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Abstract: In a traditional view, in social cognition, attention is equated with gaze and 6	

people track attention by tracking other people’s gaze. Here we used fMRI to test 7	

whether the brain represents attention in a richer manner. People read stories describing 8	

an agent (either oneself or someone else) directing attention to an object in one of two 9	

ways: either internally directed (endogenous) or externally induced (exogenous). We 10	

used multivoxel pattern analysis to examine how brain areas within the theory-of-mind 11	

network encoded attention type and agent type. Brain activity patterns in the left 12	

temporo-parietal junction (TPJ) showed significant decoding of information about 13	

endogenous versus exogenous attention. The left TPJ, left superior temporal sulcus 14	

(STS), precuneus, and medial prefrontal cortex (MPFC) significantly decoded agent type 15	

(self versus other). These findings show that the brain constructs a rich model of one’s 16	

own and others’ attentional state, possibly aiding theory of mind. 17	

 18	

Impact statement: This study used fMRI to show that the human brain encodes other 19	

people’s attention in enough richness to distinguish whether that attention was directed 20	

exogenously (stimulus-driven) or endogenously (internally driven).  21	

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 5, 2020. ; https://doi.org/10.1101/2020.10.04.325357doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.04.325357
http://creativecommons.org/licenses/by/4.0/


	 2	

Introduction 1	

Reconstructing someone else’s attentional state is of central importance in theory of 2	

mind (Baron-Cohen, 1997; Calder et al., 2002; Graziano, 2013). By identifying the object 3	

of someone else’s attention, and having some intuitive understanding of the complex 4	

dynamics and consequences of attention, one can reconstruct at least some of the other 5	

person’s likely thoughts, intentions, and emotions, and make predictions about that 6	

person’s behavior. Almost all work on how people reconstruct the attention of others has 7	

focused on gaze direction. For example, the human eye has a high contrast between pupil 8	

and sclera, possibly an adaptation for better gaze tracking (Kobayashi and Kohshima, 9	

1997). The superior temporal sulcus in monkeys and humans may contain specialized 10	

neural circuitry for processing gaze direction (Hoffman and Haxby, 2000; Perrett et al., 11	

1985; Puce et al., 1998; Wicker et al., 1998). Seeing a face gaze at an object 12	

automatically draws one’s own attention to the object (Friesen and Kingstone, 1998; 13	

Frischen et al., 2007). These and other findings show the importance of reconstructing 14	

gaze direction in social cognition.  15	

To be adaptive in aiding theory of mind, however, a model of attention should be 16	

far more than a vector indicating gaze direction. We previously suggested that the human 17	

brain constructs a rich, dynamic, and predictive model of other people’s attention 18	

(Graziano, 2019, 2013; Graziano and Kastner, 2011). The model should contain 19	

information about different types of attention, about the rapidity or sluggishness with 20	

which attention tends to move from item to item, about how external factors such as 21	

salience and clutter are likely to affect a person’s attention, and about how attention 22	

profoundly affects thought, memory, and behavior. In the proposal, that deeper model is 23	
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constrained by incoming information, including gaze direction. However, other cues can 1	

also constrain the model. People rely on the other person’s body posture, on cues in the 2	

surrounding environment, on speech, and on social context. For example, blind people 3	

must be able to build models of other people’s attention without seeing the other person’s 4	

eyes. Likewise, during a phone conversation, we cannot see the other person and yet we 5	

intuitively understand whether that person is attending to what we have said or is 6	

distracted by her own words or by a salient event on her end of the line. 7	

Several recent experiments provide evidence for an automatically constructed 8	

model of the attention of others that may go beyond merely registering gaze direction 9	

(Guterstam et al., 2019; Guterstam and Graziano, 2020; Kelly et al., 2014; Pesquita et al., 10	

2016; Vernet et al., 2019). For example, Pesquita et al. (2016) found that when 11	

participants watch an actor in a video attending to an object, the participants implicitly 12	

distinguish between whether the actor’s attention was drawn to the object exogenously 13	

(bottom-up, or stimulus-driven attention), or whether the actor endogenously shifted 14	

attention to the object (top-down, or internally driven attention). The ability to distinguish 15	

between someone else’s exogenous and endogenous attention is one example of how 16	

people may construct a rich, dynamic model of other people’s attention beyond merely 17	

encoding gaze direction or identifying the object of attention. 18	

Inspired by the vignette-style tasks widely used in studies on theory of mind 19	

(Fletcher et al., 1995; Gallagher et al., 2000; Happé, 1994; Saxe and Kanwisher, 2003; 20	

Vogeley et al., 2001), in the present study, we used functional magnetic resonance 21	

imaging (fMRI) and multi-voxel pattern analysis (MVPA) to study brain activity in 22	

participants while they read brief stories about people’s attention. Some of the stories 23	
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implied that attention was being attracted exogenously (“Kevin walks into his closet and 1	

notices the bright red tie…”) and some stories implied that attention was being directed 2	

endogenously (“Kevin walks into his closet and looks for the bright red tie…”). We also 3	

included analogous stories written in the first person, casting the subject of the 4	

experiment as the agent (“You walk into your closet and notice the bright red tie…”). The 5	

study therefore used a 2X2 design (exogenous versus endogenous attention X self agent 6	

versus other agent). Finally, we included a fifth, control condition, consisting of 7	

nonsocial stories in which the agent was replaced by an inanimate object, that, like 8	

attention, has a source and a target, such as a camera or a light source (“In a closet, a light 9	

shines on a red tie…”). 10	

We made four predictions. Our first, central prediction was inspired by the Pesquita 11	

et al. (2016) study described above. We hypothesized that participants would encode the 12	

type of attention in the story (exogenous versus endogenous), and that this encoding 13	

would be evident in some subset of the areas classically involved in theory of mind. 14	

Previous experiments on theory of mind typically recruited a network of cortical areas 15	

including the temporoparietal junction (TPJ), the superior temporal sulcus (STS), the 16	

medial prefrontal cortex (MPFC), and the precuneus (Gallagher et al., 2000; Saxe and 17	

Kanwisher, 2003; van Veluw and Chance, 2014; Vogeley et al., 2001). We therefore 18	

predicted that the exogenous-versus-endogenous distinction would be significantly 19	

encoded in some subset of these areas. In particular, we anticipated that the TPJ might 20	

show the clearest evidence of encoding information about the type of attention, since 21	

previous experiments pointed to the TPJ as contributing to encoding other people’s 22	

attentional state when participants looked at faces gazing toward objects (Igelström et al., 23	
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2016; Kelly et al., 2014). This first prediction, that the social cognition network will 1	

encode the exogenous-versus-endogenous distinction, represents the main, novel 2	

contribution of this study. 3	

Second, we predicted that participants would encode information about the agent in 4	

the story (self versus other), and that this encoding would again be evident in some subset 5	

of the areas classically involved in theory of mind. Self-versus-other encoding has been 6	

examined in previous studies, and found to be reflected in the theory-of-mind network 7	

(e.g., Northoff et al., 2006; Ochsner et al., 2004; Passingham et al., 2010; Qin and 8	

