. 1 B) included also 11 strains modified by the DAmP 
strategy and 15 deletion mutants affecting individual snoRNA genes, involved in 
targeting 2’O-methylation and pseudouridylation of rRNA (Kiss, 2002). For 4 essen-
tial genes, we decided to test the flexibility of the GIM approach, and evaluate if a 
Tet-off system (Wishart et al, 2006) could be used to study GIs of essential genes, as 
an alternative to DAmP or TS mutants. In these cases, the screen protocol, schemati-
cally depicted in Figure 1 – figure supplement 1, included the addition of doxycy-
clin in the final culture where double mutant haploid strains are selected in the 
presence of geneticin and nourseothricin.

Each screen was performed at least twice, leading to results for 326 indepen-
dent experiments (list of the experiments in Supplementary Table 2). DNA extracts 
from pools of double mutants were labeled and used for microarray hybridization. 
The obtained microarray data were normalized and the results for the two bar-
codes that are characteristic for each mutant were aggregated. Finally, the specific 
peak that corresponds to the decreased meiotic recombination frequency for genes 
located close to the “query” gene locus  (Decourty  et al, 2008; Baryshnikova  et al, 
2013) was corrected (Fig. 1C and Supplementary Data Set 1). The raw results of 
query versus reference ratios (Q/R) were normalized across genes and screens, to 
obtain a primary table of 730 139 ratios between the levels of a mutant in a given 
screen and its levels in a control population (log2 transformed values, Supplemen-
tary Table 3). Negative values of log2(Q/R) correspond to a depletion of a given mu-
tant when combined with the specific “query” allele, null values indicate no interac-
tion, while positive values suggest an epistatic relationship.
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When looking at the distribution of the obtained values for each mutant, we 
observed that  several strains showed large relative growth defects in screens per-
formed with unrelated  mutants.  For  example,  the distribution of  the scores  ob-
served for  VPS63 was different from the average cumulative distribution  of  the 
measured growth defects, with a much larger spread (Fig. 2 A). For comparison, the 
distribution of scores for the nuclear exosome factor MPP6, known to show a very 
specific response to perturbations of  the nuclear exosome (Milligan  et  al,  2008), 
showed a very steep slope (Fig. 2 A). To identify other mutants following the same 
trend like VPS63, we took the number of screens in which the log2(Q/R) of a given 
mutant was inferior to -1.25, and expressed it as the ratio  of the total number of 
screens in which the mutant was measured. The calculated value is a "pleiotropy 
index" (PI) specific to our data set and has values between 0 and 1, with higher val-
ues  indicating a  broader  shoulder  of  the  values  distribution.  For  example,  a  PI 
value of 0.5 would indicate that a gene deletion was seen deleterious for growth in 
combination with half of the query genes used in the 154 screens. The values of PI 
were 0.44 for VPS63, the maximum in our results, 0.39 for KEX2, 0.26 for VPS3, and 
0.01 for MPP6 (Supplementary Table 3). Only about 11% of the tested strains had 
PIs higher than 0.1 (539 out of 5063 measured strains). When ranking genes in de-
creasing order of measured PI, we observed an enrichment of functions related to 
intracellular vesicular transport. Thus, 15 of the top 32 genes were annotated with 
the GO term for biological process "16192", "vesicle-mediated transport", with an 
adjusted p-value for functional enrichment of 5.4x10-6, as tested using the g:Profiler 
tool  (Raudvere  et al,  2019).  Perturbation of the intracellular transport of  macro-
molecules or metabolites can affect a relatively large number of different cellular 
processes, which probably explains this result.

Since mutants showing pleiotropic effects are not informative and their ef-
fects can mask more interesting functional interactions, we adjusted the screen re-
sult values by multiplication with a correction factor derived from the PI. Among 
several possible transformations, we applied one that improved the identification 
of known GIs in the screens performed with maf1Δ, pus1Δ and temporary depletion 
of RRP6 (tet02-rrp6 strain). After testing several transformations, we chose to multi-
ply the original log2(Q/R) values with (1 - PI)3, which had little effect on most results, 
but diminished the relative contribution of the highly variable mutants. More than 
80% of the results were only slightly corrected, by factors between 0.8 and 1, and 
only 3% of the results were decreased with a factor of more than 2 (Fig. 2 – figure 
supplement 1). 

When looking at  the top 10 hits  of  the screens mentioned above,  we ob-
served the effects of the applied corrections. For example, Maf1 is a major regulator 
of RNA polymerase III activity (reviewed in Boguta, 2013) and is thus tightly linked 
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with tRNA metabolism. The first and third most affected gene deletions affected by 
maf1Δ, PUS1 and TRM1, are both linked with tRNA modification (reviewed in Hop-
per, 2013). However, the fourth and fifth values in the maf1Δ screen correspond to 
KEX2, coding for a protease involved in the secretory pathway, and STE3, a mem-
brane receptor. The pleiotropy correction effectively filtered out these results, while 
improving the ranks of TAN1 and TRM10, linked with tRNAs (Fig. 2 B) which were 
promoted in the top 5 of the adjusted results. In the screen using the pus1Δ strain, 
affecting tRNA modification, the fifth hit was most affected by the pleiotropy correc-
tion (Fig. 2 C). MIM1, the corresponding gene, has no known link with tRNA. How-
ever, both the first four hits and the next 3 correspond to genes affecting tRNA mod-
ification or synthesis: MAF1, TRM10, TRM8, TRM82, DUS3, YLR400W, which over-
laps partially DUS3, and PUS4.

The effects of the applied corrections were occasionally impressive, as seen 
with the screen in which the expression of RRP6 was blocked by doxycyclin addi-
tion during the growth of the double mutant strains. RRP6 is a 3' to 5' exonuclease 
that associates with the nuclear exosome and is involved in RNA synthesis, matura-
tion and degradation  (reviewed in Fox & Mosley, 2016). However, 8 out of 10 top 
hits in the corresponding screen did not match known genetic interactions for this 
factor (Fig. 2 D). These 8 factors were among those highly variable in many screens 
and the corresponding values were strongly reduced by applying the pleiotropy 
correction. The remaining genes, MPP6 and deletion of overlapping YNR025C, were 
the top hits of the tetO2-rrp6 screen, in agreement with previous results obtained 
with an  rrp6Δ  strain  (Milligan  et al, 2008). Thus, correction for pleiotropic effects 
can help in recovering important functional information, with variable efficiency 
depending on each screen particular conditions. Among the corrected results, there 
were 2356 gene deletions and 402 DAmP mutants with at least one adjusted log 2(Q/
R) value lower than -1, thus showing a ratio for query screen to reference of at least 
2 (Supplementary Table 4). Next, we wondered how good the measured GIs were, 
and, for this task we used several criteria, as described below.

