Inhibition of Lgt in Gram-negative bacteria

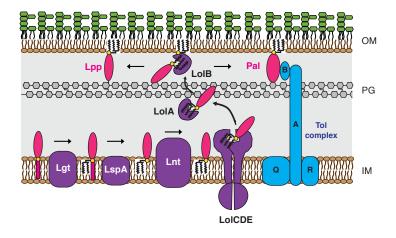
1	Novel inhibitors of <i>E. coli</i> lipoprotein diacylglyceryl transferase
2	are insensitive to resistance caused by <i>lpp</i> deletion
3	
4	Jingyu Diao ¹ , Rie Komura ² , Tatsuya Sano ² , Homer Pantua ¹ , Kelly M. Storek ¹ , Hiroko Inaba ² ,
5	Haruhiko Ogawa ² , Cameron L. Noland ³ , Yutian Peng ¹ , Susan L. Gloor ^{4†} , Donghong Yan ⁵ , Jing
6	Kang ⁵ , Anand Kumar Katakam ⁶ , Nicholas N. Nickerson ^{1†} , Cary D. Austin ⁶ , Jeremy Murray ³ ,
7	Steven T. Rutherford ¹ , Mike Reichelt ⁶ , Yiming Xu ⁴ , Min Xu ⁵ , Hayato Yanagida ² , Junichi
8	Nishikawa ² , Patrick C Reid ² , Christian N. Cunningham ^{7, #} and Sharookh B. Kapadia ^{1, #}
9	
10	Departments of Infectious Diseases ¹ , Structural Biology ³ , Biochemical and Cellular
11	Pharmacology ⁴ , Translational Immunology ⁵ , Pathology ⁶ and Early Discovery Biochemistry ⁷ ,
12	Genentech, South San Francisco, CA 94080 USA
13	² Peptidream Inc., 3-25-23 Tonomachi, Kawasaki-ku, Kawasaki City, Kanagawa Prefecture,
14	JAPAN 210-0821
15	† Present address: S.L.G EpiCypher Inc., 6 Davis Drive Durham NC; N.N.N Hoffmann-La
16	Roche Ltd., 7070 Mississauga Road Mississauga, ON Canada
17	
18	Abstract word count: 150
19	[#] Corresponding authors
20	Sharookh B. Kapadia (E-mail: <u>kapadia.sharookh@gene.com</u>)
21	Christian Cunningham (E-mail: cunningham.christian@gene.com)

Inhibition of Lgt in Gram-negative bacteria

22 Abstract

23	Lipoprotein diacylglyceryl transferase (Lgt) catalyzes the first step in the biogenesis of
24	Gram-negative bacterial lipoproteins which play crucial roles in bacterial growth and pathogenesis.
25	We demonstrate that Lgt depletion in a clinical uropathogenic Escherichia coli strain leads to
26	permeabilization of the outer membrane and increased sensitivity to serum killing and antibiotics.
27	Importantly, we identify the first ever described Lgt inhibitors that potently inhibit Lgt biochemical
28	activity in vitro and are bactericidal against wild-type Acinetobacter baumannii and E. coli strains.
29	Unlike inhibition of other steps in lipoprotein biosynthesis, deletion of the major outer membrane
30	lipoprotein, lpp, is not sufficient to rescue growth after Lgt depletion or provide resistance to Lgt
31	inhibitors. Our data validate Lgt as a novel druggable antibacterial target and suggest that inhibition
32	of Lgt may not be sensitive to one of the most common resistance mechanisms that invalidate
33	inhibitors of downstream steps of bacterial lipoprotein biosynthesis and transport.
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	

Inhibition of Lgt in Gram-negative bacteria


44 Introduction

45	The cell envelope of a typical Gram-negative bacterium consists of two membranes: a
46	phospholipid inner membrane (IM) and an asymmetrical outer membrane (OM), the latter of which
47	is composed of a phospholipid inner leaflet and a lipopolysaccharide (LPS) outer leaflet. The IM
48	and OM are separated by the periplasm, which contains a peptidoglycan (PG) cell wall (reviewed in
49	detail in (Silhavy, Kahne, & Walker, 2010)). E. coli encodes >90 lipoproteins, many of which are
50	localized to the inner leaflet of the OM, but can also be exposed on the bacterial cell surface
51	(Cowles, Li, Semmelhack, Cristea, & Silhavy, 2011; Wilson & Bernstein, 2015). Bacterial
52	lipoproteins play critical roles in adhesion, nutrient uptake, antibiotic resistance, virulence, invasion
53	and immune evasion (Kovacs-Simon, Titball, & Michell, 2011), making the lipoprotein biosynthetic
54	and transport pathways attractive targets for novel antibacterial drug discovery.
55	Lipoprotein biosynthesis in Gram-negative bacteria is mediated by three IM localized
56	enzymes: Lgt, LspA and Lnt (Figure 1). All preprolipoproteins contain a signal peptide followed by
57	a conserved four amino acid sequence, [LVI][ASTVI][GAS]C, also known as a lipobox
58	(Schlesinger, 1992), and are secreted through the IM via the Sec or Tat pathways. After secretion
59	through the IM, Lgt catalyzes the attachment of a diacylglyceryl moiety from phosphatidylglycerol
60	to the thiol group of the conserved +1 position cysteine via a thioether bond (Sankaran & Wu,
61	1994). The second enzyme, prolipoprotein signal peptidase (LspA), is an aspartyl endopeptidase
62	which cleaves off the signal peptide N-terminal of the conserved diacylated +1 cysteine (M.
63	Tokunaga, Tokunaga, & Wu, 1982), and is the molecular target of the Gram-negative-specific
64	natural-product antibiotics globomycin and myxovirescin (Dev, Harvey, & Ray, 1985; Gerth,
65	Irschik, Reichenbach, & Trowitzsch, 1982; Olatunji et al., 2020; Xiao, Gerth, Müller, & Wall,
66	2012). In Gram-negative and high-GC Gram-positive bacteria, a third enzyme, lipoprotein N-acyl

Inhibition of Lgt in Gram-negative bacteria

- 67 transferase (Lnt), catalyzes the addition of a third acyl chain to the amino group of the N-terminal
- 68 cysteine via an amide linkage. Mature triacylated lipoproteins destined for the OM are extracted
- 69 from the IM by the LolCDE ATP-binding cassette (ABC) transporter and transported to the OM via
- a periplasmic chaperone protein LolA and an OM lipoprotein LolB (Narita, 2011; Narita & Tokuda,
- 71 2010) (Figure 1).

72 Figure 1: Lipoprotein biosynthesis and transport in Gram-negative bacteria

73

74 Two OM lipoproteins, Lpp (also known as Murein lipoprotein or Braun's lipoprotein) and 75 Pal (peptidoglycan-associated lipoprotein), mediate tethering of the PG layer to the OM in E. coli. 76 Lpp is a small ~8 kDa lipoprotein that is the most abundant OM protein in E. coli (~500,000 77 molecules per cell) and a third of all Lpp is covalently linked to PG (Cowles et al., 2011; Neidhardt, 78 1996). E. coli mutants deficient in Lpp exhibit increased OM permeability, leakage of periplasmic 79 components, increased outer membrane vesicle (OMV) release and increased sensitivity to 80 complement-mediated lysis (Diao et al., 2017; H. Suzuki et al., 1978; Yem & Wu, 1978). 81 Mislocalization and accumulation of PG-linked Lpp in the inner membrane upon inhibition of LspA 82 (Xiao et al., 2012; Zwiebel, Inukai, Nakamura, & Inouye, 1981) and LolCDE (McLeod et al., 2015; 83 Nickerson et al., 2018) is believed to lead to bacterial cell death (Narita & Tokuda, 2011; Robichon,

Inhibition of Lgt in Gram-negative bacteria

84	Vidal-Ingigliardi, & Pugsley, 2005; Yakushi, Tajima, Matsuyama, & Tokuda, 1997a). In addition
85	to Lpp, Pal binds PG and interacts with OmpA, Lpp and the Tol complex, and is crucial for
86	maintaining OM integrity in E. coli (Cascales, Bernadac, Gavioli, Lazzaroni, & Lloubes, 2002;
87	Clavel, Germon, Vianney, Portalier, & Lazzaroni, 1998; Leduc, Ishidate, Shakibai, & Rothfield,
88	1992; Mizuno, 1979). While non-natural product inhibitors of LspA and LolCDE have been
89	previously discovered (Kitamura, Owensby, Wall, & Wolan, 2018; McLeod et al., 2015), no
90	inhibitors of the first committed step in bacterial lipoprotein biosynthesis have been described.
91	Since many natural product antibiotics, including those that inhibit LspA, are cyclic (Igarashi, 2019;
92	Rossiter, Fletcher, & Wuest, 2017), we screened a macrocyclic peptide library to identify Lgt
93	inhibitors. In this study, we identify and characterize the first inhibitors of Lgt that inhibit growth
94	of wild-type E. coli and A. baumannii strains in addition to other OM-permeabilized Gram-negative
95	species. We demonstrate that, unlike inhibitors of LspA and LolCDE, treatment with Lgt inhibitors
96	does not lead to the significant accumulation of PG-linked Lpp forms in the IM and as such, are not
97	sensitive to resistance mediated by deletion of <i>lpp</i> .
98	
99	
100	
101	
102	
103	
104	
105	
106	

Inhibition of Lgt in Gram-negative bacteria

107 **Results**

108	Modest depletion of Lgt leads to increased OM permeability and loss of bacterial viability is
109	not rescued by deletion of <i>lpp</i> . Previous investigations into the role of Lgt in <i>E. coli</i> have focused
110	on laboratory strains, specifically those lacking the O-antigen of LPS. Here, we engineered the
111	uropathogenic <i>E. coli</i> clinical isolate CFT073 so that the only copy of <i>lgt</i> was under control of an
112	arabinose-inducible promoter (CFT073 Δlgt), and hence requires arabinose for Lgt expression. As
113	expected, genetic depletion of Lgt was lethal in vitro and growth was rescued after
114	complementation with E. coli lgt (Figure 2a). thyA, the gene that encodes thymidylate synthase, is
115	downstream of <i>lgt</i> and its ribosome binding site overlaps with the <i>lgt</i> stop codon. We confirmed
116	that <i>thyA</i> expression, which is regulated by transcription from the <i>lgt</i> promoter and translational
117	coupling (Gan et al., 1995), was unchanged after Lgt depletion (Figure 2-figure supplement 1a).
118	Complementation with lgt from Pseudomonas aeruginosa PA14 or A. baumannii ATCC 17978
119	(51.6% and 48.6% sequence identity, respectively) was able to rescue viability (Figure 2a and
120	Figure 2-figure supplement 1b). Overexpression of the <i>E. coli</i> genes encoding the downstream
121	enzymes in lipoprotein biosynthesis (LspA, Lnt) and transport (LolCDE) did not rescue growth of
122	CFT073∆ <i>lgt</i> in spite of detectable levels of LspA, Lnt and LolCDE (Figure 2-figure supplement 1c-
123	g). While depletion of ~25% of Lgt was sufficient for bactericidal activity (Figure 2b and 2c),
124	CFT073 Δlgt cells expressing as high as ~90% of normal levels of Lgt were significantly more
125	sensitive to complement-mediated killing of the normally serum-resistant E. coli CFT073 and
126	showed increased incorporation of SYTOX Green, a dye that normally does not penetrate an intact
127	OM (Figure 2c-e). Depletion of Lgt also resulted in an expected increase in cell size (Figure 2f) and
128	an Lpp-dependent IM contraction due to osmotic stress (Figure 2-figure supplement 2), as
129	previously reported (Inukai et al., 1978a; Inukai, Nakajima, Osawa, Haneishi, & Arai, 1978b; Rojas

Inhibition of Lgt in Gram-negative bacteria

- 130 et al., 2018). Consistent with these results, partial depletion of Lgt that still allowed for normal
- 131 growth *in vitro* led to increased sensitivity to antibiotics that are normally excluded by the
- 132 impermeable Gram-negative OM (Table 1). Depletion of Lgt also resulted in significant attenuation
- 133 in a mouse *E. coli* bacteremic infection model (Figure 2g). Cumulatively, these data suggest that
- 134 Lgt could be a good antibiotic target since partial inhibition of Lgt may be sufficient to lead to
- 135 significant attenuation in growth and cellular morphology.
- 136

137**Table 1**: Antibiotic sensitivity of WT CFT073 versus CFT073 Δlgt cells expressing wild-type (4%138Ara) or low (0.25% Ara) levels of Lgt

- 139
- 140

	ΜΙC (μ M)					
Antibiotic	WT CFT073	CFT073∆lgt				
	WI CF 1073	Lgt 4% Ara	Lgt 025% Ara			
Vancomycin (µM)	>100	>100	12.5			
Rifamycin (µM)	6.3	6.3	0.8			
Penicillin G (µM)	>50	>50	0.8			
Oxacillin (µM)	>100	>100	12.5			
Zeocin (µM)	12.5	12.5	0.8			
Norfloxacin (µM)	0.4	0.6	0.2			

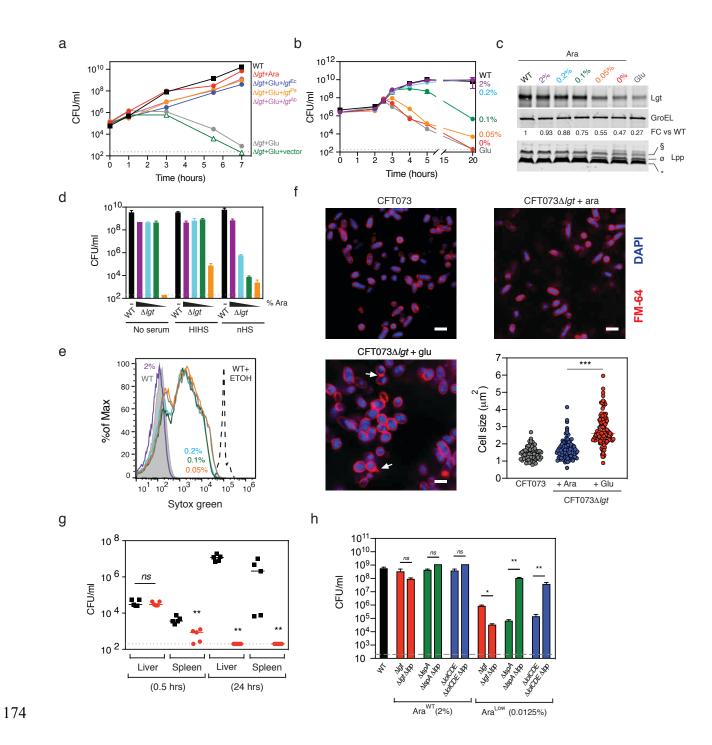
- 141
- 142

Bactericidal activity of LspA and LolCDE inhibitors are sensitive to deletion of the gene encoding the major OM lipoprotein, Lpp (McLeod et al., 2015; Zwiebel et al., 1981). To determine if Lpp played a role in bacterial cell death after Lgt depletion, we constructed a *lgt* inducible deletion strain in *E. coli* MG1655 with and without *lpp* (MG1655 Δ *lgt* and MG1655 Δ *lgt* Δ *lpp*) and compared growth of these strains to *lspA* and *lolCDE* inducible deletion strains in the same backgrounds. Expectedly, *lpp* deletion rescued the growth of the *lspA* and *lolCDE* inducible deletions strains after depletion of LspA and LolCDE, respectively (Figure 2h). In contrast to LspA

Inhibition of Lgt in Gram-negative bacteria

150	and LolCDE depletion, the <i>lpp</i> mutant was more sensitive to Lgt depletion leading to a greater loss
151	of colony forming units (CFU) compared to that detected after Lgt depletion in cells expressing <i>lpp</i> .
152	Since the loss of <i>lpp</i> is a primary mechanism of resistance to inhibitors of LspA and
153	LolCDE thereby complicating their potential as antibacterial targets, identification of Lgt inhibitors
154	would uncover further biological understanding of this essential pathway, and potentially serve as
155	better starting chemical matter to develop novel antibiotics targeting lipoprotein biosynthesis that
156	are not sensitive to resistance mediated by <i>lpp</i> deletion.