Northoff, 2011; van Veluw and Chance, 2014). This second prediction represents a test of 9	

whether our present paradigm, using subtle wording differences between similar 10	

sentences, can produce results consistent with previous findings.  11	

Third, we predicted that participants would encode information associated with the 12	

interaction between the two factors. We predicted that at least some subset of the areas in 13	

the theory-of-mind network may encode the type of attention (exogenous versus 14	

endogenous) to a different extent in self-related stories as compared to other-related 15	

stories. 16	

Fourth and finally, we tested for brain regions that encoded the distinction between 17	

social stories (with human agents) and nonsocial stories (with only non-agent objects). 18	

We predicted that this social-versus-nonsocial encoding would again be evident in the 19	

same network of brain regions noted above, that are known to be involved in theory of 20	

mind. This final analysis served as a control to check on the validity of the story stimuli 21	

and confirm that they engaged social cognition as expected.  22	

 23	
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Methods 1	

Subjects 2	

Thirty-two healthy human volunteers (12 females, 30 righthanded, aged 18-52, 3	

normal or corrected to normal vision) participated in the study, based on the sample size 4	

used in a previous, related study (Guterstam et al., 2020). Subjects were recruited either 5	

from a paid subject pool, receiving 40 USD for participation, or from among Princeton 6	

undergraduate students, who received course credits as compensation. In the subject 7	

recruitment material, the experiment was described as a “Reading Comprehension 8	

Study.” All subjects provided informed consent and all procedures were approved by the 9	

Princeton Institutional Review Board. 10	

 11	

Experimental setup 12	

Before scanning, subjects were instructed and then shown three sample trials 13	

(which were not part of the stories presented in the subsequent experiment) on a laptop 14	

computer screen. All subjects gave the correct response to all three trials on the first try, 15	

indicating they had understood the instructions adequately. During scanning, the subjects 16	

laid comfortably in a supine position on the MRI bed. Through an angled mirror mounted 17	

on top of the head coil, they viewed a translucent screen approximately 80 cm from the 18	

eyes, on which visual stimuli were projected with a Hyperion MRI Digital Projection 19	

System (Psychology Software Tools, Sharpsburg, PA, USA) with a resolution of 1920 x 20	

1080 pixels. A PC running MATLAB (MathWorks, Natick, MA, USA) and the 21	

Psychophysics Toolbox (Brainard, 1997) was used to present visual stimuli. A right hand 22	

5-button response unit (Psychology Software Tools Celeritas, Sharpsburg, PA, USA) was 23	
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strapped to the subjects’ right wrist. Subjects used the right index finger button to 1	

indicate a true response, and the right middle finger to indicate a false response during the 2	

probe phase of each trial. 3	

 4	

Experimental conditions and stimuli 5	

Five experimental conditions were included. Subjects were presented with short 6	

stories (2-3 sentences, average word count = 24) describing a scene in which an agent, 7	

which was either the subject him-/herself (self) or another person (other), directed 8	

attention to something in the external world endogenously (e.g., “X is attentively looking 9	

for Y”) or exogenously (e.g., “X’s attention is captured by Y”). These four conditions 10	

made up a 2 x 2 factorial design: attention type (endogenous versus exogenous) X agent 11	

(self versus other). In addition, we included a baseline condition featuring stories in 12	

which the agent was substituted by a non-human object. In each trial, after a 9 – 11 s 13	

inter-trial interval, the story was presented for 10 s in easily readable, white text on a 14	

black background, at the center of the screen, after which a probe statement was shown 15	

for 4 s, to which the subjects responded either true or false by button press. See Figure 1 16	

for details, and SI Data S1 for all stories. 17	

Each subject ran 100 trials and thus saw 100 stories: 80 social stories and 20 non-18	

social control stories. The 80 social stories were constructed as follows. We began with 19	

80 unique short stories. For each story, four versions were constructed, one for each of 20	

the factorial conditions (Figure 1B). To keep the story versions as semantically similar as 21	

possible, we made minimal changes to the wordings. To distinguish the self and other 22	

versions, we substituted the word “you” with a name (e.g., “Karen”) and the word “your” 23	
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with “his” or “her”. The names in the stories were selected from a list of the 100 most 1	

popular given names for male and female babies born during the years 1919-2018 in the 2	

United States, which is published by the Social Security Administration 3	

(https://www.ssa.gov/oact/babynames/decades/century.html). Half of the names were 4	

masculine, half feminine. To distinguish the endogenous and exogenous story versions, 5	

we used different wording for the part of the story where the agent (X) is related to the 6	

object (Y). In the endogenous versions, we used formulations such as: “X is trying to find 7	

Y,” “X is trying to spot Y,” or “X is looking attentively for Y.” In the exogenous 8	

versions, we used formulations such as: “X’s eyes are drawn to Y,” “X’s gaze is captured 9	

by Y,” or “X’s attention is captured by Y.” We matched the average number of words 10	

across all four conditions (24 words). The number of stories that included the words 11	

“attention” or “attentively” was balanced between the endogenous and exogenous 12	

categories (43 stories in each). Among the 80 stories, for each subject, 20 were randomly 13	

selected to be used in the endogenous-self version; 20 in the endogenous-other version; 14	

20 in the exogenous-self version; 20 in the exogenous-other version. Thus, for the 15	

example story shown in Figure 1B, each subject saw only one of the four versions. In this 16	

manner, each subject saw 80 social stories, 20 of each type, balanced for as many 17	

properties as possible other than the two factors that were manipulated. 18	

Finally, we constructed 20 additional stories for the non-social control condition 19	

(Figure 1B). To keep the control stories as semantically similar as possible to the social 20	

stories, we based them on a subset of the 80 original stories. Crucially, the agent in the 21	

original story was substituted with a non-human object, such as a camera or a spotlight, 22	

that has a source and a target just as attention does. For instance, the original story, “You 23	
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are in a bike shop, and numerous bikes hang on one of the walls. You are attentively 1	

looking for that red Italian sports bike,” was adapted to the non-social condition by 2	

substituting the agent with a spotlight: “In a bike shop, on one of the walls, hangs 3	

numerous bikes. A bright spotlight is shining on a red Italian sports bike.” The average 4	

number of words of the non-social stories (24 words, standard deviation = 3) was 5	

matched with the attention stories.  6	

The purpose of the probe statement at the end of each trial was to ensure that 7	

subjects carefully read the stories. Each statement described one detail of the preceding 8	

story that could be either true or false. We restricted the probe statements to the spatial 9	

context of the story (place probe: e.g., “Emma is on a bus”) or the object being described 10	

(object probe: e.g., “The Van Gogh painting has sunflowers”) in order to avoid alerting 11	

subjects to the focus of the experiment on theory of mind and attention. Half of the probe 12	

statements were place probes and half object probes. Within both the place and the object 13	

probes, half were true and half were false. The probe was on screen for 4 s, during which 14	

subjects were required to indicate whether the statement was true or false by button press. 15	