We were confident that the identified GIs were meaningful, since the screen 
results were compatible with current known annotations and with previously pub-
lished data sets (annotated examples in Fig. 2 B-D). However, we wanted to assess 
the quality of the measured GIs globally. We thus took advantage of the fact that GI 
profiles, the set of values obtained for a given mutant, provide more information 
than direct GIs for inferring gene function (Decourty et al, 2008). Thus, we used cor-
relation of GIs to test the validity of the newly obtained data set. For a first valida-
tion of the adjusted results we looked for the similarity of GIs for the same gene 
mutant when tested in the query MATα strain (NatR marker) or in the tested pool of 
MATa strains (KanR marker). Pearson correlation values of the GI profiles for the 
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127 pairs of genes tested independently were clearly skewed towards positive val-
ues, as expected. In contrast, correlation for all the possible pairs of GIs in the data 
set showed a bell-shaped distribution centered on zero (Fig. 3 A). Thus, the pheno-
type of mutating the same gene was similar, whether the mutant was present in the 
query strain or in the pool of tested strains.  We performed a similar analysis for 
cases of overlapping gene deletions to analyze the correlation between the effect of 
independent  mutations  affecting  the  same  locus.  Since  two  deletions  affect  the 
same gene, the two strains should behave similarly in the screens. For the available 
pairs of overlapping gene deletions, we observed a strong positive correlation for 
their GI profiles (Fig. 3 B, right). In conclusion, correlated GI profiles for  mutants 
affecting the same gene (Fig. 3 A) and for overlapping mutants (Fig. 3 B) globally 
validated the quality of our large-scale screen results.

The GI profiles from the GIM screens were compared with results obtained 
with similar mutants using the SGA approach (Costanzo et al, 2010). There were 52 
screens that were done with mutants affecting the same gene in the two sets. For 
many screens, a positive correlation coefficient between the SGA and GIM results 
indicated that part of the observed GIs were similar among these two independent 
assays (Fig. 3 – figure supplement 1). On other occasions, no correlation could be 
detected.  This  discrepancy  can be  explained by  the  fact  that  the GIM and  SGA 
screens  were performed in completely different culture conditions. Alternatively, 
for query gene mutants that have little impact on gene function, with no strong GI 
detected, a lack of correlation between results is to be expected.

We focused on the situations where SGA and GIM results were correlated, as 
these cases depend on GIs that were robustly detected across assays and laborato-
ries. As examples of GIs responsible for the observed correlations, we present the 
comparison of the GIM and SGA screens performed with  maf1Δ (Fig 3  C) and the 
comparison of the SGA rrp6Δ screen with RRP6 depletion GIM screen using a Tet-off 
system (Fig. 3 D). The correlation between RRP6 deletion and its depletion by Tet-
off shows that the GIM protocol can be adapted to new ways to affect gene function.  
The mRNA depletion by transcription inhibition using the Tet-off system is particu-
larly appealing, since this strategy should work for any essential gene.

While some results  were specific to either GIM or SGA assays, thus being 
condition and assay-dependent, there are a number of direct GIs that were robustly 
detected in both types of screen. We thus generated a list of 479 pairs of genes hav-
ing a synergistic negative impact on growth in both GIM and SGA screens (Supple-
mentary Table 5). This list of GIs that were observed in very different assay condi-
tion represent a gold standard that could serve to benchmark future large-scale GI 
screen results.
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The results presented here were thus validated by the correlation of GI pro-
files for the same gene mutation and by overlapping gene deletion analysis. In com-
bination with previous SGA results, our data also validate several hundred GIs that 
can be considered robust.

The amplitude of GIs for DAmP alleles correlates with specific 
gene features

Since  the  DAmP  mutant  strains  were  used  in  addition  to gene  deletion 
strains in our screens, we wondered if  we could obtain insights into global  differ-
ences between these two types of gene perturbation.  DAmP perturbation of gene 
function depends on the effect of a long 3’ untranslated region on RNA stability. The 
NMD  degradation pathway, responsible for destabilization of DAmP RNAs can be 
highly variable (Decourty et al, 2014; Breslow et al, 2008). Thus, its impact on the es-
sential  gene function,  and the profile of  GIs  for  the corresponding mutant,  was 
likely to vary and could be correlated to various RNA features, such as abundance 
or  coding  sequence  length.  We  thus  looked  for  a  correlation  between  original 
mRNA abundance for essential genes and the frequency at which the correspond-
ing DAmP alleles showed a GI in the results.  To this end, we arbitrarily defined 
screen-responsive gene perturbations as those in which we observed at least a vari-
ation by a factor of 2 for a given gene in at least one of the GIM screens. Mutants 
that showed no effect in combination with any of the 154 query gene perturbations 
would be included in the non-responsive category. We calculated which fraction of 
the tested mutants was in the responsive or non-responsive category in correlation 
with RNA abundance and coding sequence length.

Interestingly,  the  percent  of  screen-responsive DAmPs  increased  with  the 
abundance of the corresponding mRNAs (Fig. 4 A). As background, and for compar-
ison, we applied the same analysis to gene deletions, for which the effect of mRNA 
abundance on the frequency of response in GIM screens was less marked. How-
ever, in both cases deletion or DAmP perturbation were most correlated with an 
effect in GIM screens for the most abundant mRNAs. We also looked at the relation 
between screen responsiveness and the length of the coding sequence for the af-
fected gene, which is linked with the destabilization of DAmP modified mRNAs (De-
courty et al, 2014). In this case, the fraction of screen-responsive DAmP mutants de-
creased as the length of the initial gene coding sequence increased. This effect of 
coding sequence length was not found for gene deletions, where, on the contrary, 
the highest proportion of screen-responsive mutants was found in the group of long 
genes (Fig. 4 B). Thus, features associated with an effect visible in the GIM screen 
conditions were high expression level and large gene size for gene deletion and 
high abundance mRNA and short coding sequence size for DAmP modification.
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To illustrate how useful the new results on DAmP strains can be and further 
validate the obtained result on a large scale, we focused on a group of 22 DAmP mu-
tants affecting proteasome-related genes,  which are highly expressed and  can be 
relatively short. For example, 11 out of the 22 selected genes have coding sequences 
shorter than 1176 nucleotides, which places them in the first two bins represented 
in Fig. 4 B. We ranked the screens to find those in which the median of the adjusted 
log2(Q/R) values for this group of proteasome DAmP mutants was lowest. The top 5 
screens showing GIs with proteasome-related genes were, in order, those using as 
query genes the deletion of RPN10, the depletion of RAT1, and deletions of RPN4, 
PRE9 and POC4. Four out of the 5 screens in which DAmP proteasome mutants were 
most affected corresponded thus to perturbation of proteasome components RPN10 
and PRE9, of a regulator of proteasome formation, RPN4, and of the proteasome as-
sembly factor POC4.  Values for  the DAmP proteasome mutants  in those screens 
were  clear  outliers,  when  compared  with  the  overall  distribution  of  adjusted 
log2(Q/R) values in each screen (Fig. 4 C). In the screens performed with deletions of 
RPN10 and RPN4, DAmPs for proteasome-related genes represented the majority of 
strong negative measured GIs, as illustrated in Fig. 4 D.