157


158 Identification and characterization of macrocyclic peptide inhibitors of Lgt. Many natural 159 products or their derivatives account for a significant number of launched drugs and sine many of 160 them are cyclic in nature (Igarashi, 2019), we initially screened a macrocyclic peptide library to 161 identify specific and high affinity binders of Lgt. A genetically reprogrammed in vitro translation 162 system combined with mRNA affinity selection methods was used to generate large macrocycle 163 peptide libraries with sizes varying from 8-14 amino acids in length (Goto, Katoh, & Suga, 2011; 164 Ishizawa, Kawakami, Reid, & Murakami, 2013; Kashiwagi, Reid, & Inc, 2013) (Figure 3a). The 165 variable sequence (6-12 amino acids) of the macrocycle libraries encoded the random incorporation 166 of 11 natural amino acids (Ser, Tyr, Trp, Leu, Pro, His, Arg, Asn, Val, Asp, and Gly) and 5 non-167 natural amino acids (Figure 3b). The screening of the libraries is schematically depicted in Figure 168 3c. Lgt-biotin was solubilized in 0.02% n-Dodecyl β-D-maltoside (DDM), immobilized on 169 streptavidin magnetic beads and incubated with the macrocyclic library. Iterative rounds of affinity 170 selection were performed to identify Lgt-binding macrocycles. After five rounds of enrichment,

171

Inhibition of Lgt in Gram-negative bacteria

172 Figure 2: Lgt is essential for *in vitro* growth, membrane integrity, serum resistance and

173 virulence

Inhibition of Lgt in Gram-negative bacteria

176	two additional rounds of off-rate selections were performed by increasing the wash stringency
177	before high affinity binders were eluted. Hit macrocycles were identified using next generation
178	sequencing on the last four rounds of selection followed by a frequency analysis calculation. Three
179	macrocycles were identified from these screens, 508, 692, and 693 (Figure 3-figure supplement 1),
180	with a frequency enrichment in the final round of selection of 4.1%, 19.4%, and 10.1%,
181	respectively, as measured by NGS. 508 contains 8 amino acids with a molecular weight (MW) of
182	1264.49 Da. 692 and 693 each contain 7 amino acids and are related to one another with a charge
183	swap at position 2, and have MWs of 1428.66 and 1259.55 respectively. The calculated LogPs
184	(cLogP), which is the logarithm of the compounds partition coefficient between n-octanol and water
185	and a measure of a molecule's hydrophilicity, were 4, 1.8 and 1.7 for 508, 692 and 693,
186	respectively. 692 was synthesized with a Gly off of the C-terminus and renamed G9066 (Figure
187	3d). During re-synthesis, both 508 and 693 were synthesized with a Gly-Lys-Lys tail off of the C-
188	terminus to aide in solubility of these macrocycles and were renamed G2823 and G2824,
189	respectively (Figure 3d).
190	We then tested the ability of G9066 G2823 and G2824 to inhibit E coli Let enzymatic

190 We then tested the ability of G9066, G2823 and G2824 to inhibit *E. coli* Lgt enzymatic

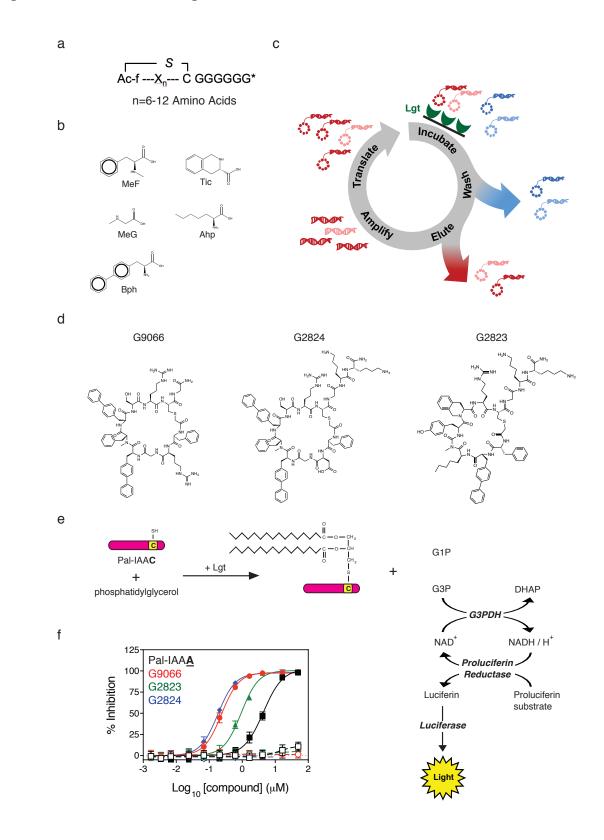
191 activity *in vitro* by measuring the release of glycerol phosphate which is a by-product of the Lgt-

192 catalyzed transfer of diacylglyceryl from phosphatidylglycerol to a peptide substrate via formation

193 of a thioether bond. The peptide substrate was derived from the Pal lipoprotein (Pal-IAAC, where

194 C is the conserved cysteine that is modified by Lgt). While glycerol-1-phosphate (G1P) is the

195 expected by-product of the Lgt enzymatic activity (Sankaran & Wu, 1994), the


196 phosphatidylglycerol substrate used in our biochemical assay contains a racemic glycerol moiety at

197 the end of phosphatidyl group, and hence both G1P and glycerol-3-phosphate (G3P) are released

198 from phosphatidylglycerol as Lgt catalyzes the reaction (Figure 3e). The detection of G3P is based

Inhibition of Lgt in Gram-negative bacteria

199 Figure 3: Identification of Lgt inhibitors

Inhibition of Lgt in Gram-negative bacteria

201	on a coupled luciferase reaction which is described in more detail in the Methods and in Figure 3e.
202	G9066, G2823 and G2824 potently inhibited Lgt biochemical activity (IC ₅₀ =0.24 μ M, 0.93 μ M and
203	0.18μ M, respectively) (Figure 3f). In comparison, a mutant Pal peptide substrate with the
204	conserved cysteine mutated to alanine (Pal-IAAA), which cannot get modified and acts as a Lgt-
205	binding nonreactive, substrate-based competitive inhibitor, inhibited Lgt with an IC ₅₀ =4.4 μ M
206	(Figure 3f). When tested against bacterial cells in minimal inhibitory concentration (MIC) growth
207	assays, G9066 and G2824 inhibited growth of WT <i>A</i> . <i>baumannii</i> 19606 with a MIC = 37.5 μ M.
208	G2823 and G2824 inhibited <i>E. coli</i> MG1655 growth with a MIC = 50 μ M (Table 2). OM
209	permeabilization either genetically (imp4213 mutation) or chemically (EDTA treatment) of all

210 Table 2: Growth inhibition of a panel of bacterial strains and eukaryotic cells by Lgti, LspAi

211 and LolCDEi

Bacteria	Strain -	Lgti			LspAi	LolCDEi	X 7
Dacteria		G9066	G2823	G2824	GBM	C1	Vancomycin
	MG1655	>100	50	50	25	>100	>100
	MG1655 + EDTA	3.1	3.1	3.1	0.8	3.1	3.1
	MG1655 Δlpp + EDTA	3.1	3.1	3.1	12.5	12.5	0.8
E. coli	CFT073	100	83.3	92	29.2	50	>100
210011	CFT073∆ <i>lpp</i>	31.3	25	62.5	>100	>100	>100
$(MIC, \mu M)$	CFT073 + EDTA	3.1	4.2	3.1	1.1	2.1	0.8
	CFT073∆ <i>lpp</i> + EDTA	1.6	3.1	2.3	4.7	9.4	08
	CFT073imp4213	5.7	8.4	8.4	0.5	2.1	0.6
	CFT073 <i>imp</i> 4213∆lpp	6.8	9.4	8.9	11.5	17.7	0.7
A. baumannii	19606	37.5	100	37.5	25	100	>100
$(MIC, \mu M)$	19606 + EDTA	3.1	4.7	6.3	0.6	12.5	0.2
P. aeruginosa	PA14	>100	>100	>100	>100	>100	>100
0	PA14imp4213	6.3	6.3	6.3	50	>100	12.5
$(MIC, \mu M)$	PA14 + EDTA	6.3	6.3	6.3	50	50	6.3
S. aureus (MIC, μM)	USA300	6.3	>100	>100	>100	>100	0.4
Mammalian	HepG2	> 100	> 100	> 100	> 100	> 100	> 100
cytotoxicity	Hela	> 100	> 100	> 100	> 100	> 100	> 100
(<i>EC</i> ₅₀ , µM) §	293T	> 100	> 100	> 100	> 100	> 100	> 100

Inhibition of Lgt in Gram-negative bacteria

- * All *E. coli* MIC values represent averages from at least four independent experiments each performed in duplicate.
- For other bacterial strains, MIC values represent averages from two independent experiments each performed in
- 214 duplicate
- 215 Mammalian cytotoxicity values are representative of three independent replicates
- 216
- 217

218	Gram-negative strains	, including P	aeruginosa PA14 and A.	baumannii 19606, led to growth

- 219 inhibition (Table 2). Interestingly, *lpp* deletion in either CFT073*imp*4213 or CFT073 treated with
- EDTA did not lead to increases in G9066, G2823 or G2824 MIC, unlike that seen with inhibitors of
- LspA and LolCDE (Table 2). In fact, *lpp* deletion in WT CFT073 cells led to a modest increase in
- 222 G9066, G2823 and G2824 potency. G2823 and G2824 showed minimal non-specific activity
- against eukaryotic cells and the Gram-positive *Staphylococcus aureus* strain USA300, consistent
- with data demonstrating *lgt* is dispensable for Gram-positive bacterial growth *in vitro* (Stoll,
- 225 Dengjel, Nerz, & Götz, 2005). In contrast, G9066 inhibited growth of USA300 to a greater extent
- suggesting G9066 may have additional targets or non-specific cellular effects. Given G9066 and
- G2824 are very similar, we decided to focus the remainder of this study on G2823 and G2824
- 228 (hereafter referred to as Lgti).
- 229

230 G2823 and G2824 specifically inhibit Lgt in E. coli

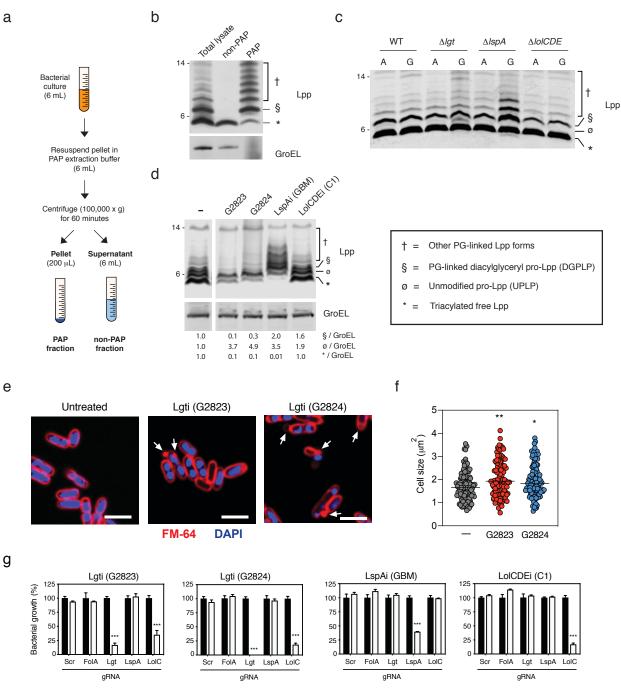
While the Lgti inhibited both Lgt enzymatic function and bacterial growth, it was unclear whether inhibition of bacterial cell growth was mediated by specific inhibition of Lgt function. We were unable to raise on-target resistant mutants to Lgti, and hence multiple experimental approaches were undertaken to determine if inhibition of bacterial growth was indeed Lgt-dependent. As the accumulation of Lpp intermediates detected by Western blot analyses has been successfully used to