The experiment consisted of 10 runs of approximately 4 min each. In each run, 16	

the 5 conditions were repeated 2 times, yielding a total of 10 trials per run. The trial order 17	

was randomized, with the limitation that two consecutive trials could not belong to the 18	

same condition. Each run included 18 s of baseline before the onset of the first trial and 19	

12 s of baseline after the offset of the last trial. 20	

 21	

Post-scan questionnaire 22	

 At the end of the scanning session, subjects were asked what they thought the 23	
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purpose of the experiment was and what they thought it was testing. 1	

 2	

fMRI data acquisition 3	

Functional imaging data were collected using a Siemens Prisma 3T scanner 4	

equipped with a 64-channel head coil. Gradient-echo T2*-weighted echo-planar images 5	

(EPI) with blood-oxygen dependent (BOLD) contrast were used as an index of brain 6	

activity (Logothetis et al., 2001). Functional image volumes were composed of 54 near-7	

axial slices with a thickness of 2.5 mm (with no interslice gap), which ensured that the 8	

entire brain excluding cerebellum was within the field-of-view in all subjects (54 x 78 9	

matrix, 2.5 mm x 2.5 mm in-plane resolution, TE = 30 ms, flip angle = 80°). 10	

Simultaneous multi-slice (SMS) imaging was used (SMS factor = 2). One complete 11	

volume was collected every 2 s (TR = 2000 ms). A total of 1300 functional volumes were 12	

collected for each participant, divided into 10 runs (130 volumes per run). The first three 13	

volumes of each run were discarded to account for non-steady-state magnetization. A 14	

high-resolution structural image was acquired for each participant at the end of the 15	

experiment (3D MPRAGE sequence, voxel size = 1 mm isotropic, FOV = 256 mm, 176 16	

slices, TR = 2300 ms, TE = 2.96 ms, TI = 1000 ms, flip angle = 9°, iPAT GRAPPA = 2). 17	

At the end of each scanning session, matching spin echo EPI pairs (anterior-to-posterior 18	

and posterior-to-anterior) were acquired for blip-up/blip-down field map correction. 19	

 20	

FMRI preprocessing 21	

Results included in this manuscript come from preprocessing performed using 22	

FMRIPREP version 1.2.3 (Esteban et al., 2019) (RRID:SCR_016216), a Nipype 23	
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(Gorgolewski et al., 2011) (RRID:SCR_002502) based tool. Each T1w (T1-weighted) 1	

volume was corrected for INU (intensity non-uniformity) using N4BiasFieldCorrection 2	

v2.1.0 (Tustison et al., 2010) and skull-stripped using antsBrainExtraction.sh v2.1.0 3	

(using the OASIS template). Spatial normalization to the ICBM 152 Nonlinear 4	

Asymmetrical template version 2009c (Fonov et al., 2009) (RRID:SCR_008796) was 5	

performed through nonlinear registration with the antsRegistration tool of ANTs v2.1.0 6	

(Avants et al., 2008) (RRID:SCR_004757), using brain-extracted versions of both T1w 7	

volume and template. Brain tissue segmentation of cerebrospinal fluid (CSF), white-8	

matter (WM) and gray-matter (GM) was performed on the brain-extracted T1w using fast 9	

(Zhang et al., 2001) (FSL v5.0.9, RRID:SCR_002823). 10	

Functional data was slice time corrected using 3dTshift from AFNI v16.2.07 11	

(Cox, 1996) (RRID:SCR_005927) and motion corrected using mcflirt (FSL v5.0.9) 12	

(Jenkinson et al., 2002). This was followed by co-registration to the corresponding T1w 13	

using boundary-based registration (Greve and Fischl, 2009) with six degrees of freedom, 14	

using flirt (FSL). Motion correcting transformations, BOLD-to-T1w transformation and 15	

T1w-to-template Montreal Neurological Institute (MNI) warp were concatenated and 16	

applied in a single step using antsApplyTransforms (ANTs v2.1.0) using Lanczos 17	

interpolation. 18	

Many internal operations of FMRIPREP use Nilearn (Abraham et al., 2014) 19	

(RRID:SCR_001362]) principally within the BOLD-processing workflow. For more 20	

details of the pipeline see https://fmriprep.readthedocs.io/en/latest/workflows.html. 21	

 22	

Testing prediction 1 23	
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The purpose of the first analysis was to determine whether the brain encoded 1	

information concerning the type of attention (endogenous or exogenous) present in the 2	

stories. For this analysis, we used MVPA, which tests whether patterns of brain activity 3	

can be used to decode the distinction between two conditions. It is a more sensitive 4	

analysis than the more common, simple subtraction methods. The reason for using this 5	

sensitive measure is that the difference between exogenous and endogenous trial types 6	

was extremely subtle. Both trial types engaged social cognition, and therefore might 7	

cancel each other out in a simple subtraction. The stimuli were nearly identical, differing 8	

only in a few words that indicated the type of attention used by the agent in the story. In 9	

addition, the type of attention featured in the story was irrelevant to the task performed by 10	

the subject. To accommodate the subtlety of the distinction between conditions, we 11	

designed the study to use MVPA. We hypothesized that with MVPA, brain activity 12	

would carry information about the endogenous versus exogenous distinction; and that 13	

decoding would be evident in regions of interest (ROIs) within the network of areas 14	

typically found to be involved in social cognition, especially within the TPJ. 15	

We defined our ROIs as spheres centered on the statistical peaks reported in an 16	

activation likelihood estimation (ALE) meta-analysis of 16 fMRI studies (including 291 17	

subjects) involving theory-of-mind reasoning (van Veluw and Chance, 2014), in 18	

accordance with generally accepted guidelines in ROI analysis (Poldrack, 2007). The 19	

ROIs are shown in Figure 2. The peaks were located in six areas: the left TPJ (Montreal 20	

Neurological Institute [MNI]: -52, -56, 24), right TPJ (MNI: 55, -53, 24), left STS (MNI: 21	

-59, -26, -9), right STS (MNI: 59, -18, -17), MPFC (MNI: 1, 58, 19), and the precuneus 22	

(MNI: -3, -56, 37). The radius of the ROI spheres was 10 mm, corresponding to the 23	
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approximate volume (4,000 mm3) of the largest clusters (TPJ and MPFC) reported in van 1	

Veluw and Chance (2014). The same sphere radius was used for all ROIs. 2	

The fMRI data from all participants were analyzed with the Statistical Parametric 3	