A fifth screen showing a strong global effect in combination with protea-
some DAmP mutants involved the temporary depletion of the major nuclear 5’ to 3’ 
exonuclease RAT1 using the Tet-off system. This result was surprising but compati-
ble with the various roles of the proteasome in transcription (reviewed in Durairaj 
& Kaiser, 2014) and the described role of Rat1 in RNA polymerase II transcription 
termination (Kim et al, 2004). Alternatively, it could be an illustration of the deregu-
lation of protein homeostasis following Rat1 depletion, which might require com-
pensation by an increase in proteasome activity (Tye  et al, 2019).  Thus, the use of 
DAmP mutants in combination with the Tet-off strategy for query gene perturbation 
uncovered GIs that are functionally relevant and potentially important.

In addition to the proteasome analysis detailed in this section, DAmP modifi-
cation led to the identification of  other new links between genes involved in RNA 
metabolism. Thus, for example, the DAmP modification of the 3’ to 5’ RNA degrada-
tion exosome complex component RRP46,  and of the rRNA modification complex 
component  NOP56 were  synthetic  sick  with  the  deletion  of  several  RNA-related 
genes  (Fig.  4  –  figure  supplement  1),  including  the  poorly  characterized  locus 
YCL001W-A and the recently identified SKI complex associated protein Ska1 (Zhang 
et al, 2019). Altogether, these results illustrate the value of including mutants of es-
sential genes in GIM screens.
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Predicting function based on GI profiles by using RECAP

Associating genes with a cellular pathway is often based on the observation 
of a specific phenotype when the gene function is affected by deletion, down-regu-
lation  or  mutation.  A  different  type  of  phenotype,  tested  in  large-scale  genetic 
screens, is represented by the constellation of gene perturbations that, when com-
bined with a yeast gene mutant of interest, have an effect on the strain’s growth 
rate. This profile of response of a mutant to combinations with the query gene per-
turbation, also called GI profile, can be used to find functional relationships from 
screens data (Schuldiner et al, 2005; Decourty et al, 2008; Costanzo et al, 2010). GI 
profile similarity is an important type of results derived from large-scale genetic 
screens. We wondered whether we could use GI profile similarity from our results 
and integrate it with curated literature data on yeast genes to understand : a) what 
fraction of known functional interactions can be reached with our GI data set and 
b) whether we can use the similarity of  GI profiles to assign new genes to known 
cellular pathways. To answer these questions, we developed a data analysis strat-
egy called  RECAP (Rational  Extension of  Correlated  Annotations and GI  Profiles, 
summarized in Fig. 5 – figure supplement 1), which, instead of focusing on the GI 
network, starts from published data curated by the Saccharomyces Genome Data-
base maintainers (Cherry et al, 2012). 

To establish links between genes from the table that associates genes and 
publications, we first removed publications associated with more than 100 genes, 
since we considered that such publications are too general to be informative. The 
remaining  literature  corpus  consisted  of  76 160  publications.  We  restricted  our 
analysis to the  upper half of the most cited yeast genes, leading to a selection of 
3 575 genes or genomic features cited in at least 31 scientific publications. Among 
these well studied genes, 1 847 were present in our GIM data set of 5 063 genetic in-
teraction profiles.  For these 1 847 genes,  we identified 4 072 linked gene pairs. We 
considered two genes, A and B, to be linked by co-citation if, for each gene A, at 
least 20 % of its publications mentioned gene B and reciprocally, if 20 % of citations 
for B also contained A. We used the Louvain algorithm (Blondel et al, 2008) on the 
set of 4 072 gene pairs to identify 439 communities of related genes corresponding 
either to well-studied complexes or to well-known genes involved in the same cellu-
lar pathway (Supplementary Table 6).

In the next step of the RECAP approach, we wanted to combine the  newly 
defined literature-based clusters with the information available from the similarity 
of GI profiles in the GIM data. We calculated Pearson correlation  for each pair of 
the 5 063 GI profiles of our data set. For each mutant, we sorted the obtained corre-
lation coefficients in decreasing order and arbitrarily considered two mutant pro-
files,  X and  Y, to be linked if the correlation coefficient of  X with Y and of Y to  X 

11

374

376

378

380

382

384

386

388

390

392

394

396

398

400

402

404

406

408

410

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 4, 2020. ; https://doi.org/10.1101/2020.10.04.325191doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.04.325191
http://creativecommons.org/licenses/by-nc-nd/4.0/


were in the top 20 of correlation coefficients for both X and Y. This choice increased 
the specificity of the method and avoided situations in which spurious correlations 
would pollute the results.

Having established literature and GIM-based links between genes, we won-
dered how to combine these results. Among the 439 communities of related genes 
identified from the literature, 117 had at least two genes linked by GI profiles simi-
larity in our GIM data set (Supplementary Table 7). To visualize the presence of 
data that matched the GI profiles we selected the 35 groups, out of 117, that had at 
least 4 genes from the GIM data showing correlated profiles to other genes from the 
same sub-network (Fig 5A). These groups comprised 550 genes (of the 1 847 genes 
of the network) and 2 393 links and involved data for 270 genetic interaction pro-
files (of the 5063 available), including those of 67 DAmP mutants. The cellular func-
tions that corresponded to the 35 groups of genes covered a wide range, from DNA 
transcription to vesicular transport and mitochondrial function (Fig. 5 A, see anno-
tations).

Our literature-based analysis of genetic interaction profiles indicated which 
mutant strains had phenotypes specifically correlated with the function of the cor-
responding gene. This knowledge allows focusing on these mutants first, since they 
were independently validated to provide functional information. Using this knowl-
edge is essential to avoid conclusions about gene function that would come, for ex-
ample, from perturbing an unrelated gene that is physically close on the chromo-
some (Atias et al, 2016). We thus used the validated GI profiles from each of the 117 
co-citation based  clusters  in which at least two genes had similar GI profiles  and 
used GI similarity to extend each of the clusters. Importantly, if genes for which we 
had profile data were present in co-citation clusters but were not linked by GI pro-
file similarity to other genes in the same cluster, these profiles were ignored.

An example of the performance of this approach is shown in Fig. 5 for the 
group of  literature-linked genes MAD1,  MAD2,  MAD3 and BUB1 (a paralogue of 
MAD3). The MAD genes contribute to the spindle assembly checkpoint in relation 
with kinetochores, and are required for cell division (reviewed in Yamagishi et al, 
2014).   This group of four genes included the correlated GI profiles for the MAD1/
MAD2 and for the MAD1/MAD3 pairs (Fig. 5 B). The RECAP-extended network based 
on the MAD gene group included other genes with roles in the spindle assembly 
checkpoint, such as  KAR9, CTF19 and BFA1, but also many genes related with mi-
crotubule cytoskeleton organization and function, a process that is linked directly 
with spindle assembly and function (Fig. 5 C). A few genes were not annotated di-
rectly to spindle assembly or microtubule function, such as RAD53 (DAmP modifica-
tion), SET2, ZIP2 or MCM21. However, MCM21 is a component of the COMA kineto-
chore sub-complex (De Wulf et al, 2003), RAD53, a gene with multiple roles in DNA 
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repair, is also linked with mitotic checkpoints  (reviewed in Lanz  et al, 2019) and 
ZIP2 is involved in homologous chromosome pairing in meiosis  (Chua & Roeder, 
1998). Thus, the large majority of the genes identified by RECAP starting from just a 
few components of the spindle assembly machinery had functions in relation with 
this process.