Inhibition of Lgt in Gram-negative bacteria

236	verify inhibition or deletion of specific enzymes involved in lipoprotein biosynthesis or transport
237	(Narita & Tokuda, 2011; Nickerson et al., 2018), we asked if Lgt treatment led to the accumulation
238	of pro-Lpp, the substrate of Lgt. We initially sought to verify the various Lpp forms by leveraging
239	a previously described protocol using SDS fractionation (Diao et al., 2017; Nakae, Ishii, &
240	Tokunaga, 1979; Whitfield, Hancock, & Costerton, 1983). Lysozyme was added to allow for the
241	identification of PG-linked Lpp forms, as previously demonstrated (M. Suzuki, Hara, & Matsumoto,
242	2002). CFT073 cell lysates were centrifuged to separate the SDS-insoluble PG-associated proteins
243	(PAP) and SDS-soluble non-PG-associated proteins (non-PAP) (Figure 4a) and Lpp were detected
244	by Western blot analysis. As expected, the fastest migrating form representing the triacylated
245	mature form of Lpp (*) was enriched in the non-PAP fraction and the PG-linked Lpp forms (†) were
246	enriched in the PAP fraction (Figure 4b). We also detected a form corresponding to the PG-linked
247	diacylglyceryl modified pro-Lpp (DGPLP, §), as previously reported (M. Suzuki et al., 2002). We
248	then asked if we could detect pro-Lpp in total cell lysates after Lgt depletion and used the <i>lspA</i> and
249	<i>lolCDE</i> inducible deletion strains as controls. We confirmed that specific depletion of Lgt led to the
250	accumulation of the unmodified pro-Lpp (UPLP, ø), (Figure 4c), consistent with previous results
251	(Pailler, Aucher, Pires, & Buddelmeijer, 2012). While depletion of LspA led to the accumulation of
252	DGPLP (§) and other PG-linked Lpp forms (†), depletion of LolCDE did not change the SDS-
253	PAGE migration of Lpp as LolCDE is only critical for transport to the OM and does not affect
254	lipoprotein biosynthesis (Figure 4c). These results now allowed us to determine whether the Lgti
255	identified in this study inhibited Lgt in bacterial cells.
256	As the Lgti have only moderate activity against WT bacterial strains, we performed

257 mechanistic studies with Lgti in the CFT073 cells containing the *imp*4213 allele in *lptD*

258 (CFT073*imp*4213), which leads to permeabilization of the OM (Ruiz, Falcone, Kahne, & Silhavy,


Inhibition of Lgt in Gram-negative bacteria

259	2005). Given the high expression of Lpp, we engineered CFT073 <i>imp</i> 4213 cells to only express an
260	arabinose inducible <i>lpp</i> (CFT073 <i>imp</i> 4213 Δ <i>lpp</i> : <i>lpp</i> ^{Ara}) to minimize the background from pre-formed
261	Lpp. <i>lpp</i> gene expression was induced prior to treatment with sub-MIC levels of Lgti and led to an
262	accumulation of UPLP (\emptyset , Figure 4d), similar to what was observed with the CFT073 Δlgt strain
263	(Figure 4c), and a concurrent decrease in the triacylated mature Lpp form (*, Figure 4d). While
264	treatment with globomycin (LspAi) led to an accumulation of DGPLP and other PG-linked Lpp
265	forms, treatment of cells with the AstraZeneca LolCDE inhibitor C1 (LolCDEi) (McLeod et al.,
266	2015) did not lead to significant accumulation of Lpp, which is consistent with our data using the
267	inducible deletion strains as well as published results (Narita & Tokuda, 2011; Nickerson et al.,
268	2018). These data demonstrate that the Lgti identified in this study inhibit the generation of mature
269	triacylated Lpp and lead to the accumulation of UPLP, which is the substrate of Lgt.

270 Lgt on-target activity was further confirmed using two additional methods. First, Lgti 271 treatment also led to the expected OM blebbing and increase in cell size (Figure 4e and 4f), the 272 former of which was previously demonstrated in a Pal-deficient E. coli strain (Kowata, Tochigi, 273 Kusano, & Kojima, 2016). Second, we asked whether cells expressing reduced levels of Lgt would 274 be specifically sensitized to Lgti compared to the other inhibitors. To test this hypothesis, we 275 utilized CRISPRi technology to decrease gene expression of the enzymes involved in lipoprotein 276 biosynthesis and transport. BW25113 cells containing plasmids expressing dCas9 and guide RNAs 277 (gRNAs) specific to lgt, lspA, lolC were treated with Lgti, LspAi and LolCDEi and bacterial growth 278 was measured. Scrambled (scr) and a *folA*-specific gRNAs were used as negative controls. Levels 279 of downregulation of target gene expression (Figure 4-figure supplement 1) were consistent with 280 published reports for CRISPRi in bacterial cells (Rousset et al., 2018). Decreased expression of lgt 281 specifically sensitized cells to Lgti but not LspAi and LolCDEi (Figure 4g and

Inhibition of Lgt in Gram-negative bacteria

282 Figure 4: Lgti inhibit Lgt enzymatic activity in bacterial cells.

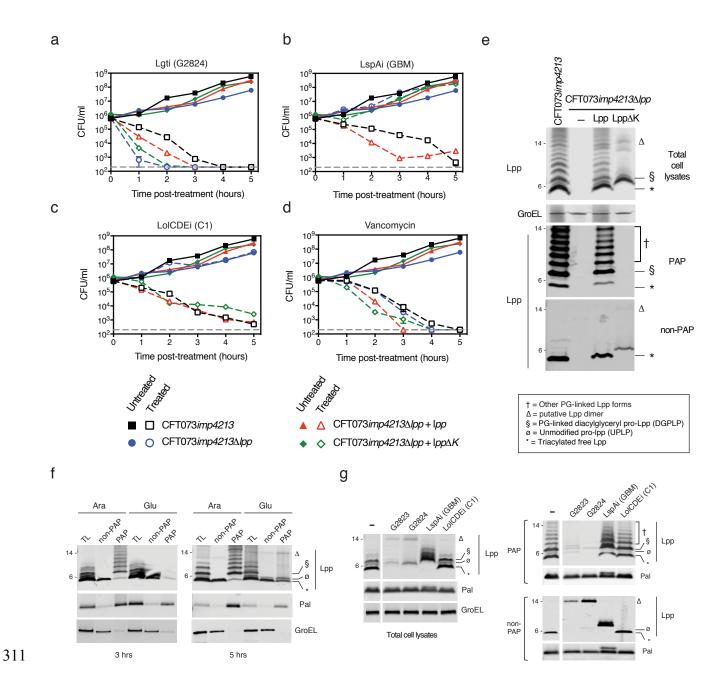
283

Inhibition of Lgt in Gram-negative bacteria

285	Figure 4-figure supplement 2). As expected, decreased expression of <i>lspA</i> and <i>lolC</i> specifically led
286	to enhanced growth inhibition by LspAi and LolCDEi compounds, respectively (Figure 4g and
287	Figure 4-figure supplement 2a,b). Decreased <i>lolC</i> expression also sensitized cells to Lgti (Figure
288	4g) and, at higher concentrations, LspAi (Figure 4-figure supplement 2d), but we confirmed that
289	previously identified LolCDEi-resistant mutants were not cross-resistant to Lgti (Supplemental
290	Table 1). Cumulatively, our data demonstrate that the novel Lgt-binding macrocycles G2823 and
291	G2824 interfere with Lgt activity leading to inhibition of <i>E. coli</i> growth.

292

293 Antibacterial activity of Lgti is not sensitive to *lpp* deletion.


294 Our data with the inducible deletion strains (Figure 2h) suggested that the mechanism of cell death 295 upon Lgt depletion is independent of Lpp (Figure 2h), distinguishing it from the mechanism of cell 296 death after depletion of enzymes involved in later steps of lipoprotein biosynthesis. Since the Lgti 297 identified in this study now allowed us to pharmacologically intervene at this step in the pathway, 298 we compared the bactericidal activity of Lgti with that of LspAi and LolCDEi. We treated 299 CFT073*imp*4213 and CFT073*imp*4213∆*lpp* cells with Lgti (G2824), LspAi (GBM) and LolCDEi 300 (C1) at 2×MIC of the respective inhibitors against CFT073*imp*4213 and enumerated viable CFU 301 counts. Consistent with our data using the inducible deletion strains, *lpp* deletion did not protect 302 cells from Lgti (Figure 5a). In fact, the rate of CFU loss after Lgti treatment was more rapid in *lpp*-303 deleted cells, which is consistent with our data using the CFT073 Δlgt cells (Figure 2h) and indicates 304 a protective role for Lpp when targeting Lgt. As expected, inhibition of bacterial growth by LspAi 305 and LolCDEi was lost in the absence of *lpp* (Figure 5b and 5c). In contrast, vancomycin showed 306 equivalent killing of CFT073*imp*4213 and CFT073*imp*4213 Δ *lpp* at 5 hours post treatment (Figure

Inhibition of Lgt in Gram-negative bacteria

- 307 5d). These data confirm that *lpp* deletion is not a mechanism of resistance to Lgti, and in fact
- 308 protects cells against depletion or inhibition of Lgti.

309

310 Figure 5: *lpp* deletion does not rescue growth after Lgti treatment

Inhibition of Lgt in Gram-negative bacteria

312	To determine if PG-linkage of Lpp plays a role in protection against Lgti, we treated
313	CFT073 <i>imp</i> 4213 Δ <i>lpp</i> cells complemented with either WT <i>lpp</i> or a mutant form that is unable to
314	covalently link to PG ($lpp\Delta K$). Using the previously described SDS fraction protocol, we
315	confirmed that while WT Lpp localized to both PAP and non-PAP fractions, the Lpp ΔK mutant was
316	only detected in the non-PAP fraction (Figure 5e). As we noted earlier, PG-linked DGPLP (§) and
317	other PG-linked Lpp forms (†) were primarily detectable in cell lysates and PAP fraction (Figure
318	5e). While complementation of CFT073 <i>imp</i> 4213 Δ <i>lpp</i> with WT <i>lpp</i> led to increased bactericidal
319	activity of LspAi and LolCDEi, bactericidal activity of Lgti and LolCDEi in cells deleted for <i>lpp</i> or
320	those only expressing Lpp ΔK was comparable (Figure 5a-c). These data suggest that while PG-
321	linked Lpp is toxic to cells after treatment with LspAi, it functions as a protective mechanism
322	against Lgti. Furthermore, accumulation of PG-linked Lpp does not fully explain the bactericidal
323	activity of LolCDEi.

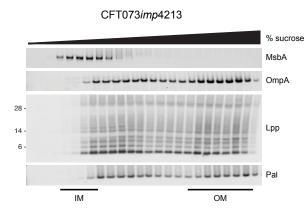
324

325 Lgt depletion or inhibition leads to decreased PG-association of Lpp and Pal.

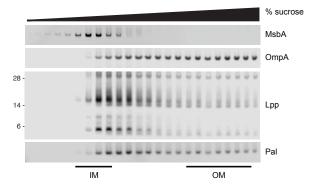
Unlike with inhibitors of LspA (Yakushi, Tajima, Matsuyama, & Tokuda, 1997a) and LolCDE (Nickerson et al., 2018), Lpp protects cells from Lgti suggesting that the PG-linkage state and/or localization of Lpp must differ after treatment with Lgti. Using SDS fractionation to enrich for PGassociated proteins in the CFT073 Δ *lgt* inducible deletion strain, we find that while Lgt depletion leads to a significant loss of DGPLP and other PG-linked Lpp forms in the PAP fractions, there is a modest accumulation of UPLP in the PAP fraction (Figure 5f). Lgt depletion also led to decreased

- 332 PG-associated Pal, although the difference between pro-Pal and mature Pal forms was difficult to
- distinguish by SDS-PAGE due to larger size of Pal compared to Lpp. We then tested if Lgti

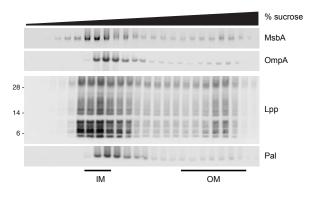
Inhibition of Lgt in Gram-negative bacteria

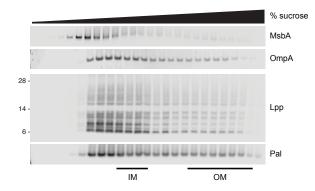

334	treatment also led to a similar loss of PG-association of Lpp and Pal. As before, we used cells
335	expressing an inducible form of <i>lpp</i> (CFT073 <i>imp</i> 4213 Δ <i>lpp</i> : <i>lpp</i> ^{Ara}) and find that Lgti treatment leads
336	to decreased PG-associated DGPLP and other PG-linked Lpp forms Lpp (Figure 5g). In addition,
337	we also detect a modest decrease in PG-associated Pal (Figure 5g). As expected, LspAi treatment
338	led to the accumulation of PG-linked DGPLP (§) and other PG-linked Lpp forms (†). These data
339	suggest that the accumulated UPLP after Lgt inhibition is either not significantly linked to PG or
340	does not accumulate to levels needed to induce cell death. To address the first question, we
341	engineered cells to only express a mutant of Lpp that has the conserved cysteine modified
342	(CFT073 <i>imp</i> 4213∆ <i>lpp</i> : <i>lpp</i> ^{C21A}) and asked if this form was PG-linked. Lpp ^{C21A} cannot be modified
343	by Lgt and represents the pro-Lpp substrate of Lgt. While complementation of
344	CFT073 <i>imp</i> 4213 Δ <i>lpp</i> with WT Lpp led to normal PG-linkage, CFT073 <i>imp</i> 4213 Δ <i>lpp</i> : <i>lpp</i> ^{C21A} cells
345	showed a significantly less PG-association of Lpp (Figure 5-figure supplement 1). Cumulatively,
346	these data demonstrate that inhibition of Lgt leads to decreased PG-association of Lpp, which could
347	explain why deletion of <i>lpp</i> does not lead to resistance to Lgti.
348	
210	
349	Inhibition of Lgt does not lead to significant accumulation of PG-linked Lpp in the IM
350	We then asked if membrane localization of Lpp, other OM lipoproteins and OMPs were affected by
351	Lgti. We utilized sucrose gradient centrifugation to separate E. coli IM and OM and measured
352	levels of OM lipoproteins (Lpp, Pal, BamD) and OMPs (BamA, OmpA) by Western blot analyses.
353	Sucrose gradient centrifugation of CFT073 imp4213 cells membranes led to the efficient separation
354	of IM and OM, as measured by MsbA and OmpA expression, respectively (Figure 6a). In
355	comparison to untreated cells, Lgti treatment led to significant reductions of Lpp in the OM (Figure