Mapping software (SPM12) (Wellcome Department of Cognitive Neurology, London, 4	

UK) (Friston et al., 1994). We first used a conventional general linear model (GLM) to 5	

estimate regression (beta) coefficients for each individual trial (i.e., 100 regressors), 6	

focusing on the 10-s story presentation phase of each trial. One regressor of no interest 7	

modelled the 4-s probe statement phase across conditions. Each regressor was modeled 8	

with a boxcar function and convolved with the standard SPM12 hemodynamic response 9	

function. In addition, ten run-specific regressors controlling for baseline differences 10	

between runs, and six motion regressors, were included. The trialwise beta coefficients 11	

for the endogenous and exogenous conditions (i.e., 80 beta maps) were then submitted to 12	

subsequent multivariate analyses (Haxby et al., 2001).  13	

The MVPA was carried out using The Decoding Toolbox (TDT) version 3.999 14	

(Hebart et al., 2015) for SPM. For each subject and ROI, we used linear support vector 15	

machines (SVMs, with the fixed regularization parameter of C = 1) to compute decoding 16	

accuracies. To ensure independent training and testing data sets, we used leave-one-run-17	

out cross-validation approach. For each fold, the betas across all training runs were 18	

normalized relative the mean and standard deviation, and the same Z-transformation was 19	

applied to the betas in the left-out test run (Misaki et al., 2010). An SVM was then trained 20	

to discriminate activity patterns belonging to the endogenous or exogenous trials in nine 21	

runs, and then tested on the left-out run, repeated for all runs, resulting in a run-average 22	

decoding accuracy for each ROI and subject. 23	
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For statistical inference, the true group mean decoding accuracy was compared to 1	

a null distribution of group mean accuracies obtained from permutation testing. The same 2	

MVPA was repeated within each subject and ROI using permuted condition labels 3	

(10,000 iterations). A p value was computed as (1+the number of permuted group 4	

accuracy values > true value)/(1+the total number of permutations). To control for 5	

multiple comparisons across the six ROIs, we used the false discovery rate (FDR) 6	

correction (Benjamini and Hochberg, 1995). In addition, we also computed a bootstrap 7	

distribution around the true group mean accuracy by resampling individual-subject mean 8	

accuracies with replacement (10,000 iterations), from which a 95% confidence interval 9	

(CI) was derived (Nakagawa and Cuthill, 2007). A corrected p value < 0.05 in 10	

combination with a 95% CI that does not cross chance level were interpreted as a 11	

significant decoding effect at the group level (Nakagawa and Cuthill, 2007). 12	

In addition, as further exploratory statistics beyond the targeted hypotheses of this 13	

study, we used a whole-brain searchlight analysis (Kriegeskorte et al., 2006) to test for 14	

possible areas of decoding outside the ROIs. This searchlight analysis is described in the 15	

Supplementary Information (SI Text S1, Figures S1-S4, and Tables S1-S4). 16	

 17	

Testing prediction 2 18	

The purpose of the second analysis was to determine whether the brain encoded 19	

information concerning the type of agent (self versus other) present in the stories. The 20	

analysis methods were the same as for testing hypothesis 1, except that for regressors of 21	

interest we used the self-related and other-related trials, collapsed across the type of 22	
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attention (exogenous or endogenous). Just as for hypothesis 1, we tested the six defined 1	

ROIs within the theory-of-mind network.  2	

 3	

Testing prediction 3 4	

The purpose of the third analysis was to test for an interaction between the two 5	

variables (endogenous versus exogenous, and self versus other). We used MVPA to test 6	

whether the decoding for the type of attention was significantly different between the 7	

self-related and the other-related stories. The analysis methods were similar to those used 8	

for testing hypothesis 1 and 2, except in the following ways. We computed two MVPA 9	

decoding results, the first for distinguishing endogenous-self from exogenous-self stories, 10	

the second for distinguishing endogenous-other from exogenous-other stories. We then 11	

computed the difference between the two decoding results ([endogenous-self versus 12	

exogenous-self] – [endogenous-other versus exogenous-other]) to create a decoding 13	

difference score. Just as for hypothesis 1 and 2, we tested the six defined ROIs within the 14	

theory-of-mind network(van Veluw and Chance, 2014). 15	

 16	

Testing prediction 4 17	

The purpose of the fourth analysis was to confirm whether our story stimuli 18	

engaged social cognition and thereby recruited brain areas within the expected theory of 19	

mind network. The analysis was meant as an added control to check the validity of the 20	

paradigm. The analysis methods were similar to those used for testing hypothesis 1-3, 21	

except in the following ways. We computed four MVPA decoding results: endogenous-22	

self versus nonsocial, endogenous-other versus nonsocial, exogenous-self versus 23	
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nonsocial, and exogenous-other versus nonsocial. (Because using MVPA to compare two 1	

conditions requires equal numbers of trials in both conditions, it was not possible to use a 2	

single analysis to compare all 80 social trials to the 20 nonsocial trials.) Each analysis 3	

represents a separate, alternative way to assess the social-versus-nonsocial decoding. Just 4	

as for hypothesis 1-3, we tested the six defined ROIs within the theory-of-mind network 5	

(van Veluw and Chance, 2014). 6	

 7	

Eye tracking analysis 8	

Eye movements were recorded via an MRI-compatible infrared eye tracker (SR 9	

Research EyeLink 1000 Plus), mounted just below the projector screen, sampling at 1000 10	

Hz. Before each scanning session, a calibration routine on five screen locations was used 11	

and repeated until the maximum error for any point was less than 1°. The obtained eye 12	

position data was cleaned of artifacts related to blink events and smoothed using a 20-ms 13	

moving average. We then built an SVM decoding model analogue to the cross-validation 14	

approach used for the fMRI data, but here based purely on eye tracking data, to test 15	

whether eye movement dynamics alone were sufficient to decode the conditions of 16	

interest (endogenous versus exogenous, and self versus other). In keeping with a previous 17	

study (Schneider et al., 2013), we organized the data in the following way. The part of the 18	

display within which the stimuli appeared was divided into an 8 x 4 grid of 32 equally 19	

sized squares. The grid covered the screen area within which the stories were presented 20	

(see red outline in Figure S5), and approximately corresponded to the locations of 21	

individual words (four lines, with eight words per line). For each trial, the proportion of 22	

time that the subject fixated within each square (32 features) and the saccades between 23	
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those regions (32 x 32 = 1024 features) was calculated. These 1056 features, representing 1	

information about both where people were looking as well as saccade dynamics, were 2	

then averaged across repetitions for each of the four main conditions within each of the 3	

10 runs, yielding one eye movement feature vector per condition per run (per subject). 4	

The feature vectors were submitted to an SVM classifier (C = 1). Using a leave-one-run-5	

out approach, the SVM model was trained on endogenous versus exogenous story types, 6	

and then tested in the left-out run. At the group level, the decoding accuracies were tested 7	

against chance level using t-tests. A similar analysis was then performed on the contrast 8	

between self-related stories versus other-related stories. The results showed that 9	

endogenous-versus-exogenous and self-versus-other story types could not be decoded 10	

significantly better than chance using the pattern of eye movement. See Supplementary 11	

Information (SI Text S2 and Figure S5) for the results of the eye-tracking analysis. 12	

 13	

Data availability 14	

The data that support the findings of this study are available at 15	

https://figshare.com/s/c3463d15bc78106a1b5c. 16	

 17	

Results 18	

Prediction 1 19	

We hypothesized that participants would encode the attentional state of the agents 20	

in the stories in enough detail to distinguish between endogenous and exogenous 21	

attention, even though the difference between the story types was extremely subtle – only 22	

a few words that very slightly altered the semantic meaning of the sentences. We made 23	
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the strong prediction that decoding would be found within the set of brain areas typically 1	

included in the theory-of-mind cortical network. In particular, based on prior studies 2	