We used GO term enrichment analysis (Raudvere et al, 2019) to establish the 
biological process and cellular component that were predominant in each of the 
117 literature-defined communities and associated the genes from the extended RE-
CAP network to these processes (Supplementary Table 8). A total of 1471 genes in-
volved in 3893 gene pairs were finally associated with defined processes, allowing 
new hypotheses about these genes function to be tested by future oriented experi-
ments. The RECAP strategy is not limited to GI profile similarity, but can be adapted 
to other large-scale data sets in which links between related genes have been estab-
lished.

Linking inositol polyphosphate metabolism and translation 
initiation

In addition to GI profile similarity, the discovery of individual  GIs can also 
be informative for gene function. We explored in detail the synthetic lethality be-
tween the deletion of LOS1, a gene involved in tRNA export from the nucleus to the  
cytoplasm (reviewed in Hopper, 2013), and several OCA genes. OCA1, the founding 
member for the OCA nomenclature, was initially identified as an Oxidant induced 
Cell-cycle Arrest factor (Alic et al, 2001). The other five members of this protein fam-
ily  were  identified based on protein sequence similarity  (Wishart & Dixon, 1998; 
Romá-Mateo et al, 2011). Only recently a biochemical role was attributed to OCA3 in 
the hydrolysis of specific inositol-polyphosphate species (Steidle et al, 2016). Modifi-
cation of inositol-polyphosphate levels in OCA mutants is probably responsible for 
the observed phenotypes when OCA genes are deleted,  ranging from changes in 
replication of an RNA virus (Kushner et al, 2003) to effects on yeast prion propaga-
tion (Wickner et al, 2017).

We have previously observed a strong growth defect when OCA2 and LOS1 
deletions were combined (Decourty et al, 2008). This link was confirmed when the 
deletion of OCA4, another OCA gene, was tested by SGA, although LOS1 deletion 
was only found as the 101st most affected hit (Costanzo et al, 2016). GI profiles for 
deletions of OCA1, OCA2, OCA3 (SIW14),  and OCA5 were highly similar in the SGA 
data (Costanzo et al, 2016). All the OCA deletion mutants also showed a coordinated 
response to a set of chemical compounds (Hoepfner et al, 2014), indicating that loss 
of these proteins leads to a similar cellular response.  In view of the similarity be-
tween OCA deletion profiles, we compiled physical interaction results about OCA 
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proteins from the  BioGrid  database  (Oughtred  et  al,  2019).  Except  for  Oca6,  we 
found evidence for physical  interactions between OCA proteins,  potentially in a 
multimeric complex (Fig. 6 – figure supplement 1).

In correlation with the previous data on OCA genes and LOS1, we found that 
LOS1 deletion showed, among our 154 GIM screens, the strongest negative effect on 
growth when combined with deletions of OCA2, OCA4, OCA6 and OCA1 (Fig. 6 A). 
The sixth screen in which deletion of LOS1 strongly affected growth involved the 
deletion  of  RIT1,  which modifies  initiator  tRNA and renders  it  incompetent  for 
translation elongation  (Aström & Byström, 1994). This result was compatible with 
the role of LOS1 in tRNA export, including tRNAi

Met and suggested that the other ob-
served GIs for LOS1 had high confidence. To further validate the GIs between OCA 
genes and LOS1 deletion, we tested the growth of single and double mutant strains 
in various media. We found that moderate doses of lithium chloride in rich medium 
sensitized the growth assay for the  los1Δ/oca2Δ strain. Under these condition, ex-
pression of LOS1 and OCA2 from plasmids  (MOBY collection, Ho  et al, 2009) par-
tially restored growth of the double mutant strain, thus confirming the screen re-
sults (Fig. 6 B).

To further  explore OCA genes role and how they could be connected with 
LOS1 function, we analyzed results obtained during large-scale transcriptome pro-
filing of deletion mutants (Hughes et al, 2000). Among the tested deletion mutants, 
the data set contained the transcriptome measures for the effects of deleting OCA5. 
We noticed that the transcriptome changes in this OCA5 mutant were inversely cor-
related  with  those  observed  when the  translation-regulated  transcription  factor 
GCN4 (or its overlapping gene YEL008W) were deleted.

GCN4 is one of the best studied example of translation regulation and plays a 
crucial role in adaptation of yeast cells to amino acid starvation (reviewed in Hin-
nebusch, 2005; Hinnebusch et al, 2016). Activation of GCN4, whose mRNA contains 
four short open reading frames upstream the start codon, occurs when translation 
is inhibited and leads to transcription of hundreds of targets, including many genes 
involved in amino acid synthesis (Natarajan et al, 2001). Such GCN4 targets were re-
sponsible for the strong inverse correlation between the transcriptome results in 
the gcn4Δ strain compared with oca5Δ (Hughes et al, 2000, Figure 6 C). To validate 
this observation, we measured the changes in the levels of two representative tran-
scripts,  ARG1 and SNO1, in strains deleted for OCA2 and GCN4, by reverse-tran-
scription and quantitative PCR.  Correlated  with the  published results,  OCA2 ab-
sence led to an increase, while GCN4 absence led to a decrease in their levels (Fig. 6 
D and E). The increase in the levels of these transcripts in the absence of OCA2 was 
further enhanced in double mutant strains combining the deletion of OCA2 with 
the deletion of LOS1 (Fig. 6 D and E). Altogether, these results suggested a link be-
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tween OCA genes and translation regulation that was potentiated in the absence of 
the tRNA export factor LOS1.

A possible explanation for the observed results  was that  the loss  of  OCA 
genes leads to GCN4 activation. To test this hypothesis, we used a reporter system in 
which beta-galactosidase is expressed in a GCN4-like configuration, with its coding 
sequence fused with the 5’ untranslated region of GCN4  (Mueller & Hinnebusch, 
1986). In this system, we observed a clear increase in the beta-galactosidase activity 
when LOS1 deletion was present in an oca2Δ strain (Fig. 7 A). Thus, the perturba-
tion of OCA function coupled with a tRNA export deficiency led to GCN4 activation, 
most likely through inhibition of translation initiation.