Inhibition of Lgt in Gram-negative bacteria

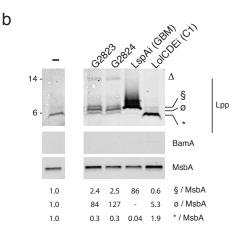

356 Figure 6: Inhibition of Lgt leads to depletion of essential OM lipoproteins and OMPs and

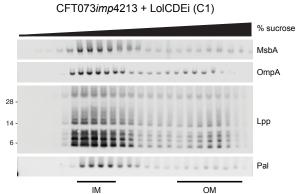
357 minimal IM accumulation of PG-linked DGPLP


а



CFT073imp4213 + Lgti (G2823)




CFT073imp4213 + LspAi (GBM)

CFT073imp4213 + Lgti (G2824)

358

Inhibition of Lgt in Gram-negative bacteria

360	6a). Although Lgti treatment led to accumulation of Lpp in the IM, the levels were significantly
361	lower than that seen with LspAi and LolCDEi. All the inhibitors led to decreased OM localization
362	of other lipoproteins, Pal and BamD, as well as the OM β -barrel proteins BamA and OmpA (Figure
363	6 and Figure 6 – figure supplement 1). These results are not totally unexpected given OmpA
364	insertion into the OM requires BamA function, which itself requires other Bam lipoproteins,
365	including BamD, for proper OM localization. These results suggest that while Lgti are similar to
366	LspAi and LolCDEi in their effects on Pal and other lipoproteins involved in OM biogenesis
367	pathways, they differ from LspAi and LolCDEi in that they do not lead to significant accumulation
368	of Lpp in the IM supporting our data that <i>lpp</i> deletion does not play major role in resistance to Lgti.
369	In addition to sucrose gradient centrifugation, we also treated cells with sarkosyl that
370	specifically solubilizes the IM and has been used for IM proteomic analyses in multiple Gram-
371	negative bacteria (Ferrer-Navarro, Ballesté-Delpierre, Vila, & Fàbrega, 2016; Filip, Fletcher, Wulff,
	negative bacteria (rener-ivavario, baneste-beipiene, vita, & rablega, 2010, rinp, ricterier, wuin,
372	& Earhart, 1973; Hobb, Fields, Burns, & Thompson, 2009; Jabbour et al., 2010). Compared to
372 373	
	& Earhart, 1973; Hobb, Fields, Burns, & Thompson, 2009; Jabbour et al., 2010). Compared to
373	& Earhart, 1973; Hobb, Fields, Burns, & Thompson, 2009; Jabbour et al., 2010). Compared to untreated cells, treatment with Lgti led to a ~84 to 127-fold increase in levels of UPLP in the IM. In
373 374	& Earhart, 1973; Hobb, Fields, Burns, & Thompson, 2009; Jabbour et al., 2010). Compared to untreated cells, treatment with Lgti led to a ~84 to 127-fold increase in levels of UPLP in the IM. In contrast, DGPLP levels in the IM increased by a modest ~2.5-fold in comparison to LspAi
373 374 375	& Earhart, 1973; Hobb, Fields, Burns, & Thompson, 2009; Jabbour et al., 2010). Compared to untreated cells, treatment with Lgti led to a ~84 to 127-fold increase in levels of UPLP in the IM. In contrast, DGPLP levels in the IM increased by a modest ~2.5-fold in comparison to LspAi treatment, which results in a ~86-fold increase of DGPLP in the IM (Figure 6b). These results

378

379

Inhibition of Lgt in Gram-negative bacteria

381 **Discussion**

382	Lipoprotein biosynthesis is a critical pathway involved in the biogenesis and maintenance of the
383	Gram-negative bacterial OM, and disruption of any step in this pathway leads to loss of cell
384	viability. Lpp maintains the integrity of the Gram-negative bacterial cell surface by covalent
385	interaction between the C-terminal lysine and the meso-diaminopimelic acid residue of the PG layer
386	(Braun & Wolff, 1970; Hirota, Suzuki, Nishimura, & Yasuda, 1977; H. Suzuki et al., 1978; Zhang
387	& Wu, 1992; Zhang, Inouye, & Wu, 1992). Published data suggest that <i>lpp</i> deletion leads to rescue
388	of growth after inhibition of LspA and LolCDE (McLeod et al., 2015; Nickerson et al., 2018; Xiao
389	et al., 2012; Yakushi, Tajima, Matsuyama, & Tokuda, 1997a; Zwiebel et al., 1981) as well as rescue
390	of the temperature-sensitive Salmonella typhimurium lgt and lnt mutants (Gan, Gupta, Sankaran,
391	Schmid, & Wu, 1993; Gupta, Gan, Schmid, & Wu, 1993). While E. coli lnt is essential in the
392	absence of <i>lpp</i> (Robichon et al., 2005), Lpp overexpression in the <i>E. coli lnt</i> mutant leads to
393	bacterial cell growth arrest (Narita & Tokuda, 2011). Following up on data from Pailler et al., who
394	demonstrated that <i>lgt</i> is essential in BW25113, a derivative of <i>E. coli</i> K-12 strain BD792, and that
395	Lgt depletion leads to increased DNA leakage from the cell pole (Pailler et al., 2012), we
396	demonstrate that Lgt depletion in the clinical E. coli strain CFT073 leads to significant perturbations
397	to the bacterial cell envelope leading to increased sensitivity to antibiotics (Table 1), increased
398	serum killing (Figure 2d) and attenuated virulence in vivo (Figure 2g).
399	Based on this information and published reports, we had expected that deletion of <i>lpp</i> would
400	also lead to rescue of growth after depletion or pharmacologic inhibition of Lgt, but our data
401	demonstrate Lpp is in fact protective in cells treated with Lgti (Figure 5) or after Lgt depletion in
402	the CFT074 Δ <i>lgt</i> inducible deletion strain (Figure 2h). Both Lgt depletion and inhibition leads to the
402	the CITIOTALISI muuciole deletion suam (Tigure 211). Dom Egi depiction and minoriton leads to the

Inhibition of Lgt in Gram-negative bacteria

403	loss of PG tethering to the OM mediated by Lpp and Pal (Figure 5). Data demonstrating that cells
404	expressing the Lpp ^{C21A} mutant contain significantly less PG-linked Lpp further supports our
405	conclusions that Lpp linkage to PG is negatively affected by Lgti. Although alternative hypotheses
406	remain to be tested, our findings suggest that efficient crosslinking of Lpp to PG occurs only after
407	diacylglyceryl modification of lipoprotein substrates by Lgt. Given that Lpp is critical for cell
408	envelope stiffness (Mathelié-Guinlet, Asmar, Collet, & Dufrêne, 2020), we propose that in the
409	absence of significant accumulation of DGPLP or other PG-linked Lpp forms, Lpp is protective
410	against Lgti bactericidal activity. While our data is consistent with a previous report demonstrating
411	UPLP and DGPLP are both linked to a single muropeptide unit (M. Suzuki et al., 2002), we show
412	that the level of PG-linkage is significantly less efficient in the absence of diacylglyceryl
413	modification of pro-Lpp. The consequence of these findings is that targeting Lgt as a novel
414	antibacterial target would overcome a major liability of targeting other steps in the lipoprotein
415	biosynthetic pathway, namely the off-target resistance mediated by <i>lpp</i> deletion (McLeod et al.,
416	2015; Xiao et al., 2012; Zwiebel et al., 1981).
417	The Lgti identified in this study are the first described inhibitors of the first committed step
418	in bacterial lipoprotein biosynthesis. G2823 and G2824 inhibit growth of WT E. coli and A.
419	baumannii. We used a combination of biochemical and genetic strategies (Figure 3) to confirm

420 these molecules function through inhibition of the diacylglyceryl transferase activity of Lgt. First,

421 the Lgti in this study were identified using a Lgt binding screen and confirmed to inhibit Lgt

422 enzymatic function *in vitro*. Second, the multiple effects and phenotypes detected in Lgti-treated

423 cells were recapitulated using *lgt* inducible deletion strains, strongly arguing against off-target

424 effects as the main cause of cell death. While we were unable to raise on-target resistant mutants to

425 any Lgti, one could speculate that if the Lgti bind to the conserved phosphatidylglycerol binding

Inhibition of Lgt in Gram-negative bacteria

426	site in Lgt, mutations disrupting Lgti binding might result in loss of Lgt function leading to cell
427	death. This hypothesis is actually consistent with data using globomycin or an improved analog
428	,G0790, which binds a highly conserved active site (Vogeley et al., 2016) and for which no on-
429	target resistance mutations have ever been described (Lehman & Grabowicz, 2019; Pantua et al.,
430	2020). As recent publications have revealed significant insights into the potential mechanisms of
431	diacylglyceryl modification by Lgt (Mao et al., 2016; Singh et al., 2019), further studies aimed at
432	determining if these Lgti competitively inhibit binding of the phosphatidylglycerol or prolipoprotein
433	substrates would be critical in better understanding the mechanism by which these molecules
434	interfere with this critical OM biogenesis pathway. Although we do not detect MIC shifts with Lgti
435	in cells overexpressing lgt (data not shown), drug resistance in E. coli after target overexpression
436	can increase, remain unchanged or decrease depending on the balance between bacterial fitness
437	costs and inhibition of enzymatic activity (Palmer & Kishony, 2014). One could speculate that even
438	a modest inhibition of Lgt could lead to significant effects on OM integrity and cellular fitness
439	which may counteract any resistance arising from lgt overexpression. While CRISPRi-mediated
440	downregulation of lgt expression specifically sensitizes cells to Lgti but not LspAi or LolCDEi
441	(Figure 4g), <i>lolC</i> downregulation increases sensitivity to growth inhibition by LolCDE, Lgti and, at
442	higher concentrations, LspAi (Figure 4-supplement 1). It is possible that LolC depletion may
443	increase the permeability of cells to Lgti and LspAi as Lol depletion by CRISPRi has been
444	demonstrated to lead to increased risk of plasmolysis and membrane reorganization (Caro, Place, &
445	Mekalanos, 2019). As with many early antibiotic leads, we cannot fully rule out that the Lgti
446	identified in this study may have additional targets in bacterial cells at higher concentrations, but
447	our data strongly suggest that Lgti concentrations that inhibit growth of OM-permeabilized E. coli
448	are consistent with their inhibition of Lgt enzymatic activity.

Inhibition of Lgt in Gram-negative bacteria

449	In addition to the fact that <i>lpp</i> deletion does not play a role in resistance to Lgti, our studies
450	have uncovered additional novel findings that spur new questions and investigations. First, both
451	Lgt depletion as well as pharmacologic inhibition of Lgt led to accumulation of a ~14 kDa Lpp
452	isoform in the IM (Δ , Figure 5f,g). While the identity or function of this Lpp form is unknown, its
453	size and the fact that a Lpp form around the same molecular weight is also detected in cells
454	expressing the Lpp ΔK mutant (Figure 5 – figure supplement 1) suggest that it could represent a
455	stable Lpp dimer. While stable Lpp trimers have been described (Bjelić, Karshikoff, & Jelesarov,
456	2006; Shu, Liu, Ji, & Lu, 2000), there is also evidence that Lpp can exist as a dimer (Chang, Lin,
457	Wang, & Liao, 2012). Second, while our data suggest that the lack of diacylglyceryl modification
458	by Lgt generates a less optimal substrate for the L,D-transpeptidases that covalently link Lpp to PG,
459	it does not rule out the possibility that PG-linkage may occur at or after modification by Lgt. Third,
460	we demonstrate that LolCDEi remain bactericidal against cells expressing only Lpp ΔK . While the
461	sucrose gradient and sarkosyl solubilization centrifugation studies demonstrate that LspAi treatment
462	leads to accumulation of DGPLP in the IM (Figure 6), consistent with previous data with
463	globomycin (M. Suzuki et al., 2002), no such accumulation is detected after treatment with
464	LolCDEi. This raises the possibility that accumulation of either WT Lpp or Lpp ΔK could compete
465	with less abundant essential OM lipoproteins for limited transport via LolCDE, which is consistent
466	with our data demonstrating decreased OM localization of BamD after LolCDEi treatment (Figure 6
467	- figure supplement 1). Lgti, like LspAi and LolCDEi, had significant effects on OM localization
468	of the β -barrel protein, OmpA (Figure 6a), which is most likely due to decreased OM expression of
469	BamD and consequently BamA (Figure 6 – figure supplement 1). These results inform us that
470	while Lgti behave very similarly to LspAi and LolCDEi in terms of depleting OM lipoproteins and
471	OMPs, their effects on Lpp set them apart from other inhibitors on this pathway.

Inhibition of Lgt in Gram-negative bacteria

472	In summary, our study is the first to systematically differentiate the role of Lpp in targeting
473	multiple steps of bacterial lipoprotein biosynthesis and transport. The loss of PG-association of Lpp
474	and Pal, resulting from Lgt depletion or pharmacologic inhibition of Lgt, leads to significant OM
475	defects. The identification and characterization of these Lgti validates Lgt as a novel and druggable
476	antibacterial target and could serve as initial starting points for ongoing medicinal chemistry efforts
477	to improve antibacterial potency and physiochemical properties. Our studies suggest that
478	therapeutic targeting of Lgt over other steps in the lipoprotein biosynthesis and transport pathways
479	might present a more favorable resistance profile and prevent the spread of multi-drug resistant
480	bacterial infections.
481	
482	
483	
484	
485	
486	
487	
488	
489	
490	

Inhibition of Lgt in Gram-negative bacteria

491 Materials and Methods

492

493 Ethics statement

- 494 All mice used in this study were housed and maintained at Genentech in accordance with American
- 495 Association of Laboratory Animal Care guidelines. All experimental studies were conducted under
- 496 protocol 13-0979A were approved by the Institutional Animal Care and Use Committee of
- 497 Genentech Lab Animal Research and performed in an Association for Assessment and
- 498 Accreditation of Laboratory Animal Care International (AAALAC)-accredited facility in
- 499 accordance with the Guide for the Care and Use of Laboratory Animals and applicable laws and
- 500 regulations.