(Igelström et al., 2016; Kelly et al., 2014), we anticipated that the decoding would be 3	

most evident in the TPJ. Figure 2 shows six ROIs within the theory-of-mind network, 4	

based on a meta-analysis of previous theory-of-mind studies (van Veluw and Chance, 5	

2014). Figure 3A shows the results (see Table 1 for numerical details). Decoding 6	

accuracy for endogenous versus exogenous stories was significantly above chance for the 7	

left TPJ, and the significance of the left TPJ decoding survived a multiple comparison 8	

correction for the six ROIs (mean decoding accuracy 52.9%, 95% CI 50.7 to 55.2, 9	

puncorrected=0.0046, pFDR-corrected=0.0276). The results confirm our central prediction. The 10	

left TPJ showed significant decoding of the attentional state – exogenous versus 11	

endogenous – of agents in a story. (See Supplementary Information for the results of an 12	

exploratory, brain-wide, searchlight analysis.) 13	

 14	

Prediction 2 15	

We hypothesized that participants would process the distinction between the two 16	

types of agent in the stories (self versus other). We made the strong prediction that 17	

decoding would be found within the same set of ROIs in the theory-of-mind cortical 18	

network. Figure 3B shows the results (see Table 1 for numerical details). Decoding 19	

accuracy for self versus other stories was significantly above chance, and survived a 20	

multiple comparisons correction,  for the left TPJ (mean decoding accuracy 53.0%, 95% 21	

CI 50.1 to 55.6, puncorrected=0.0053, pFDR-corrected=0.0210), left STS (mean decoding 22	

accuracy 52.3%, 95% CI 50.6 to 54.1, puncorrected=0.0204, pFDR-corrected=0.0306), MPFC 23	
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(mean decoding accuracy 52.6%, 95% CI 50.5 to 55.0, puncorrected=0.0105, pFDR-1	

corrected=0.0210), and precuneus (mean decoding accuracy 52.7%, 95% CI 50.4 to 55.0, 2	

puncorrected=0.0099, pFDR-corrected=0.0210). These results confirm that the present paradigm, 3	

using stories that are subtly different from each other, can obtain social cognitive results 4	

that are consistent with previous findings.  5	

 6	

Prediction 3 7	

We hypothesized that areas in the theory-of-mind network would not only encode 8	

the distinction between endogenous and exogenous attention, but do so to a significantly 9	

different extent in self-related stories than in other-related stories. However, the results 10	

showed no significant interaction in any of the ROIs (Figure 3C and Table 1). Thus, we 11	

found no support for prediction 3. 12	

 13	

Prediction 4 14	

Finally, we asked whether the activity in the theory-of-mind network would 15	

distinguish between social stories and nonsocial stories. This final analysis served as a 16	

control to check the validity of the story stimuli and confirm that they engaged social 17	

cognition as expected. We expected a signal of much greater magnitude in this analysis 18	

than in the analyses described above. The reason is that, as noted above, the types of 19	

social stories differed from each other by only a few words, and were nearly identical in 20	

semantic content; thus any brain signal reflecting those differences is expected to be 21	

subtle. The distinction between social and nonsocial stories, however, was much greater 22	
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semantically, and therefore the evidence of decoding in the brain is expected to be of 1	

greater magnitude. 2	

Figure 4 shows the results (see Table 2 for numerical details). The results are 3	

separated into six ROIs, and for each ROI, separated into four individual analyses, 4	

corresponding to each of the four main social conditions contrasted with the nonsocial 5	

control. Decoding accuracy was significantly greater than chance in almost all analyses 6	

across the six ROIs. The right STS showed the least consistent evidence of decoding. The 7	

TPJ bilaterally and the precuneus showed the most consistent evidence of decoding. 8	

These results show strong evidence of decoding of the social versus nonsocial stimuli in 9	

the known theory-of-mind, cortical network. 10	

 11	

Discussion 12	

This study analyzed brain activity while people read stories about agents attending 13	

to objects in the environment. We examined whether specific brain areas could decode 14	

information about the type of attention referenced in the story (exogenous versus 15	

endogenous), and about the type of agent in the story (whether the agent was the subject 16	

reading the story or a different person). We hypothesized that if the brain constructs a 17	

model of attentional state that is used in social cognition, then areas of the brain known to 18	

be involved in social cognition should be able to distinguish between the two types of 19	

attention, exogenous and endogenous, represented in the stories. Our main analysis 20	

confirmed the hypothesis: the left TPJ showed significant decoding of information about 21	

endogenous versus exogenous attention. The finding is, arguably, remarkable, given that 22	

the semantic and wording difference between the two story types is extremely subtle.  23	
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These results support a new and growing body of evidence that the human brain 1	

constructs a model of attention to aid in theory of mind (Guterstam et al., 2019; 2	

Guterstam and Graziano, 2020; Kelly et al., 2014; Pesquita et al., 2016; Vernet et al., 3	

2019). The model includes information about attention that is deeper and more complex 4	

than just gaze direction or an identification of the attended object. At least one aspect of 5	

attention incorporated into the model appears to be the manner in which attention moves 6	

to an object: endogenously (internally directed) or exogenously (externally induced). The 7	

processing of the model appears to engage the theory-of-mind cortical network. The left 8	

TPJ showed the strongest decoding result. It is not clear why the left hemisphere showed 9	

stronger activity than the right in the present task. Social cognition tasks often activate 10	

the TPJ bilaterally, but typically engage the right TPJ more (Saxe and Wexler, 2005). 11	

One speculation is that some aspect of the present task, perhaps explicitly instructing 12	

people that the task was a test of reading comprehension, caused an emphasis on 13	

linguistic processing, biasing the activity toward the left hemisphere. Other explanations 14	

for the left-hemisphere bias may also be possible. 15	

We were also able to analyze brain areas involved in self-versus-other encoding. 16	

We found evidence of self-versus-other encoding in the left TPJ, left STS, MPFC and 17	

precuneus. The MPFC and precuneus have been previously implicated in self processing 18	

(Northoff et al., 2006; Ochsner et al., 2004; Passingham et al., 2010; Qin and Northoff, 19	

2011; van Veluw and Chance, 2014), and the TPJ is consistently activated in fMRI 20	

studies involving self-recognition (van Veluw and Chance, 2014) and first-person 21	

perspective taking (Ionta et al., 2011). These results lend confidence to the present 22	

paradigm, showing that even the very subtle differences between our story stimuli were 23	
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able to reveal cortical results consistent with previous studies. 1	

Contrary to our prediction 3, we found no evidence for an interaction between 2	

attention type and agent type decoding in the theory-of-mind ROIs. (As noted in the 3	

Supplementary Information, during an exploratory searchlight analysis, we also found no 4	

evidence of an interaction effect in any other brain area.) Although it is possible that our 5	

paradigm was simply not sensitive enough to detect subtle interaction effects, these 6	

results suggest that the brain encodes information about attention type in a similar 7	

manner in the self and in others. 8	

Finally, significant decoding of the social-versus-nonsocial distinction was obtained 9	

across most of the theory-of-mind ROIs. This finding confirmed the validity of the 10	

paradigm, and was expected based on previous experiments of the theory-of-mind 11	

network (Gallagher et al., 2000; Saxe and Kanwisher, 2003; van Veluw and Chance, 12	