A central factor in translation initiation is the tRNA i
Met and, since LOS1 is in-

volved in its nuclear export, we wondered if it could be involved in the synthetic 
sick effect observed when combining LOS1 and OCA gene deletions (Fig. 6 A and B). 
Over-expression of tRNAi

Met (Dever et al, 1995) led to a reversal of the slow growth 
phenotype of both los1Δ/oca2Δ and los1Δ/oca5Δ strains (Fig. 7 B), indicating that ini-
tiator tRNA shortage becomes limiting in the absence of OCA genes. How the inosi-
tol-polyphosphate imbalance generated in such strains affects translation initiation 
remains an interesting question for future research.

Discussion
The set of about 700 000 GIs described in our study, together with multiple 

validations of the obtained results (Fig. 2, 3),  establish a new resource for func-
tional genomics in yeast, along and complementary to previous large-scale GI re-
sults  (for example, Costanzo et al, 2010, 2016).  Individual screens performed with 
temporary transcription repression of  query genes also demonstrated the  value 
and flexibility of GIM screens for the study of essential gene function (see, for ex-
ample the case of RRP6, Fig. 2D and RAT1, Fig. 4A). One of the advantages of GIM 
screens is that they do not require any robotic devices. The detection of barcodes, 
originally  done  with  DNA microarrays  can  be  switched  to  DNA  sequencing,  as 
shown for chemogenomic screens (Smith et al, 2009). Thus, GIM screens are a pow-
erful alternative to SGA for large scale GI tests. The results presented here identify 
novel  GIs  for  essential  and non-essential  genes  involved in  RNA metabolism in 
yeast and bring an independent validation for hundreds of  previously observed 
GIs. As demonstrated through the analysis of the correlated GI profiles, this new 
data set explores a large variety of cellular processes and macromolecular com-
plexes, well beyond the function of the 154 screen query genes (Fig. 5).

One of the goals of performing large-scale genetic screens is to establish new 
functional links between genes and cellular processes. To this end, gene set enrich-
ment analysis  (Subramanian  et al,  2005) can be applied to groups of genes that 

15

528

530

532

534

536

538

540

542

544

546

548

550

552

554

556

558

560

562

564

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 4, 2020. ; https://doi.org/10.1101/2020.10.04.325191doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.04.325191
http://creativecommons.org/licenses/by-nc-nd/4.0/


share similar GI profiles. A refinement of this approach, as implemented in the spa-
tial  analysis  of  functional  enrichment  (SAFE)  method  (Baryshnikova,  2016),  in-
cludes in the enrichment analysis the topology of the gene network, built, most fre-
quently, from the similarity of GI profiles. This method has the advantage of provid-
ing a map for how various enriched GO terms distribute across network and allows 
a visually rich inspection of the results. We demonstrate here a complementary ap-
proach, called RECAP, that combines gene co-citation links with GI profile similarity 
and identifies pairs of genes that are both related by the literature data and by the 
experimental results (overview of the method in Fig. 5 – figure supplement 1). The 
inclusion of literature information in the analysis of GI profiles highlights mutants 
that behave as expected in the GI data set.  This selection process validates hun-
dreds of GI profiles and allows the identification of linked genes and their associa-
tion with well described biological processes or macromolecular complexes.

The  originality of RECAP consists in  the use of published results to find GI 
profiles of high confidence, serving as anchoring points to extend the network of 
functional links. The reason we used co-citation to build the initial functional net-
work is that it suggests links between genes and groups of genes in a manner that is 
quite natural and independent from the hierarchical gene ontology terms annota-
tions  (Ashburner  et  al,  2000;  The Gene Ontology Consortium, 2019).  Co-citation is 
used by major gene annotation and protein interaction databases such as STRING 
(Szklarczyk et al, 2017). However, it has not been used until now for the analysis of 
GI networks as a yardstick in the initial validation of experimental results.

A potential problem of co-citation is that its quality depends on the availabil-
ity of a high-quality curated database that associates genes and publications, such 
as the one maintained by the Saccharomyces Genome Database (Cherry et al, 2012). 
Since the version of RECAP presented here depends on such manually curated data-
base, extending it to other organisms depends on the presence of equivalent re-
sources. It is likely that full text mining, such as the one implemented by Textpresso 
(Müller et al, 2018) would allow automatic building of such databases for other or-
ganisms. Alternatively, association by GO term similarity and by other ways to link 
genes, such as the network extracted ontology (Dutkowski et al, 2013), could be also 
effective as the first step of a RECAP analysis.

RECAP is useful to confidently extend functional interaction networks with 
GI results (for an example see Fig. 5 B and C). Among the mutants validated by this 
analysis we were particularly interested in those affecting essential genes through 
the DAmP modification, since functional interactions, as detected by large-scale ge-
netic screens, are scarcer for essential than for non-essential genes. Many DAmP 
strains display normal growth rates under standard culture conditions  (Yan et al, 
2008; Breslow  et al, 2008). However, testing a few conditions might miss specific 
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phenotypes  associated  with  DAmP perturbation of  genes.  The GIM screens  per-
formed in this study are equivalent to testing 154 different stress conditions for 
each of the tested DAmP strain. Similar to the observation that deletion of most 
non-essential genes does not affect growth under standard culture conditions, but 
can be limiting in the presence of a chemical (Hillenmeyer et al, 2008), we view the 
set of GIM screens we performed as a series of highly diverse stress conditions.  
Thus,  the  screens  probed  a  panorama  of  conditions  for  the  900  DAmP  mutant 
strains and allowed the identification of global trends, such as the correlations of 
DAmP modification effect with short coding sequence length and high gene expres-
sion (Fig.  4).  Together  with  the  previously  published  results  on  DAmP mutants 
(Costanzo et al, 2010, 2016), the large-scale characterization of these collections of 
strains is a useful resource for anyone interested in the study of specific essential 
genes.

In addition to the 154 different tests  for each of the approximately 5 000 
tested mutants, the presence of translation inhibitors in the GIM screens introduced 
an additional stress common to all our screens. This stress allowed the identifica-
tion of  GIs  that  would have been otherwise of  much lower amplitude or  unde-
tectable. An example is the link between the OCA complex genes and the tRNA ex-
port factor LOS1, which was weak in SGA results (Costanzo et al, 2016), but among 
the highest-ranking ones in the GIM data (Fig. 6 A). We validated this link on indi-
vidual double mutant strains and showed that it is dependent on the availability of 
the initiator tRNAi

Met (Fig. 6 and 7). Since the OCA complex affects inositol polyphos-
phate metabolis, this result adds a new element in the complex puzzle of the influ-
ence of inositol poly-phosphates on cellular processes and highlights the usefulness 
of measuring genetic interactions under a variety of conditions, as previously sug-
gested (Martin et al, 2015; Jaffe et al, 2019). 

The new GI resource together with RECAP and the associated validation ex-
periments will be useful for further exploration of gene function in yeast and other 
organisms.