501

502 Antibodies

- 503 The anti-Pal antibody was a generous gift from Dr. Shaw Warren (Massachusetts General Hospital).
- 504 The anti-OmpA (Antibody Research Corporation), anti-GroEL (Enzo Life Sciences), anti-ThyA
- 505 (GeneTex, Inc) and anti-His (Cell Signaling Technology) antibodies were obtained from
- 506 commercial sources. Generation of anti-Lpp and anti-BamA antibodies has been previously
- 507 described (Diao et al., 2017; Storek et al., 2018; 2019). Recombinant Lgt and BamD were used to
- 508 generate rabbit polyclonal antibodies. Rabbit immunizations, generation of antisera and purification
- 509 of rabbit polyclonal antibodies were performed as previously described for Lpp (Diao et al., 2017).

510

511 Generation of bacterial strains and plasmids

Inhibition of Lgt in Gram-negative bacteria

512	Bacterial strains and plasmids used in this study are listed in Supplemental File 2. E. coli strain
513	CFT073 (ATCC 700928) (Mobley et al., 1990) and MG1655 (ATCC 700926) were purchased from
514	ATCC. Gene disruption in CFT073 was performed as previously described (Datsenko & Wanner,
515	2000; Diao et al., 2017). CFT073 Δlgt was generated based on the previously published protocol
516	(Pailler et al., 2012) by retaining the lgt stop codon, which forms part of the thyA ribosomal binding
517	site. The primers used to generate the CFT073 and MG1655 mutants are listed in Supplemental
518	File 3. Plasmids pKD46 for the λ Red recombinase (Datsenko & Wanner, 2000; Diao et al., 2017),
519	pKD4 or pSim18 for the integration construction (Datsenko & Wanner, 2000; Diao et al., 2017) and
520	pCP20 (Cherepanov & Wackernagel, 1995) for the FLP recombinase were used in this study. The
521	inducible deletion strains (MG1655 Δlgt , MG1655 $\Delta lspA$ and MG1655 $\Delta lolCDE$) in either the WT
522	and/or Δlpp backgrounds were generated using similar methods as previously described (Diao et al.,
523	2017; Noland et al., 2017). CFT073 <i>imp</i> 4213∆ <i>lpp</i> containing pBAD24- <i>lpp</i> was used to generate
524	CFT073 <i>imp</i> 4213 Δ <i>lpp:lpp</i> ^{Ara} to detect the different Lpp species after treatment with pharmacologic
525	inhibitors. The PA14imp4213 strain was generated based on published protocols (Balibar &
526	Grabowicz, 2016; Hmelo et al., 2015). For expression under the IPTG-inducible promoter, DNA
527	encoding the full-length sequences of lgt, lspA, lnt and lolCDE were cloned into pLMG18 and
528	induced using 2.5 mM IPTG.

529

530 In vitro growth inhibition and serum sensitivity assays

531 Unless stated otherwise, E. coli cells were grown in Luria-Bertani (LB) medium (0.5% yeast

- 532 extract, 1% tryptone, 0.5% NaCl) at 37°C. When indicated, kanamycin (Kan) was added to culture
- 533 media at a 50 µg/ml final concentration. MIC assays were performed based on Clinical and

Inhibition of Lgt in Gram-negative bacteria

534	Laboratory Standards Institute (CLSI) guidelines. For in vitro growth curves, overnight cultures of
535	WT CFT073, CFT073 Δ <i>lgt</i> and CFT073 Δ <i>lgt</i> complemented with <i>lgt</i> from <i>E. coli</i> (<i>lgt</i> ^{Ec}) or <i>P</i> .
536	<i>aeruginosa</i> (<i>lgt</i> ^{Pa}) were grown to mid-exponential phase (OD ₆₀₀ =0.6) and then diluted to
537	OD ₆₀₀ =0.1 to initiate growth curves. At various times, culture aliquots were diluted and plated in
538	dilutions on LB+Kan agar and CFUs were enumerated in duplicate. Growth of MG1655 inducible
539	deletion strains was measured by culturing in the presence of two-fold dilutions of arabinose
540	(starting arabinose concentrations for CFT073 and MG1655 inducible deletion strains were 4% and
541	0.8%, respectively). While 2% arabinose was sufficient for WT growth of MG1655 Δlgt , 4%
542	arabinose was used for CFT073 Δlgt based on comparing its growth to that of WT CFT073 as
543	measured by CFUs. OD ₆₀₀ growth measurements were performed using an EnVision 2101
544	Multilabel Reader plate reader (PerkinElmer) linked with Echo Liquid Handler (Labcyte). For
545	time-kill experiments, bacteria were harvested in mid-exponential phase and treated with 12.5 μ M
546	Lgti G2824, 3.2 µM LspAi (GBM), 6.3 µM LolCDEi (C1) and 1.6 µM vancomycin. G2823 was
547	not be tested due to limitations in compound availability. CFUs were enumerated at various times
548	post treatment. Bacterial culture medium containing 2% arabinose was used to induce lpp or $lpp\Delta K$
549	expression from pBad24 plasmids. Bacterial viability at different time points during the treatment
550	was measured by enumerating CFU. Serum killing assays were carried out as previously described
551	(Diao et al., 2017).

552

553 Detection of membrane permeability using SYTOX Green incorporation

Inhibition of Lgt in Gram-negative bacteria

554	To determine the effect of Lgt depletion on membrane permeability, WT CFT073 and CFT073 Δlgt
555	strains were streaked onto a LB agar plate containing 4% arabinose and cultured at 37°C for 18
556	hours. From a single colony, bacteria were cultured in LB broth containing 4% arabinose and
557	cultured at 37°C to OD 0.5. One mL cultures of OD=0.5 for both strains were harvested, washed
558	and resuspended in LB broth or medium containing a range of arabinose $(2, 0.2, 0.1, 0.05\%$ and $0)$
559	or glucose (0.2%) concentrations and incubated at 37°C for 2 hours. Cells were harvested by
560	centrifugation at 4000 \times g at 4°C for 5 minutes. Intact CFT073 or CFT073 treated with 70%
561	ethanol at RT for 15 minutes to permeabilize the cells were used as controls. Cells were incubated
562	with SYTOX green following the manufacturer's recommendation, washed with PBS $(3\times)$ and
563	fixed in 2% paraformaldehyde. SYTOX Green incorporation was measured by flow cytometry
564	using a FACS Aria II (Becton Dickenson) and analyzed using Flowjo software.

565

566 Mouse infection model

567 Overnight bacterial cultures were back diluted 1:100 in M9 media and grown to an $OD_{600}=0.8-1$ at

568 37°C. Cells were harvested, washed once with PBS and resuspended in PBS containing 10%

569 glycerol. Cells were frozen in aliquots and thawed aliquots were measured for CFUs prior to mouse

570 infections. Virulence of WT CFT073 and CFT073 Δlgt was measured using the neutropenic *E. coli*

571 infection model (Cross, Siegel, Byrne, Trautmann, & Finbloom, 1989). Seven-week-old female A/J

572 mice (Jackson Laboratory) were rendered neutropenic by peritoneal injection of 2 doses of

573 cyclophosphamide (150 mg/kg on Day -4 and 100 mg/kg on Day -1). On Day 0, mice were

574 infected with 5×10^5 CFU of mid-exponential phase bacteria diluted in PBS by intravenous

575 injection through the tail vein. At 30 minutes and 24 hours post infection, bacterial burden in the

576 liver and spleen was determined by serial dilutions of tissue homogenates on LB plates.

Inhibition of Lgt in Gram-negative bacteria

577

578 Macrocyclic peptide library design and selection of Lgt-binding molecules

579	A thioether-macrocyclic peptide library was constructed by using N-chroloacetyl D-phenylalanine
580	(ClAc-f) as an initiator in a genetically reprogrammed in vitro translation system (Kashiwagi et al.,
581	2013). The genetic code was designed with the addition of two N-methyl amino acids: N-methyl-L-
582	phenylalanine (MeF) and N-methyl-L-glycine (MeG); and, three unnatural amino acids: (S)-2-
583	aminoheptanoic acid (Ahp), (S)-3-([1,1'-biphenyl]-4-yl)-2-aminopropanoic acid (Bph), and (S)-
584	1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid (Tic) in addition to 11 natural amino acids (Ser,
585	Tyr, Trp, Leu, Pro, His, Arg, Asn, Val, Asp, and Gly). After in vitro translation, a thioether bond
586	formed spontaneously between the N-terminal ClAc group of the initiator D-phenylalanine residue
587	and the sulfhydryl group of a downstream cysteine residue to generate the macrocyclic peptides.
588	Affinity selection of macrocyclic peptides binding to Lgt was performed using E. coli Lgt-
589	biotin in 0.02% n-dodecyl β -D-maltoside (DDM). Briefly, 10 μ M mRNA library was hybridized
590	with a peptide-linker (11 μ M) at RT for 3 minutes. The mRNA library was translated at 37°C for 30
591	minutes in the reprogrammed in vitro translation system to generate the peptide-mRNA fusion
592	library (Goto et al., 2011; Ishizawa et al., 2013). Each reaction contained 2 µM mRNA-peptide-
593	linker conjugate, 12.5 μ M initiator tRNA (tRNAfMet aminoacylated with ClAc-D-Phe), and 25 μ M
594	of each elongator tRNA aminoacylated with the specified non-canonical /canonical amino acids. In
595	the first round of selections, translation was performed at 20 μ L scale. After the translation, the
596	reaction was quenched with 17 mM EDTA. The product was subsequently reverse-transcribed using
597	RNase H minus reverse transcriptase (Promega) at 42°C for 30 minutes and buffer was exchanged
598	for DDM buffer: 50 mM Tris (pH 8), 5 mM EDTA, 200 mM NaCl2, 0.02% DDM, and 1 mM

Inhibition of Lgt in Gram-negative bacteria

599	Glutathione. For affinity selection, the peptide-mRNA/cDNA solution was incubated with 250 nM
600	biotinylated E. coli Lgt for 60 minutes at 4°C and the streptavidin-coated beads (Dynabeads M-280
601	Streptavidin, Thermo) were further added and incubated for 10 minutes to isolate Lgt binders. The
602	beads were washed once with cold DDM buffer, the cDNA was eluted from the beads by heating
603	for 5 minutes at 95°C, and fractional recovery from the affinity selection step were assessed by
604	quantitative PCR using Sybr Green I on a LightCycler thermal cycler (Roche). After five rounds of
605	affinity maturation, two additional rounds of off-rate selections were performed by increasing the
606	wash stringency before elation to identify high affinity binders. Sequencing of the final enriched
607	cDNA was carried out using a MiSeq next generation sequencer (Illumina).

608

609 **Peptide Synthesis**

610 Thioether macrocyclic peptides were synthesized using standard Fmoc solid phase peptide synthesis 611 (SPPS). Following coupling of all amino acids, the deprotected N-terminus was chloroacetylated 612 on-resin followed by global deprotection using a trifluoroacetic acid (TFA) deprotection cocktail. 613 The peptides were then precipitated from the deprotection solution by adding over 10-fold excess 614 diethyl ether. Crude peptide pellets were then dissolved and re-pelleted 3 times using diethyl ether. 615 After the final wash, the pellet was left to dry and then the pellet was resuspended in DMSO 616 followed by the addition of triethylamine for intramolecular cyclization via formation of a thioether 617 bond between the thiol of the cysteine and N-terminal chloroacetyl group. Upon completion of 618 cyclization, the reaction was quenched with AcOH and the cyclic peptide was purified using 619 standard reverse-phase HPLC methods.

Inhibition of Lgt in Gram-negative bacteria

620

621 SDS-PAGE and Western immunoblotting

- 622 Bacterial cell samples normalized for equivalent OD₆₀₀ and resuspended in Bugbuster lysis buffer
- 623 (Fischer Scientific) with the addition of sample buffer (LI-COR), and separated by SDS-PAGE
- using 16% Tricine protein gels or NuPAGE 4-20% Bis-Tris gels (Thermofisher Scientific) and
- transferred to nitrocellulose membranes using the iBlotTM2 Dry Blotting system (Invitrogen) and
- blocked using LI-COR blocking buffer for 30 minutes. Unless stated otherwise, loading buffer with
- 627 reducing agents were added and samples were not boiled prior to SDS-PAGE. For the sucrose
- 628 gradient centrifugation, samples were boiled prior to running the SDS-PAGE. Primary antibodies
- 629 were used at a final concentration of 1µg/ml with some exceptions: rabbit anti-Lpp polyclonal
- 630 antibody (0.1μg/ml); murine anti-Pal 6D7 (0.5 μg/ml); rabbit anti-GroEL (1:10,000 final dilution);
- 631 rabbit anti-OmpA (1:50,000 final dilution). The secondary antibodies were all obtained from LI-
- 632 COR, and used as per manufacturer's instructions. Images were collected using the Odyssey CLx
- 633 imaging system (LI-COR) and analyzed by Image Studio Lite.