2014; Vogeley et al., 2001).  13	

The use of a story-reading paradigm allowed us to systematically manipulate the 14	

kind of attention represented in the stimulus while keeping other experimental factors 15	

close to identical. The endogenous and exogenous story versions differed only with 16	

respect to a few key words specifying the type of attention, while the rest of the stories 17	

were semantically the same. To avoid cognitive bias or expectation effects, the probe task 18	

performed by the subjects concerned details about the spatial context or the objects in the 19	

stories, effectively distracting subjects from the description of attention. A post-scan 20	

questionnaire confirmed that none of the subjects came close to figuring out the purpose 21	

of the experiment (which they had been told was a “Reading Comprehension 22	

Experiment”). The finding of brain areas that significantly decoded the type of attention, 23	
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despite the distinction between endogenous and exogenous attention being subtle and 1	

task-irrelevant, indicates that the human brain automatically, and possibly also implicitly 2	

(Pesquita et al., 2016), constructs a model of an agents’ attention that specifies at least 3	

some dynamic aspects of how that attention is moving around the scene. 4	

 5	
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Figures and legends 1	

 2	

Figure 1. Methods. A. Schematic timeline of the fMRI design. In each trial, subjects 3	

were presented with a short story for 10 s, describing a scene in which an agent attended 4	

to an object in the environment. A probe statement was then shown for 4 s, relating to 5	

either the story’s spatial context or object property, to which the subjects responded either 6	

true or false by button press. B. The agent in the story was either the subject him-/herself 7	

(self) or another person (other), and directed attention to the object endogenously 8	

(internally driven attention) or exogenously (stimulus-driven attention), yielding a 2 ´ 2 9	

factorial design of attention type ´ agent. We created 80 unique stories in four different 10	

versions, one for each condition. We made minimal changes to the wordings to keep the 11	

story versions as semantically similar as possible. Green highlighting indicates wording 12	

specifying agent, yellow highlighting indicates wording specifying attention type (colors 13	

not part of actual visual stimuli). For each story, each subject saw only one of the four 14	

versions (balanced across subjects). We also included a nonsocial baseline condition 15	

(twenty unique stories based on a subset of the 80 social stories) in which the agent was 16	

replaced by a non-human object. 17	
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 1	

Figure 2. Regions of interest (ROIs). Six ROIs were defined based on peaks reported in 2	

an activation likelihood estimation meta-analysis of 16 fMRI studies involving theory-of-3	

mind reasoning (van Veluw and Chance, 2014). The ROIs consisted of 10-mm-radius 4	

spheres centered on peaks in the bilateral temporoparietal junction (TPJ) and superior 5	

temporal sulcus (STS), and two midline structures: the precuneus and medial prefrontal 6	

cortex (MPFC). Here, the TPJ and STS ROIs on the left side are shown. 7	

TPJ MPFC

STS

Precuneus
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 1	

Figure 3. Decoding attention type, agent, and the interaction between them, in six 2	

brain areas. For definition of ROIs, see Figure 2. Each point shows mean decoding 3	

accuracy. Error bars show SEM. Red horizontal line indicates chance level decoding. 4	

Significance indicated by * (p<0.05) and ** (p<0.01), based on permutation testing (all 5	

significant p values also survived correction for multiple comparisons across all six ROIs 6	

[all corrected ps < 0.05]). A. The ability of a classifier, trained on BOLD activity patterns 7	

within each ROI, to decode endogenous (endo) versus exogenous (exo) attention. B. 8	

Decoding accuracy for agent (self versus other). C. Decoding accuracy for the interaction 9	

between type of attention and agent.  10	
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 1	

Figure 4. Decoding social versus nonsocial stories.  The ability of a classifier, trained 2	

on BOLD activity patterns within each of the six ROIs, to decode each of the four social 3	

story conditions (endogenous-self, exogenous-self, endogenous-other, and exogenous-4	

other) versus the nonsocial baseline. Each bar shows mean decoding accuracy, error bars 5	

show SEM, red horizontal line shows chance level decoding. Significance indicated by * 6	

(p<0.05), ** (p<0.01), and *** (p<0.001) based on permutation testing (all but one of the 7	

significant p values also survived correction for multiple comparisons across all six ROIs; 8	

see Table 2 for numerical details).  9	
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Tables and legends 1	

    L TPJ R TPJ L STS R STS MPFC Precuneus 

Endo vs. 
Exo 

Mean accuracy 52.9% 51.4% 50.4% 48.0% 49.5% 50.2% 

95% CI 50.7 − 55.2 49.1 − 53.9 47.8 − 52.8 45.9 − 50.1 47.6 − 51.4 48.5 − 51.8 

P value 0.0046* 0.1148 0.3518 0.9547 0.6439 0.4428 

Self vs. 
Other 

Mean accuracy 53.0% 51.0% 52.3% 51.3% 52.6% 52.7% 

95% CI 50.1 − 55.6 48.5 − 53.4 50.6 − 54.1 48.9 − 54.1 50.5 − 55.0 50.4 − 55.0 

P value 0.0053* 0.1974 0.0204* 0.1241 0.0105* 0.0099* 

(Self vs. 
Other) ´ 
(Endo 

vs. Exo) 

Mean accuracy diff 1.6% 1.5% 2.0% -3.0% 2.5% 0.6% 

95% CI -2.7 − 6.3 -3.6 − 6.5 -2.7 − 6.3 -7.4 − 1.1 -2.3 − 6.7 -5.5 − 5.5 

P value 0.2430 0.2639 0.1967 0.8944 0.1414 0.3900 

Table 1. Decoding attention type, agent, and the interaction between the two, within 2	

the six ROIs. For definition of ROIs, see Figure 2. Mean decoding accuracy (%), 95% 3	

confidence interval (based on bootstrap distribution), and p value (based on permutation 4	

testing) are shown for each of the six ROIs. Results shown for decoding endogenous 5	

(endo) versus exogenous (exo) attention type, self versus other agent type, and the 6	

interaction between the two variables. *significant p values that survived correction for 7	

multiple comparisons across all six ROIs (corrected p < 0.05).	 	8	
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    L TPJ R TPJ L STS R STS MPFC Precuneus 

Endo-Self 
vs. 

nonsocial 

Mean accuracy 58.5% 56.7% 53.0% 50.9% 55.2% 54.6% 

95% CI 55.5 − 61.6 53.5 − 59.8 49.3 − 56.8 47.5 − 54.0 52.3 − 58.0 51.5 − 57.7 

P value 0.0001* 0.0001* 0.0338* 0.2703 0.0026* 0.0027* 

Exo-Self 
vs. 