Materials and Methods
GIM screens were performed as described originally (Decourty et al, 2008), 

and following the protocol described in detail in (Malabat & Saveanu, 2016), using 
custom-made turbidostat devices that allowed performing 16 cultures in parallel.  
Briefly, MATα query strains were obtained by replacing the KanMX resistance cas-
sette in strains from the gene deletion collection (Giaever et al, 2002) with a Prα-Nat 
cassette that expresses the nourseothricin resistance gene only in the context of a 
haploid MATα strain. Hygromycin B resistance was also added to the query strain 
using a centromeric plasmid to allow selection of diploid strains after mating. Pools 
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of deletion (Giaever et al, 2002) and DaMP strains (Decourty et al, 2014) were recov-
ered from stock maintained at -80°C and left to recover in rich medium for 30 min-
utes by incubation at 30°C, then mixed with fresh query strain culture for mating 
on a plate. Recovered diploids were incubated overnight at 30°C in the presence of 
0.2 mg/ml hygromycin B and 0.2 mg/ml G418. Sporulation was induced after culture 
in GNA medium (5% glucose, 3% Difco nutrient broth, 1% Difco yeast extract) by 
switching to potassium acetate medium (1% potassium acetate, 0.005% zinc acetate, 
supplemented with 2 mg uracil, 2 mg histidine and 6 mg leucine for 100 ml). After 
sporulation, cells were recovered in YPD medium (2% glucose, 1% Difco yeast ex-
tract, 1% Difco Bactopeptone), incubated for 6 hours without antibiotics and grown 
for 45-60 hours in the presence of 0.2 mg/ml G418 and 20 μg/ml nourseothricin. For 
each batch of 16 screens, the reference against which the screens were compared 
was a mix of cells from all the final cultures. For Tet-off query strains and screens, 
doxycyclin at 10 μg/ml was included in the dual antibiotic haploid selection step for 
16 to 24 hours in liquid culture. DNA was extracted from the final cell pellets and 
used to amplify upstream and downstream barcodes. Barcode DNA relative levels 
were measured using custom microarrays (Agilent Technologies, California, USA) 
and the collected images were processed with GenePix Pro 6 (Molecular Devices, 
California, USA) and analyzed using R (R Core Team, 2019). Data analysis consisted 
of normalization of the Cy3/Cy5 using the loess algorithm, aggregation of results for 
upstream and downstream barcodes and normalization of the aggregated results. 
Each screen result was examined for the presence of the expected signal around 
the query gene locus that corresponds to the decrease in recombination frequency 
during meiosis due to physical proximity on the same chromosome. Situations with 
secondary peaks or lacking exclusion peaks were eliminated from further analysis. 
The exclusion peaks were corrected using estimates of recombination frequency 
based on the observed signal (Decourty et al, 2008). Finally, results from at least two 
independent screens were expressed as the log2 of the ratio between the screen of 
interest and the reference (Q/R) and combined to obtain GI estimates. Results were 
corrected for pleiotropic effects by counting the fraction of screens in which a given 
mutant showed a log2(Q/R) value inferior to the arbitrary threshold of -1.25, named 
pleiotropic index (PI). Each initial log2(Q/R) value was multiplied with (1-PI)3 to de-
crease the weight of mutants showing a response in most screens. Adjusted values 
of log2(Q/R) were used to compute Pearson correlation coefficients for all the GI pro-
files pairs. To assess the reciprocity of the observed GI profiles, we ranked for each 
mutant the similarity of profiles for all the other mutants in decreasing order of the 
corresponding Pearson correlation coefficient. If the GI profile for mutant A was 
among the top 20 profiles for mutant B and, conversely, the profile for mutant B 
was in the top 20 profiles for mutant A, we considered that A and B were linked.
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RECAP data analysis. To annotate the observed GI profile links we used the 
curated  database  of  yeast  literature  from  the  Saccharomyces Genome Database 
(Cherry et al, 2012). The table associates genes with publications. Only articles deal-
ing with less than 100 genes were selected, and only the half most cited yeast genes 
were used to build a network of co-citations. Links in this network were based on 
the presence of the two genes in the same publications. At least 20 % of articles cit-
ing a gene had also to cite the other one to establish a connection. The obtained co-
citation network for 1 847 genes showed strong connections among 439 isolated 
groups of genes. Within each group, we analyzed the presence of genes linked by GI 
profile similarity and selected 117 cases in which at least one such connection was 
present. Genes connected by GI profile similarity and by co-citation were consid-
ered valid in terms of GIM screens and served to extend the network using the cur-
rent GIM data set of adjusted log2(Q/R) and the computed links based on reciprocal 
GI profile similarity. The links based on GI profile similarity were then used to asso-
ciate genes with biological processes or cellular components. To this end we used 
the list of genes of each group to interogate the g:Profiler web server https://biit.c-
s.ut.ee/gprofiler/gost for  gene  ontology  term  enrichment,  using  the  gprofiler2 R 
package  (Raudvere et al, 2019) and selected the top entry for biological process and 
cellular component in each case. To test various configurations for RECAP, we used 
the R igraph (Csardi & Nepusz, 2006) and RCy3 (Gustavsen et al, 2019) packages, to-
gether with visualization and network analysis in Cytoscape (Shannon et al, 2003).

Strains and plasmids. The generation and details of the DAmP strains col-
lection were previously published (Decourty et al, 2014). Briefly, DNA from diploid 
strains from the deletion collection  (Giaever  et al, 2002) for the genes of interest 
was used to amplify the KanR cassette flanked by upstream and downstream bar-
code sequences. The cassette was amplified using oligonucleotides that targeted the 
insertion of the cassette in the genome of a BY4741 yeast strain downstream the 
stop codon of  the same gene.  Individual  clones from each transformation were 
tested by PCR amplification with specific oligonucleotides. For the situations when 
the DAmP strain was used to perform  GIM screens, the KanR cassette was trans-
ferred by amplification and transformation in the BY4742  MATα background. In 
these strains, the G418 resistance cassette was next  replaced by the  Prα-Nat cas-
sette. For the Tet-off strains, we used the pCM224 vector (Bellí et al, 1998) to amplify 
the G418 resistance cassette and place the tetO2 sequence upstream the start posi-
tion for the coding sequence of selected genes. Individual clones were tested by PCR 
on genomic DNA to test the correct insertion of the cassette. G418 resistance was 
next changed to  MATα-specific nourseothricin resistance using the pGID3 vector 
(Decourty  et al, 2008; Malabat & Saveanu, 2016). SnoRNA deletion strains for box 
H/ACA  snoRNPs  were  derived  from  yeast  strains  available  in  our  laboratory 
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(Torchet  et al, 2005). For box C/D snoRNAs deletion strains, we used the KanMX6 
cassette from the pFA6 vector (Longtine et al, 1998) with the oligonucleotides listed 
in Supplementary Table 9. Double deletion mutant strains were built by mating of 
G418-resistant and nourseothricin resistant strains. After sporulation and selection 
of haploid clones, we ensured that the obtained strains had the same panel of aux-
otrophy markers as the parental strain BY4742. The strains for individual validation 
of screen results are listed in Supplementary Table 10. 