634

635

636 Expression and purification of recombinant Lgt and BamD

637 DNA encoding full-length E. coli Lgt fused to a C-terminal Flag-tag was transformed into Rosetta

638 2(DE3) Gold cells (Agilent). Starter cultures were grown in Terrific Broth (TB) media with

- 639 carbenicillin (50µg/mL) and chloramphenicol (12.5µg/mL) at 37°C for 3 hours. The starter cultures
- 640 were diluted 1:50 in TB medium with carbenicillin (50µg/mL), chloramphenicol (12.5µg/mL), and
- 641 glycerol (1%) and grown at 37°C for 2 hours with shaking at 200 rpm. The temperature of the
- 642 culture was reduced to 30°C and grown for an additional 2 hours before the temperature of the

Inhibition of Lgt in Gram-negative bacteria

643	culture was reduced to 16°C and grown for 64 hours. The cells were harvested by centrifugation
644	and resuspended into lysis buffer (20mM Tris, pH 8.0, 300mM NaCl, Protease Inhibitor cocktail
645	and Lysonase) and stirred at 4°C for 30 minutes before being passed through a microfluidizer 3
646	times. The membrane fraction was solubilized by adding DDM directly to the lysate to a final
647	concentration of 1% and stirring at 4°C for 2 hours before centrifugation at 40,000 rpm for 1 hour.
648	Pre-equilibrated FLAG resin was added to the supernatant and incubated with rotation at 4°C for 2
649	hours. The slurry was added to a gravity column and the column was washed with 10 CV buffer A
650	(20mM Tris, pH 8.0, 300mM NaCl, 5% glycerol, 1% DDM) and 10 CV buffer B (20mM Tris, pH
651	8.0, 300mM NaCl, 5% glycerol, 0.05% DDM). The bound fraction was eluted by the addition of 5
652	CV of buffer C (20mM Tris, pH 8.0, 300mM NaCl, 5% glycerol, 0.05% DDM, 100µg/mL FLAG
653	peptide). The peak fractions were collected, concentrated to less than 5 mL and loaded onto a
654	superdex 200 16/60 column equilibrated with buffer C (20mM Tris, pH 8.0, 300mM NaCl, 5%
655	glycerol, 0.05% DDM, 1mM TCEP). The peak fractions were collected, analyzed by SDS-PAGE
656	and stored at -80°C.
657	For recombinant E. coli BamD protein expression, DNA fragments encoding BamD (Gly22-
658	Thr ₂₄₅) were cloned into a modified pET-52b expression vector containing an C-terminal His ₈ -tag
659	and overexpressed in <i>E. coli</i> host Rosetta 2 (DE3) grown by fermentation at 17°C for 64 hours, at
660	which point cells were collected and resuspended in 50 mM Tris, pH 8.0, 300 mM NaCl, 0.5 mM
661	TCEP containing cOmplete Protease Inhibitors (Roche), 1 mM PMSF and 2 U/ml of Benzonase
662	nuclease (Sigma Aldrich). After cell lysis by microfluidization and low speed centrifugation,
663	soluble protein was purified by Ni-NTA affinity and size exclusion chromatography. The peak
664	fractions containing BamD were pooled and concentrated to 5 mg/mL.

665

Inhibition of Lgt in Gram-negative bacteria

666 Development of the Lgt biochemical assay

667 The Lgt enzymatic activity was measured by specific detection of G3P. Both G3P and G1P are 668 released from phosphatidylglycerol as Lgt catalyzes the transfer of diacylglyceryl from 669 phosphatidylglycerol to the preprolipoprotein substrate, since the PG substrate used in the assay 670 contains a racemic glycerol moiety at the end of phosphatidyl group. The standard assay consists of 671 6 μL reaction mixture with 3 nM Lgt-DDM, 50 μM phosphatidylglycerol (1,2-dipalmitoyl-sn-672 glycero-3-phospho-(1'-rac-glycerol), Avanti), 12.5 µM Pal-IAAC peptide substrate derived from 673 the Pal lipoprotein (MQLNKVLKGLMIALPVMAIAACSSNKN, synthesized by CPC Scientific) in 674 50 mM Tris, pH 8, 200 mM NaCl, 5 mM EDTA, 0.02% DDM, 0.05 % Bovine Skin Gelatin, and 1 675 mM glutathione. As a control, we used a mutant non-modifiable Pal substrate peptide containing a 676 cysteine to alanine mutation (Pal-IAAA) which served as a competitive non-modifiable inhibitor. 677 The reaction was quenched after 60 minutes at RT with 0.5 µL of 4.8% Lauryl Dimethylamine-N-678 Oxide (Anatrace), followed by addition of 6 µL Detection Solution. After incubation for 120 679 minutes at RT, the luminescence signal was read. The Detection Solution was modified based on a 680 NAD Glo protocol (Promega, G9072), per manufacturer's instruction. Specifically, 10 mL 681 Detection Solution consists of 3-fold dilution of Luciferin Detection Reagents, supplemented with 682 10 µL Reductase, 2.5 µL Reductase Substrate, 1 mM NAD, and 4.25 U of G3PDH (Roche 683 Diagnostics, 10127779001). The Luciferin Detection Reagents, Reductase, and Reductase Substrate 684 were all from the NAD Glo kit (Promega). Luminescence values were normalized to DMSO 685 controls (0% inhibition) and no enzyme controls (100% inhibition). IC₃₀ values were calculated 686 using a 4 parameter logistic model using GraphPad Prism software. 687

688 Visualization of WT CFT073 and CFT073∆*lgt* by time-lapse microcopy, confocal

Inhibition of Lgt in Gram-negative bacteria

689 microcopy, transmission electron microscopy

690 Electron microscopy was performed as previously described (Noland et al., 2017). For time-lapse 691 microscopy, WT CFT073, CFT073 Δlgt and CFT073 $\Delta lgt\Delta lpp$ cells were grown overnight in LB 692 medium containing 4% arabinose, back-diluted to a final OD_{600} of 0.1 and immediately placed 693 between a cover slip and 1% agarose pad containing 0.2% glucose for imaging. Cells were 694 maintained at 37 °C during imaging in a stage top chamber (Okolab Inc.). Cells were imaged on a 695 Nikon Eclipse Ti inverted confocal microscope (Nikon Instruments Inc.) coupled with a UltraVIEW 696 VoX (PerkinElmer Inc.) and a 100× (NA 1.40) oil-immersion objective. Images were captured at 697 various times using ORCA-Flash 4.0 CMOS camera (Hamamatsu Photonics), collected using 698 Volocity software (Quorum Technologies) and processed using Fiji (Schindelin et al., 2012). For 699 confocal microscopy, images were acquired on a Leica SP8 STED 3x platform using a 100× white 700 light, NA:1.4 oil immersion objective. CFT073imp4213 cells were treated with Lgti, LspAi or 701 LolCDEi at 1×MIC for 30 minutes, fixed with 4% paraformaldehyde and incubated with 1 µg/mL 702 FM-64 dye and 1 µg/mL DAPI solution. Quantitation of bacterial cell area was performed using 703 the ImageJ program by measuring at least ~100 bacterial cells from two independent experiments. 704

705 Targeted downregulation of gene expression by CRISPRi

The two-plasmid bacterial CRISPRi system pdCas9-bacteria_GNE and pgRNA-bacteria_GNE are based off the AddGene plasmids 44249 and 44251 (Qi et al., 2013), respectively. The plasmid was synthesized in smaller DNA fragments (500bp-3kb) (IDT gBlocks) and assembled by Gibson Assembly (NEB) according to manufacturer's protocols. Plasmids were confirmed by sequencing (ELIM Bio). gRNAs were designed to target the 5' end of the gene on the non-template strand using Benchling CRISPR software (Peters et al., 2016). gRNAs were cloned into pgRNA-bacteria

Inhibition of Lgt in Gram-negative bacteria

vising Gibson Assembly (NEB) according to manufacturer's protocols and sequence confirmed(ELIM Bio).

714	Bacterial cultures were grown overnight on LB agar supplemented with carbenicillin (50
715	μ g/mL) and chloramphenicol (12.5 μ g/mL) to maintain both plasmids, pdCas9-bacteria and
716	pgRNA-bacteria with each gRNA as appropriate. Cells were scraped from the plate into fresh
717	media. OD_{600} was measured and subsequently diluted to $OD_{600}=0.001$ in the presence or absence of
718	Lgti, LspAi and LolCDEi. 200 μ L was transferred to a 96-well plate (Corning) and monitored for
719	growth by measuring OD ₆₀₀ (EnVision Multimode Plate Reader, PerkinElmer). All treatments were
720	performed in triplicate. Specificity of CRISPRi downregulation was measured using RT-qPCR.
721	
722	Purification of peptidoglycan-associated proteins
723	Purification of PG-associated proteins (PAP) was performed according to published methods (Diao
723 724	Purification of PG-associated proteins (PAP) was performed according to published methods (Diao et al., 2017; Nakae et al., 1979; Whitfield et al., 1983) with some modifications. Briefly, bacteria
724	et al., 2017; Nakae et al., 1979; Whitfield et al., 1983) with some modifications. Briefly, bacteria
724 725	et al., 2017; Nakae et al., 1979; Whitfield et al., 1983) with some modifications. Briefly, bacteria were harvested in mid-exponential phase for treatment and then subjected for PAP extraction by
724 725 726	et al., 2017; Nakae et al., 1979; Whitfield et al., 1983) with some modifications. Briefly, bacteria were harvested in mid-exponential phase for treatment and then subjected for PAP extraction by resuspended cell pellets from 10 OD (A ₆₀₀) in 6 mL of PAP extraction buffer containing 2%
724 725 726 727	et al., 2017; Nakae et al., 1979; Whitfield et al., 1983) with some modifications. Briefly, bacteria were harvested in mid-exponential phase for treatment and then subjected for PAP extraction by resuspended cell pellets from 10 OD (A_{600}) in 6 mL of PAP extraction buffer containing 2% (wt/vol) SDS in 100 mM Tris-HCl (pH 8.0) with 100mM NaCl, 10% glycerol, and cOmplete TM ,
724 725 726 727 728	et al., 2017; Nakae et al., 1979; Whitfield et al., 1983) with some modifications. Briefly, bacteria were harvested in mid-exponential phase for treatment and then subjected for PAP extraction by resuspended cell pellets from 10 OD (A_{600}) in 6 mL of PAP extraction buffer containing 2% (wt/vol) SDS in 100 mM Tris-HCl (pH 8.0) with 100mM NaCl, 10% glycerol, and cOmplete TM , mini, EDTA-free protease inhibitor cocktail (Sigma-Aldrich). After 60 minutes at RT, the

732 (referred to as the SDS-insoluble on PAP fraction). The supernatant containing the SDS-soluble

733 fraction was aliquoted and frozen (referred to as non-PAP fraction). Both fractions were treated

vith equal volume of BugBuster buffer prior to the addition of sample buffer for Western

Inhibition of Lgt in Gram-negative bacteria

- immunoblotting as described above. It should be noted that the final PAP fractions are ~30-fold
 more concentrated than the non-PAP fractions.
- 737

738 Isolation of *E. coli* IM and OM using sucrose gradient centrifugation and

739 sarkosyl fractionation

740 Bacterial inner and outer membranes were separated by sucrose gradient as previously (Nickerson

- et al., 2018; Yakushi, Tajima, Matsuyama, & Tokuda, 1997b) with some modifications. Briefly,
- bacteria were grown in Luria broth at 37°C to mid-exponential phase (OD₆₀₀=0.6), and then treated
- 743 with 1×MIC of indicated inhibitors for 1 hour. Cells representing 30-40 OD₆₀₀ equivalents were

harvested by centrifugation at 4000 × g for 15 minutes, washed once with 50 mM Tris-HCl (pH 7.5)

745 containing 25% (wt/vol) sucrose and Complete EDTA-free protease inhibitor cocktail (Roche), and

then incubated for 10 minutes at RT in the same buffer containing 100 µg/ml lysozyme (Thermo

747 Scientific) and 1000 U/ml nuclease (BenzonaseNuclease, EMD Millipore). Two-fold volume of

748 ice-cold EDTA (pH 8.0) was added and the suspension was disrupted by two passages through an

T49 LV1 Microfluidizer (Microfluidics). Unbroken cells were removed by centrifugation at $4,000 \times g$

and membranes were collected by ultracentrifugation at $100,000 \times g$ for 1 hour and washed once

751 with 50 mM Tris-HCl (pH 7.5). The final membrane preparation was resuspended in 50 mM Tris-

HCl (pH 7.5) containing 10% sucrose, 1.5 mM EDTA and protease inhibitor cocktail and then

applied to a 30 to 70% (wt/vol) sucrose gradient. The loaded gradients were spun at $200,000 \times g$ for

22 hours at 4°C in a Beckman SW41Ti rotor. Fractions were removed and analyzed by SDS-PAGE

- and immunoblotting with appropriate antibodies. The IM fractionation of bacterial cells using
- sarkosyl was performed according to published methods (Filip et al., 1973; Pantua et al., 2020)..

Inhibition of Lgt in Gram-negative bacteria

758 Statistical analyses

- All statistical analyses were performed using GraphPad Prism 6.0 software (GraphPad). The data
- 760 was tested for being parametric and statistical analyses were performed on log-transformed data.
- All graphs represent the mean \pm the standard error of the mean (SEM). Unless stated otherwise, p
- values for all data were determined using regular unpaired t test (* = p < 0.05, ** = p < 0.01, and ***
- 763 = p < 0.001). p values for mouse CFU studies were determined using the Mann Whitney Test.
- 764 Bonferroni correction was applied to control for multiple comparisons for CRIPSRi data in Figure
- 765 4g.
- 766

767 Acknowledgements

- 768 We thank Dr. Shaw Warren (Massachusetts General Hospital) for the anti-Pal antibody, Erin
- 769 Dueber for help with purification of BamD, Scott Stawicki for assistance with generating the rabbit
- polyclonal antibodies, and Eric Brown for helpful comments and suggestions for the manuscript.
- 771

772 Competing interests

773 This study was supported by internal Genentech funds. All authors except R.K., T.S., H.I., H.O.,

H.Y., J.N. and P.C.R. are employees of Genentech, a member of the Roche Group, and are

shareholders of Roche. R.K., T.S., H.I., H.O., H.Y., J.N. and P.C.R. are employees of PeptiDream,