nonsocial 

Mean accuracy 60.7% 56.5% 56.3% 53.6% 54.5% 55.7% 

95% CI 57.0 − 64.4 53.7 − 58.8 53.5 − 59.0 50.5 − 56.6 51.7 − 57.1 51.9 − 59.4 

P value 0.0001* 0.0002* 0.0001* 0.0179* 0.0044* 0.0001* 

Endo-
Other vs. 
nonsocial 

Mean accuracy 58.4% 52.7% 53.5% 52.2% 53.4% 55.4% 

95% CI 55.9 − 60.9 49.6 − 55.9 51.1 − 55.9 48.8 − 55.0 49.5 − 57.7 52.6 − 58.2 

P value 0.0001* 0.0497 0.0147* 0.0969 0.0219* 0.0014* 

Exo-
Other vs. 
nonsocial 

Mean accuracy 56.7% 54.2% 53.1% 51.5% 53.4% 55.2% 

95% CI 53.8 − 59.8 51.1 − 57.3 50.4 − 55.9 49.1 − 54.0 49.8 − 56.7 52.0 − 58.5 

P value 0.0002* 0.0065* 0.0319* 0.1901 0.0197* 0.0012* 

Table 2. Decoding social versus nonsocial stories within the six ROIs. For definition 1	

of ROIs, see Figure 2. Mean decoding accuracy (%), 95% confidence interval (based on 2	

bootstrap distribution), and p value (based on permutation testing) are shown for each of 3	

the six ROIs. Results shown for each of four social story conditions (endogenous-self, 4	

exogenous-self, endogenous-other, and exogenous-other) versus the nonsocial baseline. 5	

*significant p values that survived correction for multiple comparisons across all six 6	

ROIs (corrected p < 0.05).	7	

8	
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Supplementary Information 1	

 2	

The Supplementary Information (SI) includes: 3	

SI Text S1: Searchlight Analysis 4	

SI Text S2: Eye-Tracking Decoding 5	

Figures S1 to S5 6	

Tables S1 to S4 7	

SI Data S1: Story stimuli  8	
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SI Text S1: Searchlight Analysis 1	

Our primary analysis, described in the main text, was a targeted testing of strong 2	

hypotheses within a set of defined RIOs. Such targeted testing is preferred because it puts 3	

strong hypotheses to a direct test, and because it is more sensitive, avoiding the statistical 4	

problems of a brain-wide multiple comparison correction. Given the extremely subtle 5	

differences between the story types in the present experiment, such a targeted and 6	

sensitive analysis was preferred. However, in addition to the targeted ROI analyses, we 7	

also performed an exploratory analysis to ask whether any meaningful decoding activity 8	

might be identified outside of the ROIs. We used a searchlight analysis (Kriegeskorte et 9	

al., 2006). The searchlight analysis is fundamentally different from the ROI analysis. It is 10	

not targeted to specific brain areas on the basis of predictions. Instead, it is a whole-brain 11	

analysis that is much more statistically conservative because of the brain-wide multiple 12	

comparisons. In general, one would not expect the searchlight analysis to align perfectly 13	

with the ROI analysis. Activations revealed in the more sensitive ROI analysis might not 14	

appear in the searchlight analysis. Instead, it is exploratory in nature, and its usefulness is 15	

that it may reveal clusters of strong decoding in unanticipated areas outside the ROIs.  16	

 17	

Endogenous-vs-exogenous searchlight analysis 18	

First, the brain was partitioned into overlapping voxel clusters of spherical shape 19	

(10-mm radius). In each of these clusters, a decoding accuracy was computed using the 20	

same model input, SVM parameters, and procedures as described for the ROI analysis. 21	

This process resulted in an endogenous-versus-exogenous decoding accuracy map for 22	

each subject, in which the value of each voxel represents the average proportion of 23	
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correctly classified trials relative to chance level (50%) based on the 10 mm sphere of 1	

tissue surrounding that voxel. The subject-wise decoding maps were then smoothed using 2	

a 3-mm full-width-half-maximum (FWHM) Gaussian kernel, and entered into a second-3	

level analysis using SPM12. At the second-level, the whole-brain decoding maps were 4	

thresholded at p < 0.001 (uncorrected for multiple comparisons). For statistical inference, 5	

we employed a cluster-level, whole-brain approach to find clusters that passed the 6	

threshold of p < 0.05, corrected for brain-wide multiple comparisons using the 7	

familywise error rate correction as implemented by SPM12. In a purely descriptive 8	

manner, we also report strong decoding activity, defined as clusters ≥ 10 voxels using the 9	

cluster-forming threshold of p < 0.001 uncorrected, that did not survive correction at the 10	

whole-brain level (Table S1). 11	

Clusters revealed in the searchlight analysis were projected onto orthogonal 12	

sections of the average structural scan generated from the 32 subjects for anatomical 13	

localization. The decoding clusters were also projected onto a 3D canonical brain surface 14	

using the software Surf Ice (University of South Carolina, McCausland Center for Brain 15	

Imaging). Figure S1 shows the brain-wide peak in decoding obtained with the searchlight 16	

method. 17	

The searchlight analysis revealed no clusters that were brain-wide significant at the 18	

corrected p < 0.05 threshold. When examining the voxel-wise p < 0.001 threshold, four 19	

clusters (≥10 voxels) were observed (see Table S1 for details). The strongest peak 20	

decoding (t = 4.21) was located in the left posterior STS (within the TPJ; see Figure S1), 21	

thus consistent with the main, ROI analysis.  22	

 23	
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Self-versus-other searchlight analysis 1	

The same method used for the exogenous-versus-endogenous searchlight analysis 2	

was used for the self-versus-other searchlight analysis. The analysis revealed four clusters 3	

that significantly decoded the self-versus-other distinction (p < 0.05) after correcting for 4	

multiple comparisons using the whole brain as search space. The global decoding peak 5	

was located on the left angular gyrus (part of TPJ; see Figure S2) (t = 5.92), which is 6	

compatible with our main ROI decoding results. All decoding clusters, including those 7	

passing the uncorrected threshold p < 0.001, are listed in Table S2. 8	

 9	

Endogenous-versus-exogenous X self-versus-other searchlight analysis 10	

The same method as in the previous sections was used for the interaction, or 11	

exogenous-versus-endogenous X self-versus-other, searchlight analysis. The analysis 12	

revealed no clusters that decoded the endogenous-versus-exogenous distinction 13	

significantly (p < 0.05, after correcting for multiple comparisons using the whole brain as 14	

search space) different in self-related compared to other-related stories . When examining 15	

the voxel-wise p < 0.001 threshold, two clusters were observed (see Table S3 for details). 16	

The strongest peak decoding (t = 4.20) was located in the left posterior STS (Figure S3). 17	

All decoding clusters, including those passing the uncorrected threshold p < 0.001, are 18	

listed in Table S3. 19	

 20	

Social-versus-nonsocial searchlight analysis 21	

For this analysis, we performed four separate whole-brain searchlight analyses, 22	

testing for decoding that distinguished social from nonsocial stories. Each of the four 23	
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analyses was restricted to comparing a specific type of social story to the nonsocial 1	

control: endogenous-self versus nonsocial, exogenous-self versus nonsocial, endogenous-2	

other versus nonsocial, and exogenous-other versus nonsocial. We first identified clusters 3	

that passed a threshold of p < 0.05 corrected using the entire brain as search space. We 4	

then found brain areas of overlap, that were ≥10 voxels in size, between the decoding 5	

clusters obtained in the four different analyses. These areas of overlap represent brain 6	

regions that showed significant decoding for the social-versus-nonsocial comparison, in a 7	

consistent manner, across all types of social stimuli. Using this method, four brain areas 8	

were obtained (see Table S4 and Figure S4 for details). 9	

 10	

  11	
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SI Text S2: Eye-Tracking Decoding 1	