Beta-galactosidase activity was measured on total cell extracts obtained by 
lysis by vortexing with glass beads. The assay buffer contained 0.5 mM chlorophe-
nol red-β-D-galactopyranoside (CPRG), 100mM sodium phosphate, 10 mM KCl, 1 mM 
MgSO4,  5 mM dithiotrhreitol (DTT), pH 7. After incubation at 37°C, the absorbance 
change at  574 nm was normalized to protein concentration measured using the 
Bradford assay. The reported values are relative to the beta-galactosidase activity of 
a wild-type strain processed in parallel.

RNA and RT-QPCR. Cells were grown in synthetic complete medium to log 
phase and collected. Total RNA was obtained using hot phenol extraction and DNA 
was removed with DNase I (Ambion TURBO DNA-free kit) before reverse-transcrip-
tion (RT) and PCR amplification. For each experiment, 500 ng of total RNA were 
used in a RT reaction with Superscript III (Invitrogen) using a mix of the following 
oligonucleotides: SNO1rv AAC TCC TGA GGA TCT AGC CCA GTG, ARG1rv ACC ATG 
AGA GAC CGC GAA ACA G, and RIM1rv ACC CTT AGA ACC GTC GTC TCT C. Quantita-
tive PCR reactions used the same oligonucleotides coupled with the following for-
ward primers (one pair for each target): SNO1fw AAC TCC TGA GGA TCT AGC CCA 
GTG, ARG1fw GCA AGA CCT GTT ATT GCC AAA GCC and RIM1fw GCG CTT TGG TAT 
ATG TTG AAG CAG. For each experiment, the ARG1 and SNO1 signal was normal-
ized to the RIM1 signal and all the results were compared with the wild type strain.

Data availability
Raw and normalized microarray data were deposited in GEO (GSE119174, 

312 samples),  and ArrayExpress (E-MTAB-7191,  16 samples).  Aggregated, normal-
ized and pleiotropy adjusted results, including correlations of GI profiles can be ex-
plored at http://hub05.hosting.pasteur.fr/GIM_interactions/.
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Figures