To examine whether eye movement dynamics could explain our fMRI decoding 2	

results, we systematically organized eye position and saccade data into gaze pattern 3	

vectors, and submitted it to a decoding model analogue to the one used for the fMRI data 4	

(see Methods for details). Out of 32 subjects, 27 had usable eye tracking data available 5	

(five subjects had data with unacceptable levels of noise due to either the presence of 6	

glasses or a partially occluded pupil). The results showed that this classifier, based solely 7	

on eye tracking data, could not decode attention type (endogenous-versus-exogenous 8	

decoding accuracy 55.2%, p=0.102) or agent (self-versus-other decoding accuracy 9	

52.4%, p=0.376) significantly better than chance level. See Figure S5.  10	
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 1	

Figure S1. Decoding attention type at the whole-brain level. The cluster shown had 2	

the highest decoding accuracy in the whole-brain, searchlight analysis, for the 3	

endogenous-versus-exogenous comparison. See Table S1 for numerical details. Top: 4	

projected onto a 3D canonical brain surface. Bottom: projected onto a parasagittal section 5	

of the average structural scan generated from the 32 subjects for anatomical localization. 6	

For display purposes, the statistical threshold for the activation maps was set to p < 7	

0.001, uncorrected. 8	

  9	
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 1	

Figure S2. Decoding agent type at the whole-brain level. The cluster shown had the 2	

highest decoding accuracy in the whole-brain, searchlight analysis, for the self-versus-3	

other comparison. See Table S2 for numerical details. Top: projected onto a 3D canonical 4	

brain surface. Bottom: projected onto a parasagittal section of the average structural scan 5	

generated from the 32 subjects for anatomical localization. For display purposes, the 6	

statistical threshold for the activation maps was set to p < 0.001, uncorrected.  7	

L angular gyrus (TPJ)
(-59, -67, 27)

Self vs. Other
Whole-brain searchlight
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Figure S3. Decoding attention-by-agent interaction at the whole-brain level. The 2	

cluster shown had the highest decoding accuracy difference in the whole-brain, 3	

searchlight analysis, for the (endogenous-versus-exogenous)SELF versus (endogenous-4	

versus-exogenous)OTHER comparison. See Table S3 for numerical details. Top: projected 5	

onto a 3D canonical brain surface. Bottom: projected onto a parasagittal section of the 6	

average structural scan generated from the 32 subjects for anatomical localization. For 7	

display purposes, the statistical threshold for the activation maps was set to p < 0.001, 8	

uncorrected.  9	
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Figure S4. Decoding social versus nonsocial stories at the whole-brain level. The 2	

clusters shown are areas of overlap between four whole-brain, searchlight analyses, for 3	

the social-versus-nonsocial comparison (endogenous-self versus nonsocial, exogenous-4	

self versus nonsocial, endogenous-other versus nonsocial, exogenous-other versus 5	

nonsocial). See Table S4 for numerical details. Projected onto a 3D canonical brain 6	

surface.  7	
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Figure S5. Eye tracking results. Subjects tended to fixate in a similar spatial pattern 2	

across the screen, and engage in similar saccade dynamics, regardless of the type of story 3	

presented. No significant ability to decode the story type based on the pattern of eye 4	

movement was obtained. The red rectangle in the heat maps in panels A-E indicates the 5	

area of the screen within which the story text appeared.  6	
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Anatomical region Peak MNI Peak t Cluster size 

L. posterior STS (TPJ) -59, -47, 5 4.21 22 

R. middle frontal gyrus  39, -7, 55 4.15 17 

R. inferior precentral sulcus 42, 18, 15 4.10 37 

L. lingual gyrus -11, -80, -8 3.97 11 

Table S1. Decoding endogenous versus exogenous at the whole-brain level. All 1	

clusters (≥10 voxels) of decoding activity passing the voxelwise threshold of p < 0.001 2	

(none of the clusters survived p < 0.05 correction for multiple comparisons using the 3	

whole brain as search space). 	  4	
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Table S2. Decoding agent type at the whole-brain level. All clusters (≥10 voxels) 2	

decoding agent type (self versus other) activity at the threshold of p < 0.001 3	

(uncorrected). Corrected p values represent cluster-level correction using the whole brain 4	

as search space.  5	

Anatomical region Peak MNI Peak t Cluster size Corrected p 
value 

L. angular gyrus (TPJ) -59, -67, 27 5.92 211 <0.001 

R. precuneus 4, -55, 30 5.91 57 - 

L. inferior temporal gyrus -41, -15, -18 5.49 131 0.004 

L. inferior occipital gyrus -31, -77, -8 5.26 54 - 

R. middle cingulate cortex 2, -15, 40 4.24 47 - 

R. lingual gyrus 24, -82, -8 4.82 121 0.006 

L. fusiform gyrus -39, -57, -23 4.81 114 0.008 

R. calcarine sulcus 7, -85, 5 4.71 53 - 

R. fusiform gyrus 27, -37, -21 4.32 34 - 

R. inferior occipital gyrus 47, -80, 3 4.05 27 - 

L. inferior frontal sulcus -41, 13, 27 4.02 13 - 

L. superior frontal gyrus -29, 16, 65 3.98 12 - 
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Anatomical region Peak MNI Peak t Cluster size 

L. posterior STS -51, -27, -1 4.20 13 

R. inferior temporal gyrus 47, -22, -28 3.96 13 

Table S3. Decoding attention-by-agent interaction at the whole-brain level. All 1	

clusters (≥10 voxels) in which endogenous-versus-exogenous decoding was better in self-2	

related compared to other-related stories at p < 0.001 (uncorrected). (none of the clusters 3	

survived correction for multiple comparisons using the whole brain as search space).	  4	
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Anatomical region Cluster size 

L. TPJ 1722 

L. and R. precuneus 80 

R. intraparietal sulcus 137 

L. inferior frontal sulcus 22 

Table S4. Decoding social versus nonsocial stories at the whole-brain level. Clusters 1	

(≥10 voxels) decoding social versus nonsocial stories significantly better than chance. 2	

The listed clusters represent the overlap of significant clusters (p < 0.05, corrected using a 3	

cluster-defining uncorrected threshold of p < 0.001 and the entire brain as search space) 4	

across four separate whole-brain searchlight analyses: endogenous-self versus nonsocial, 5	

exogenous-self versus nonsocial, endogenous-other versus nonsocial, and exogenous-6	

other versus nonsocial.  7	
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SI Data S1. Story stimuli. List of all of the stories and story versions (endogenous-self, 1	

exogenous-self, endogenous-other, and exogenous-other) presented to the participants 2	

during the experiment. 3	
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