Figure 1. Overview of the cellular functions of query genes tested in GIM 
screens.
A. Classification of the tested mutants in broad groups associated with major 
cellular processes, including mRNA translation, protein degradation and ribosome 
function and biogenesis. The number of genes for which we performed GIM 
screens from each class is indicated, with RNA-related processes highlighted in 
blue.
B. Three types of mutants were used in screens, mostly gene deletion, but also 
DAmP and regulated expression strains (left). The pool of barcoded deletion strains 
used in each screen was supplemented with our collection of DAmP strains for 
essential genes (right).
C. The workflow for analyzing the microarray results involved normalization, 
correction of the signal peaks that indicate the low frequency of meiotic 
recombination that occurs for loci situated close on the same chromosome and 
averaging of values from independent screens. The initial signal and corrected 
version for each of the screens are presented in Supplementary Data Set 1.
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Figure 1 – figure supplement 1. Overview of the GIM method (Decourty et al, 
2008), in which a pool of double mutant diploid strains is obtained by crossing a 
MATα query strain with a pool of MATa mutants. Sporulation of the obtained 
diploid yeast strains is followed by the selection of haploid double mutants by using 
two antibiotics, one that selects for the haploid MATα cells and the initial query 
mutation and another that selects for the mutation present in the initial pool of 
target genes. Amplification of barcode DNA from the population of double mutant 
strains is followed by comparison of barcode signal to a reference population on 
barcode-specific microarrays.
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Figure 2. Correcting for pleiotropy improves ranks of genes functionally 
related with the tested mutant. 
A. For each measured effect of a mutant in the 154 screens, we evaluated the 
cumulative distribution of the log2(Q/R) values. Results for genes having an unusual 
behavior are displayed, including KEX2 (blue cross), VPS63 (orange square), VPS3 
(downside gray triangle) compared with the average for all screens (black circle) or 
for a mutant showing highly specific interactions, MPP6 (upside dark blue triangle). 
Examples of applying a correction based on pleiotropy to the ranks of the 10 best 
hits for the screens performed with maf1Δ (B), pus1Δ (C) and tetO2-rrp6 (D). Initial 
scores are indicated with orange dots and adjusted values are illustrated as blue 
dots. Genes marked with a triangle correspond to mutants that are known to affect 
the same pathway (tRNA synthesis for MAF1 and PUS1 and RNA degradation in the 
nucleus for RRP6). 
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Figure 2 – figure supplement 1. A small fraction of results were strongly 
affected by the pleiotropy correction. Distribution of the correction scores among 
the 5063 mutant results showing that, for 74% of the cases, the raw results were 
multiplied by a correction factor between 0.9 and 1. Only for 65 genes (1.3%) the 
correction factor was lower than 0.4.
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Figure 3. Large-scale validation of GIM data based on GI profile similarity 
analysis.
A. Comparison between the GI profiles of the same gene mutant were performed 
on 127 query genes (out of 154 screens) that were also measured as “target” 
mutants. The distribution of the measured Pearson correlation coefficients are 
shown either for this situation, at the right of the plot, labeled “same gene”, and for 
all the possible other 16 002 distinct pairs of the 127 mutants, as background, 
labeled “different gene”, at the left. The similarity of the two distributions was 
evaluated using the non-parametric Wilcoxon rank sum test (p < 2*10-16 for the null 
hypothesis, no difference). Dots at the right of the distribution representation 
correspond to individual Pearson correlation values.
B. We identified 267 situations where the deleted region for a gene or pseudogene 
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had an overlap with the deleted region of another gene and extracted the Pearson 
correlation values for the corresponding GI profiles. The distribution of Pearson 
correlation coefficient values for all possible pairs involving genes for which 
overlapping deletions were tested (“all combinations”, left) and for overlapping 
deletion pairs (“overlapping deletions”, right) is shown.  The two populations of 
values were different, as estimated with the non-parametric Wilcoxon rank sum 
test (p < 2*10-16).
C. Example of similarity for GIM and SGA results. Scatter plot showing the top 10 
genes most affected in either SGA or GIM screens performed with maf1Δ (GIM) 
compared with the same mutant in the SGA data (Costanzo et al, 2010).  In both C 
and D plots, triangles and blue color indicate genes that are known to be 
functionally linked with the screen query gene.
D. Example of results obtained using transcription repression for the query gene 
RRP6. Scatter plot to compare the results of the GIM tetO2-rrp6 screen and SGA 
rrp6Δ screen. YNR025C partially overlaps the exosome-associated factor gene MPP6.
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Figure 3 – figure supplement 1. Pearson correlation coefficients for 52 GIM 
screens for which equivalent SGA results were available (Costanzo et al, 2010) 
were drawn in decreasing order of correlation coefficient, with a boundary 
situated at an arbitrary threshold for the Pearson correlation p-value of 3x10-3. 
Labels with a star indicate screens for which the mutants were DAmP or Tet-off 
variants. Screens for which correlations are shown in Fig. 3 C and 3 D are 
highlighted in yellow.
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Figure 4. DAmP perturbation has effects correlated with mRNA abundance and 
coding sequence length and is valuable for the study of major cellular 
functions.
A. We arbitrarily assigned the various mutants from this study in two classes: 
screen-responsive, if the corresponding mutant showed a growth defect score of at 
least 2 (log2(Q/R) < -1) in at least one of the 154 screens, and screen-neutral if the 
mutant was not affected in any of the screens. The percent of screen-responsive 
deletion (light gray) and DAmP (black) strains was plotted as a function of relative 
mRNA abundance (Lipson et al, 2009), with transcripts grouped in five bins having 
identical numbers of DAmP mutants. The differences between the numbers of 
DAmP and deletion mutants in each bin were evaluated with a chi-squared test (the 
p value for the null hypothesis of identical percentages is indicated). The number of 
genes in each bin is indicated in the upper part of the panel.
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B. Equal sized bins of DAmP mutants were created based on the coding sequence 
length and the percentage of screen-responsive strains was compared with the 
results for deletion mutants for genes having similar sizes of coding sequences. The 
number of mutants in each bin is indicated.
C. We used the median of the relative rank for 22 DAmP mutants affecting 
proteasome and proteasome-related genes to identify the 5 screens in which these 
mutants were most affected (in increasing rank order from bottom to top). The 
distribution of all adjusted log2(Q/R) values in the five selected screens is indicated. 
Red dots indicate the position of the adjusted log2(Q/R) scores for proteasome DAmP 
mutants.
D. Specific DAmP effects are illustrated by a scatter plot showing the correlation 
between the adjusted log2(Q/R) scores obtained when the screen was done with the 
deletion of the RPN10 proteasome component gene (horizontal axis) compared with 
the deletion of the RPN4 proteasome regulator (vertical axis). DAmP proteasome 
related mutants are indicated in orange and two non-essential proteasome gene 
deletions are indicated in blue. 
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Figure 4 – figure supplement 1. Examples of identification of novel RNA 
metabolism genes through GIs with DAmP mutants. The DAmP modification of 
RRP46, a component of the RNA exosome, and of NOP56, part of the box C/D 
snoRNPs, showed a synthetic growth defect with the deletion of YCL001W-A, an 
uncharacterized gene. The corresponding protein has similarity with a region of 
DOM34, a protein involved in ribosome dissociation and RNA degradation during 
no-go decay. SKA1, whose deletion was synthetic sick with nop56-DAmP was 
recently described to have a role in the 3’ to 5’ degradation of RNAs (Zhang et al, 
2019).
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Figure 5. Integration of literature data and GIM profile similarity allows 
extension of known functional networks. 
A. Publications and linked genes were recovered from the Saccharomyces Genome 
Database and used to define highly connected factors. Gene pairs highlighted in 
cyan correspond to situations in which the corresponding GI profiles were 
correlated. Only a selection of 35 gene groups in which at least 4 genes showed 
correlated GI profiles is shown. Each gene group was annotated manually, either in 
terms of a protein complex or based on known cellular or molecular function. 
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B. Example of a literature-based gene group, not shown in A, bringing together 
several genes involved in mitotic spindle checkpoint. Extending this network using 
only the similarity of GIM profiles led to the network shown in C.
C. Starting from MAD1, MAD2 and MAD3, the GI similarity-based functional 
network adds supplementary genes involved in mitotic spindle checkpoint, such as 
KAR9, BFA1, and CTF19 (marked with a red border) and genes involved in the 
dynamics of the microtubule cytoskeleton (marked with a yellow square).
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Figure 5 – figure supplement 1. The RECAP data analysis workflow. RECAP uses 
an initial network of functional links between genes to validate GI profile results. 
Only validated gene mutants are then used to extend the network and associate 
new genes with known biological processes or multiprotein complexes.
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Figure 6. Deletion of LOS1 is functionally related to a defective OCA complex. 
A. Rank analysis of los1Δ results for GIM screens highlighting synthetic slow growth 
(lower left) and potential epistasis (upper right).
B. The double deletion strains combining los1Δ and oca2Δ were strongly affected by 
the presence of 0.1M LiCl in the medium. Complementation of growth defect by 
empty vector (pRS316) or by centromeric plasmids expressing OCA2 and LOS1 was 
estimated by serial dilutions and observation of colonies after 48 hours of growth at 
30°C. 
C. The inverse correlation between the transcriptome changes in oca5Δ and gcn4Δ 
(Hughes et al, 2000) shows transcripts that were up-regulated in the absence of 
OCA5, while being targets of GCN4 activation, including many mRNAs that code for 
amino acid biosynthesis proteins. The position of the signal for mRNA of ARG1 and 
SNO1, chosen for validation of the transcriptome results, are indicated by orange 
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dots.
D. and E. Validation by RT-qPCR of mRNA level changes in an oca2Δ strain, in 
comparison with gcn4Δ, los1Δ, and the combination oca2Δ/los1Δ for ARG1 and 
SNO1 mRNA, using RIM1 mRNA levels as reference. Individual measurements for 3 
to 4 independent experiments are shown, with the red bar indicating the mean and 
the blue bars indicating limits of the 99% confidence interval (non-parametric 
bootstrap). The indicated p-values correspond to results of single sided t-tests.

42

812

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 4, 2020. ; https://doi.org/10.1101/2020.10.04.325191doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.04.325191
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 6 – figure supplement 1. Protein-protein interactions for 5 of the 6 similar 
OCA proteins.  The  results  were  obtained  from BioGrid  (Oughtred  et  al,  2019), 
drawn using Cytoscape (Shannon et al, 2003) with the source of the interactions 
mentioned on the arrows. "2H" indicates two-hybrid screens (Uetz et al, 2000; Ito 
et  al,  2001),  "PCA" is  for protein complementation assay  (Tarassov  et al,  2008), 
while  the  other  studies  used  affinity  purification  and  mass-spectrometry 
identification of partners (Ho et al, 2002; Krogan et al, 2006; Gavin et al, 2006).
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Figure 7. Initiator tRNA limits cell growth when the OCA complex is defective.
A. Double mutant strains show translation initiation defects, as measured using a 
GCN4 uORF-lacZ reporter, schematically represented in the upper part of the panel 
(p180 plasmid, Mueller & Hinnebusch, 1986). Wild type strain was used as 
reference and the variation in the amounts of produced beta-galactosidase were 
measured in at least 5 independent experiments. The p-values of single-sided t-tests 
for differences between the different conditions are indicated.
B. Over-expression of the tRNAi

Met (p1775 plasmid, Dever et al, 1995) allows better 
growth of oca2/los1 and oca5/los1 double deletion strains under stress conditions 
(0.1M LiCl). Serial dilutions of fresh cells were grown on plates for 48 hours. The 
presence of an empty vector (empty circle) or of the plasmid over-expressing the 
tRNAi

Met (black square) are indicated.
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