776 Inc.

- 777
- 778
- 779

Inhibition of Lgt in Gram-negative bacteria

780 **References**

- Balibar, C. J., & Grabowicz, M. (2016). Mutant Alleles of lptD Increase the Permeability of
 Pseudomonas aeruginosa and Define Determinants of Intrinsic Resistance to Antibiotics. *Antimicrobial Agents and Chemotherapy*, 60(2), 845–854. http://doi.org/10.1128/AAC.0174715
- Bjelić, S., Karshikoff, A., & Jelesarov, I. (2006). Stability and folding/unfolding kinetics of the
 homotrimeric coiled coil Lpp-56. *Biochemistry*, 45(29), 8931–8939.
 http://doi.org/10.1021/bi0608156
- Braun, V., & Wolff, H. (1970). The murein-lipoprotein linkage in the cell wall of Escherichia coli.
 European Journal of Biochemistry / FEBS, 14(2), 387–391.
- Caro, F., Place, N. M., & Mekalanos, J. J. (2019). Analysis of lipoprotein transport depletion in
 Vibrio cholerae using CRISPRi. *Proceedings of the National Academy of Sciences of the United States of America*, *116*(34), 17013–17022. http://doi.org/10.1073/pnas.1906158116
- Cascales, E., Bernadac, A., Gavioli, M., Lazzaroni, J.-C., & Lloubes, R. (2002). Pal lipoprotein of
 Escherichia coli plays a major role in outer membrane integrity. *Journal of Bacteriology*,
 184(3), 754–759.
- Chang, T.-W., Lin, Y.-M., Wang, C.-F., & Liao, Y.-D. (2012). Outer membrane lipoprotein Lpp is
 Gram-negative bacterial cell surface receptor for cationic antimicrobial peptides. *The Journal of Biological Chemistry*, 287(1), 418–428. http://doi.org/10.1074/jbc.M111.290361
- Cherepanov, P. P., & Wackernagel, W. (1995). Gene disruption in Escherichia coli: TcR and KmR
 cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. *Gene*, 158(1), 9–14.
- Clavel, T., Germon, P., Vianney, A., Portalier, R., & Lazzaroni, J. C. (1998). TolB protein of
 Escherichia coli K-12 interacts with the outer membrane peptidoglycan-associated proteins Pal,
 Lpp and OmpA. *Molecular Microbiology*, *29*(1), 359–367.
- Cowles, C. E., Li, Y., Semmelhack, M. F., Cristea, I. M., & Silhavy, T. J. (2011). The free and
 bound forms of Lpp occupy distinct subcellular locations in Escherichia coli. *Molecular Microbiology*, 79(5), 1168–1181. http://doi.org/10.1111/j.1365-2958.2011.07539.x
- 808 Cross, A. S., Siegel, G., Byrne, W. R., Trautmann, M., & Finbloom, D. S. (1989). Intravenous
 809 immune globulin impairs anti-bacterial defences of a cyclophosphamide-treated host. *Clinical*810 and Experimental Immunology, 76(2), 159–164.
- Batsenko, K. A., & Wanner, B. L. (2000). One-step inactivation of chromosomal genes in
 Escherichia coli K-12 using PCR products. *Proceedings of the National Academy of Sciences of the United States of America*, 97(12), 6640–6645. http://doi.org/10.1073/pnas.120163297
- Bev, I. K., Harvey, R. J., & Ray, P. H. (1985). Inhibition of prolipoprotein signal peptidase by
 globomycin. *The Journal of Biological Chemistry*, 260(10), 5891–5894.
- Biao, J., Bouwman, C., Yan, D., Kang, J., Katakam, A. K., Liu, P., et al. (2017). Peptidoglycan
 Association of Murein Lipoprotein Is Required for KpsD-Dependent Group 2 Capsular
 Polysaccharide Expression and Serum Resistance in a Uropathogenic Escherichia coli Isolate. *mBio*, 8(3), e00603–17. http://doi.org/10.1128/mBio.00603-17
- Ferrer-Navarro, M., Ballesté-Delpierre, C., Vila, J., & Fàbrega, A. (2016). Characterization of the
 outer membrane subproteome of the virulent strain Salmonella Typhimurium SL1344. *Journal*
- 822 *of Proteomics*, *146*, 141–147. http://doi.org/10.1016/j.jprot.2016.06.032

- Filip, C., Fletcher, G., Wulff, J. L., & Earhart, C. F. (1973). Solubilization of the cytoplasmic
 membrane of Escherichia coli by the ionic detergent sodium-lauryl sarcosinate. *Journal of Bacteriology*, *115*(3), 717–722.
- Gan, K., Gupta, S. D., Sankaran, K., Schmid, M. B., & Wu, H. C. (1993). Isolation and
 characterization of a temperature-sensitive mutant of Salmonella typhimurium defective in
 prolipoprotein modification. *The Journal of Biological Chemistry*, 268(22), 16544–16550.
- Gan, K., Sankaran, K., Williams, M. G., Aldea, M., Rudd, K. E., Kushner, S. R., & Wu, H. C.
 (1995). The umpA gene of Escherichia coli encodes phosphatidylglycerol:prolipoprotein
 diacylglyceryl transferase (lgt) and regulates thymidylate synthase levels through translational
 coupling. *Journal of Bacteriology*, *177*(7), 1879–1882.
- Gerth, K., Irschik, H., Reichenbach, H., & Trowitzsch, W. (1982). The myxovirescins, a family of
 antibiotics from Myxococcus virescens (Myxobacterales). *The Journal of Antibiotics*, 35(11),
 1454–1459.
- Goto, Y., Katoh, T., & Suga, H. (2011). Flexizymes for genetic code reprogramming. *Nature Protocols*, 6(6), 779–790. http://doi.org/10.1038/nprot.2011.331
- Gupta, S. D., Gan, K., Schmid, M. B., & Wu, H. C. (1993). Characterization of a temperaturesensitive mutant of Salmonella typhimurium defective in apolipoprotein N-acyltransferase. *The Journal of Biological Chemistry*, 268(22), 16551–16556.
- Hirota, Y., Suzuki, H., Nishimura, Y., & Yasuda, S. (1977). On the process of cellular division in
 Escherichia coli: a mutant of E. coli lacking a murein-lipoprotein. *Proceedings of the National Academy of Sciences of the United States of America*, 74(4), 1417–1420.
- Hmelo, L. R., Borlee, B. R., Almblad, H., Love, M. E., Randall, T. E., Tseng, B. S., et al. (2015).
 Precision-engineering the Pseudomonas aeruginosa genome with two-step allelic exchange. *Nature Protocols*, 10(11), 1820–1841. http://doi.org/10.1038/nprot.2015.115
- Hobb, R. I., Fields, J. A., Burns, C. M., & Thompson, S. A. (2009). Evaluation of procedures for
 outer membrane isolation from Campylobacter jejuni. *Microbiology (Reading, England)*, *155*(Pt 3), 979–988. http://doi.org/10.1099/mic.0.024539-0
- Igarashi, M. (2019). New natural products to meet the antibiotic crisis: a personal journey. *The Journal of Antibiotics*, 72(12), 890–898. http://doi.org/10.1038/s41429-019-0224-6
- Inukai, M., Enokita, R., Torikata, A., Nakahara, M., Iwado, S., & Arai, M. (1978a). Globomycin, a
 new peptide antibiotic with spheroplast-forming activity. I. Taxonomy of producing organisms
 and fermentation. *The Journal of Antibiotics*, *31*(5), 410–420.
- 855 http://doi.org/10.7164/antibiotics.31.410
- Inukai, M., Nakajima, M., Osawa, M., Haneishi, T., & Arai, M. (1978b). Globomycin, a new
 peptide antibiotic with spheroplast-forming activity. II. Isolation and physico-chemical and
 biological characterization. *The Journal of Antibiotics*, *31*(5), 421–425.
- 859 http://doi.org/10.7164/antibiotics.31.421
- Ishizawa, T., Kawakami, T., Reid, P. C., & Murakami, H. (2013). TRAP display: a high-speed
 selection method for the generation of functional polypeptides. *Journal of the American Chemical Society*, *135*(14), 5433–5440. http://doi.org/10.1021/ja312579u
- Jabbour, R. E., Wade, M. M., Deshpande, S. V., Stanford, M. F., Wick, C. H., Zulich, A. W., &
 Snyder, A. P. (2010). Identification of Yersinia pestis and Escherichia coli strains by whole cell
 and outer membrane protein extracts with mass spectrometry-based proteomics. *Journal of Proteome Research*, 9(7), 3647–3655. http://doi.org/10.1021/pr100402y
- Kashiwagi, K., Reid, C. P., & Inc, P. (2013). Rapid display method in translational synthesis of peptide.

- Kitamura, S., Owensby, A., Wall, D., & Wolan, D. W. (2018). Lipoprotein Signal Peptidase
 Inhibitors with Antibiotic Properties Identified through Design of a Robust In Vitro HT
- 871 Platform. *Cell Chemical Biology*, 25(3), 301–308.e12.
- 872 http://doi.org/10.1016/j.chembiol.2017.12.011
- Kovacs-Simon, A., Titball, R. W., & Michell, S. L. (2011). Lipoproteins of bacterial pathogens. *Infection and Immunity*, 79(2), 548–561. http://doi.org/10.1128/IAI.00682-10
- Kowata, H., Tochigi, S., Kusano, T., & Kojima, S. (2016). Quantitative measurement of the outer
 membrane permeability in Escherichia coli lpp and tol-pal mutants defines the significance of
 Tol-Pal function for maintaining drug resistance. *The Journal of Antibiotics*.
 http://doi.org/10.1038/ja.2016.50
- Leduc, M., Ishidate, K., Shakibai, N., & Rothfield, L. (1992). Interactions of Escherichia coli
 membrane lipoproteins with the murein sacculus. *Journal of Bacteriology*, *174*(24), 7982–7988.
- Lehman, K. M., & Grabowicz, M. (2019). Countering Gram-Negative Antibiotic Resistance:
 Recent Progress in Disrupting the Outer Membrane with Novel Therapeutics. *Antibiotics (Basel, Switzerland)*, 8(4), 163. http://doi.org/10.3390/antibiotics8040163
- Mao, G., Zhao, Y., Kang, X., Li, Z., Zhang, Y., Wang, X., et al. (2016). Crystal structure of E. coli
 lipoprotein diacylglyceryl transferase. *Nature Communications*, *7*, 10198.
 http://doi.org/10.1038/ncomms10198
- Mathelié-Guinlet, M., Asmar, A. T., Collet, J.-F., & Dufrêne, Y. F. (2020). Lipoprotein Lpp
 regulates the mechanical properties of the E. coli cell envelope. *Nature Communications*, *11*(1),
 1789–11. http://doi.org/10.1038/s41467-020-15489-1
- McLeod, S. M., Fleming, P. R., MacCormack, K., McLaughlin, R. E., Whiteaker, J. D., Narita, S.I., et al. (2015). Small molecule inhibitors of Gram-negative lipoprotein trafficking discovered
 by phenotypic screening. *Journal of Bacteriology*, *197*(6), JB.02352–14–1082.
 http://doi.org/10.1128/JB.02352-14
- Mizuno, T. (1979). A novel peptidoglycan-associated lipoprotein found in the cell envelope of
 Pseudomonas aeruginosa and Escherichia coli. *Journal of Biochemistry*, *86*(4), 991–1000.
- Mobley, H. L., Green, D. M., Trifillis, A. L., Johnson, D. E., Chippendale, G. R., Lockatell, C. V.,
 et al. (1990). Pyelonephritogenic Escherichia coli and killing of cultured human renal proximal
 tubular epithelial cells: role of hemolysin in some strains. *Infection and Immunity*, 58(5), 1281–
 1289.
- Nakae, T., Ishii, J., & Tokunaga, M. (1979). Subunit structure of functional porin oligomers that
 form permeability channels in the other membrane of Escherichia coli. *The Journal of Biological Chemistry*, 254(5), 1457–1461.
- Narita, S.-I. (2011). ABC transporters involved in the biogenesis of the outer membrane in gram negative bacteria. *Bioscience, Biotechnology, and Biochemistry*, 75(6), 1044–1054.
 http://doi.org/10.1271/bbb.110115
- Narita, S.-I., & Tokuda, H. (2010). Sorting of bacterial lipoproteins to the outer membrane by the
 Lol system. *Methods in Molecular Biology (Clifton, NJ)*, 619(Chapter 7), 117–129.
 http://doi.org/10.1007/978-1-60327-412-8
- Narita, S.-I., & Tokuda, H. (2011). Overexpression of LolCDE allows deletion of the Escherichia
 coli gene encoding apolipoprotein N-acyltransferase. *Journal of Bacteriology*, *193*(18), 4832–
 4840. http://doi.org/10.1128/JB.05013-11
- 912 Neidhardt, F. C. (1996). Chemical composition of *Escherichia coli*. In *Escherichia coli and*
- 913 Salmonella: cellular and molecular biology (2nd ed., pp. 1035–1063). Washington D.C.

- Nickerson, N. N., Jao, C. C., Xu, Y., Quinn, J., Skippington, E., Alexander, M. K., et al. (2018). A
 Novel Inhibitor of the LolCDE ABC Transporter Essential for Lipoprotein Trafficking in
- 916 Gram-Negative Bacteria. *Antimicrobial Agents and Chemotherapy*, 62(4), e02151–17. 917 http://doi.org/10.1128/AAC.02151-17
- 918 Noland, C. L., Kattke, M. D., Diao, J., Gloor, S. L., Pantua, H., Reichelt, M., et al. (2017).
- Structural insights into lipoprotein N-acylation by Escherichia coli apolipoprotein N acyltransferase. *Proceedings of the National Academy of Sciences of the United States of America*, 114(30), E6044–E6053. http://doi.org/10.1073/pnas.1707813114
- Olatunji, S., Yu, X., Bailey, J., Huang, C.-Y., Zapotoczna, M., Bowen, K., et al. (2020). Structures
 of lipoprotein signal peptidase II from Staphylococcus aureus complexed with antibiotics
 globomycin and myxovirescin. *Nature Communications*, *11*(1), 140–11.
 http://doi.org/10.1038/s41467-019-13724-y
- Pailler, J., Aucher, W., Pires, M., & Buddelmeijer, N. (2012). Phosphatidylglycerol::prolipoprotein diacylglyceryl transferase (Lgt) of Escherichia coli has seven transmembrane segments, and its essential residues are embedded in the membrane. *Journal of Bacteriology*, *194*(9), 2142–2151. http://doi.org/10.1128/JB.06641-11
- Palmer, A. C., & Kishony, R. (2014). Opposing effects of target overexpression reveal drug
 mechanisms. *Nature Communications*, 5, 4296. http://doi.org/10.1038/ncomms5296
- Pantua, H., Skippington, E., braun, M.-G., Noland, C. L., Diao, J., peng, Y., et al. (2020). Unstable
 Mechanisms of Resistance to Inhibitors of Escherichia coli Lipoprotein Signal Peptidase. *mBio*,
 11(5), VMBF-0016-2015. http://doi.org/10.1128/mBio.02018-20
- Peters, J. M., Colavin, A., Shi, H., Czarny, T. L., Larson, M. H., Wong, S., et al. (2016). A
 Comprehensive, CRISPR-based Functional Analysis of Essential Genes in Bacteria. *Cell*, *165*(6), 1493–1506. http://doi.org/10.1016/j.cell.2016.05.003
- Qi, L. S., Larson, M. H., Gilbert, L. A., Doudna, J. A., Weissman, J. S., Arkin, A. P., & Lim, W. A.
 (2013). Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. *Cell*, 152(5), 1173–1183. http://doi.org/10.1016/j.cell.2013.02.022
- Robichon, C., Vidal-Ingigliardi, D., & Pugsley, A. P. (2005). Depletion of apolipoprotein Nacyltransferase causes mislocalization of outer membrane lipoproteins in Escherichia coli. *The Journal of Biological Chemistry*, 280(2), 974–983. http://doi.org/10.1074/jbc.M411059200
- Rojas, E. R., Billings, G., Odermatt, P. D., Auer, G. K., Zhu, L., Miguel, A., et al. (2018). The outer
 membrane is an essential load-bearing element in Gram-negative bacteria. *Nature*, 559(7715),
 617–621. http://doi.org/10.1038/s41586-018-0344-3
- Rossiter, S. E., Fletcher, M. H., & Wuest, W. M. (2017). Natural Products as Platforms To
 Overcome Antibiotic Resistance. *Chemical Reviews*, *117*(19), 12415–12474.
 http://doi.org/10.1021/acs.chemrev.7b00283
- Rousset, F., Cui, L., Siouve, E., Becavin, C., Depardieu, F., & Bikard, D. (2018). Genome-wide
 CRISPR-dCas9 screens in E. coli identify essential genes and phage host factors. *PLoS Genetics*, 14(11), e1007749. http://doi.org/10.1371/journal.pgen.1007749
- Ruiz, N., Falcone, B., Kahne, D., & Silhavy, T. J. (2005). Chemical conditionality: a genetic
 strategy to probe organelle assembly. *Cell*, *121*(2), 307–317.
 http://doi.org/10.1016/j.coll.2005.02.014
- 955 http://doi.org/10.1016/j.cell.2005.02.014
- Sankaran, K., & Wu, H. C. (1994). Lipid modification of bacterial prolipoprotein. Transfer of
- diacylglyceryl moiety from phosphatidylglycerol. *The Journal of Biological Chemistry*,
 269(31), 19701–19706.

- Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., et al. (2012).
 Fiji: an open-source platform for biological-image analysis. *Nature Methods*, 9(7), 676–682.
 http://doi.org/10.1038/nmeth.2019
- 962 Schlesinger, M. J. (1992). Lipid Modifications of Proteins. CRC Press.
- Shu, W., Liu, J., Ji, H., & Lu, M. (2000). Core structure of the outer membrane lipoprotein from
 Escherichia coli at 1.9 A resolution. *Journal of Molecular Biology*, 299(4), 1101–1112.
 http://doi.org/10.1006/jmbi.2000.3776
- Silhavy, T. J., Kahne, D., & Walker, S. (2010). The bacterial cell envelope. *Cold Spring Harbor Perspectives in Biology*, 2(5), a000414–a000414. http://doi.org/10.1101/cshperspect.a000414
- Singh, W., Bilal, M., McClory, J., Dourado, D., Quinn, D., Moody, T. S., et al. (2019). Mechanism
 of Phosphatidylglycerol Activation Catalyzed by Prolipoprotein Diacylglyceryl Transferase. *The Journal of Physical Chemistry. B*, 123(33), 7092–7102.
 http://doi.org/10.1021/act.inch.0h04227
- 971 http://doi.org/10.1021/acs.jpcb.9b04227
- Stoll, H., Dengjel, J., Nerz, C., & Götz, F. (2005). Staphylococcus aureus deficient in lipidation of
 prelipoproteins is attenuated in growth and immune activation. *Infection and Immunity*, *73*(4),
 2411–2423. http://doi.org/10.1128/IAI.73.4.2411-2423.2005
- Storek, K. M., Auerbach, M. R., Shi, H., Garcia, N. K., Sun, D., Nickerson, N. N., et al. (2018).
 Monoclonal antibody targeting the β-barrel assembly machine of Escherichia coli is
 bactericidal. *Proceedings of the National Academy of Sciences of the United States of America*, *115*(14), 3692–3697. http://doi.org/10.1073/pnas.1800043115
- Storek, K. M., Chan, J., Vij, R., Chiang, N., Lin, Z., Bevers, J., et al. (2019). Massive antibody
 discovery used to probe structure-function relationships of the essential outer membrane protein
 LptD. *eLife*, 8, 3002. http://doi.org/10.7554/eLife.46258
- Suzuki, H., Nishimura, Y., Yasuda, S., Nishimura, A., Yamada, M., & Hirota, Y. (1978). Mureinlipoprotein of Escherichia coli: a protein involved in the stabilization of bacterial cell envelope. *Molecular & General Genetics : MGG*, 167(1), 1–9.
- Suzuki, M., Hara, H., & Matsumoto, K. (2002). Envelope disorder of Escherichia coli cells lacking
 phosphatidylglycerol. *Journal of Bacteriology*, *184*(19), 5418–5425.
 http://doi.org/10.1128/jb.184.19.5418-5425.2002
- Tokunaga, M., Tokunaga, H., & Wu, H. C. (1982). Post-translational modification and processing
 of Escherichia coli prolipoprotein in vitro. *Proceedings of the National Academy of Sciences of the United States of America*, 79(7), 2255–2259. http://doi.org/10.1073/pnas.79.7.2255
- Vogeley, L., Arnaout, El, T., Bailey, J., Stansfeld, P. J., Boland, C., & Caffrey, M. (2016).
 Structural basis of lipoprotein signal peptidase II action and inhibition by the antibiotic globomycin. *Science (New York, N.Y.)*, *351*(6275), 876–880.
- 994 http://doi.org/10.1126/science.aad3747
- Whitfield, C., Hancock, R. E., & Costerton, J. W. (1983). Outer membrane protein K of Escherichia
 coli: purification and pore-forming properties in lipid bilayer membranes. *Journal of Bacteriology*, *156*(2), 873–879.
- Wilson, M. M., & Bernstein, H. D. (2015). Surface-Exposed Lipoproteins: An Emerging Secretion
 Phenomenon in Gram-Negative Bacteria. *Trends in Microbiology*.
 http://doi.org/10.1016/j.tim.2015.11.006
- 1001 Xiao, Y., Gerth, K., Müller, R., & Wall, D. (2012). Myxobacterium-produced antibiotic TA
- 1002 (myxovirescin) inhibits type II signal peptidase. *Antimicrobial Agents and Chemotherapy*,
 1003 56(4), 2014–2021. http://doi.org/10.1128/AAC.06148-11

Inhibition of Lgt in Gram-negative bacteria

- Yakushi, T., Tajima, T., Matsuyama, S., & Tokuda, H. (1997a). Lethality of the covalent linkage
 between mislocalized major outer membrane lipoprotein and the peptidoglycan of Escherichia
 coli. *Journal of Bacteriology*, *179*(9), 2857–2862.
- Yakushi, T., Tajima, T., Matsuyama, S., & Tokuda, H. (1997b). Lethality of the covalent linkage
 between mislocalized major outer membrane lipoprotein and the peptidoglycan of Escherichia
 coli. *Journal of Bacteriology*, *179*(9), 2857–2862.
- Yem, D. W., & Wu, H. C. (1978). Physiological characterization of an Escherichia coli mutant
 altered in the structure of murein lipoprotein. *Journal of Bacteriology*, *133*(3), 1419–1426.
- Zhang, W. Y., & Wu, H. C. (1992). Alterations of the carboxyl-terminal amino acid residues of
 Escherichia coli lipoprotein affect the formation of murein-bound lipoprotein. *The Journal of Biological Chemistry*, 267(27), 19560–19564.
- Zhang, W. Y., Inouye, M., & Wu, H. C. (1992). Neither lipid modification nor processing of
 prolipoprotein is essential for the formation of murein-bound lipoprotein in Escherichia coli.
 The Journal of Biological Chemistry, 267(27), 19631–19635.
- Zwiebel, L. J., Inukai, M., Nakamura, K., & Inouye, M. (1981). Preferential selection of deletion
 mutations of the outer membrane lipoprotein gene of Escherichia coli by globomycin. *Journal* of Bacteriology, 145(1), 654–656.
- 1021

1022

- 1023
- 1024
- 1025

1026

- 1028
- 1029
- 1030
- 1031
- 1032
-
- 1033

Inhibition of Lgt in Gram-negative bacteria

1034 Figure legends

1035

1036	Figure 1: Lipoprotein biosynthesis and transport in Gram-negative bacteria. Prolipoprotein
1037	substrates translocate through the IM via the Sec or Tat pathway and are sequentially modified by
1038	Lgt, LspA and Lnt. Triacylated lipoproteins that are destined for the OM are recognized by the Lol
1039	system (LolABCDE) and transported to the OM. Lpp and Pal are two OM lipoproteins that tether
1040	the OM to the PG layer. Pal also binds to TolB, which also can interact with Lpp and OmpA, an
1041	OM β -barrel protein that can also associate with PG (not shown).
1042	
1043	Figure 2: Lgt is essential for <i>in vitro</i> growth, membrane integrity, serum resistance and
1044	virulence. (a) CFT073 Δlgt cells were grown in the presence of 4% arabinose (red circles) or 0.2%
1045	glucose (grey circles) and CFUs were enumerated over 7 hours post treatment. CFT073 Δlgt
1046	cultured in the presence of 0.2% glucose were complemented with empty pLMG18 plasmid (open
1047	green triangles) or pLMG18 plasmids expressing lgt from E. coli (blue circles), A. baumannii
1048	(magenta circles) or <i>P. aeruginosa</i> (orange circles). The grey dashed line represents the limit of
1049	detection (200 CFU/ml) of the experiment. Data are representative of two independent experiments
1050	each performed in duplicate. (b-c) A modest $\sim 25\%$ reduction in Lgt levels results in a significant
1051	loss in viability over time with a concurrent accumulation of the unmodified pro-Lpp (ø, UPLP).
1052	CFT073 Δlgt cells were treated with a range of arabinose concentrations and CFUs were enumerated
1053	over 20 hours. CFU growth data are representative of two independent experiments each performed
1054	in duplicate. Western blot analysis for expression of Lgt and Lpp was performed using WT

Inhibition of Lgt in Gram-negative bacteria

1055	CFT073 and CFT073 Δ <i>lgt</i> total cell lysates harvested at 3 hours post arabinose treatment. To
1056	quantitate Lgt expression levels, Lgt levels were normalized to GroEL and quantitated as fold
1057	change relative to WT CFT073 (FC vs WT). Lpp forms are denoted as follows: * = triacylated free
1058	Lpp; § = PG-linked diacylglyceryl pro-Lpp (DGPLP); ø = unmodified pro-Lpp (UPLP). Data are
1059	representative of two independent experiments. (d) Lgt depletion leads to increased serum
1060	sensitivity. WT CFT073 and CFT073 Δlgt cells grown in the presence of a range of arabinose
1061	concentrations (2% = magenta; 0.2% = light blue; 0.1% = green and 0.05% = orange) were
1062	incubated with 50% normal human serum (nHS), heat inactivated human serum (HIHS) or medium
1063	(no serum) for 1 hour and CFUs were enumerated. Data are representative of at least three
1064	independent experiments each performed in duplicate. (e) Lgt depletion leads to increased OM
1065	permeability. WT CFT073 and CFT073 Δlgt cells were incubated with the same range of arabinose
1066	concentrations as in Figure 2d and incubated with the nucleic acid dye, SYTOX Green, and flow
1067	cytometry was performed to determine level of dye incorporation. While SYTOX Green does not
1068	efficiently incorporate in bacterial cells with an intact OM (CFT073 Δlgt treated with 2% arabinose,
1069	magenta), SYTOX Green incorporation in bacterial cells increases after Lgt depletion. Intact
1070	CFT073 (WT, grey) or CFT073 treated with 70% ethanol (WT+ETOH, black), which permeabilizes
1071	the cells, were used as controls. Data are representative of two independent experiments. (f) Lgt
1072	depletion results in a globular cellular phenotype and membrane blebbing. WT CFT073 or
1073	CFT073 Δlgt cells were grown in either arabinose or glucose for 4 hours, fixed and incubated with
1074	FM-64 dye (red) and DAPI (blue) to detect OM and nucleic acids, respectively. Cells were
1075	visualized by confocal microscopy. Arrows represent membrane blebs. Scale bars represent 1 μ m.
1076	Quantitation of cell size was performed using ImageJ software. (g) Lgt depletion leads to
1077	significant attenuation in virulence. Intravenous infection of neutropenic A/J mice with WT

Inhibition of Lgt in Gram-negative bacteria

1078	CFT073 (black) or CFT073 [red) cells. At 0.5 hours and 24 hours post-infection, bacterial
1079	burden in the liver and spleen were enumerated. Overall <i>p</i> -value for the ANOVA is $p < 0.0001$.
1080	Pairwise comparisons were analyzed using unpaired Mann Whitney test (** $p = 0.0079$). The grey
1081	dashed line represents the limit of detection (200 CFU/ml) for this experiment. (h) Deletion of <i>lpp</i>
1082	does not rescue growth after Lgt depletion. E. coli MG1655 (WT, black), or inducible deletion
1083	strains for <i>lgt</i> (Δlgt , red), <i>lspA</i> ($\Delta lspA$, <i>green</i>) and <i>lolCDE</i> ($\Delta lolCDE$, blue) that either contained <i>lpp</i>
1084	or had <i>lpp</i> deleted were grown in conditions that allowed for normal growth (Ara ^{WT} , 2% arabinose)
1085	or decreased growth (AraLow, 0.0125% arabinose) and CFUs at were enumerated at 5 hours post
1086	treatment. Data are representative of two independent experiments each performed in duplicate (ns
1087	= not significant, *p < 0.05, **p < 0.01).

1088

1089 Figure 3: Identification of Lgt inhibitors. (a) Representation of macrocycle peptide libraries 1090 varying in size from 8-14 amino acids in length. The variable region (X_n) of the macrocycle 1091 libraries was encoded to allow the random incorporation of 11 natural amino acids and 5 non-1092 natural amino acids. (b) The 5 non-natural amino acids used in the generation of the libraries were 1093 N-α-Methyl-L-phenylalanine (MeF), N-α-Methyl-L-glycine (MeG, Sarcosine), (S)-2-1094 Aminoheptanoic acid (Ahp), 4-Phenyl-L-phenylalanine (Bph) and (S)-1,2,3,4-1095 Tetrahydroisoquinoline-3-carboxylic acid (Tic). (c) Schematic representation of affinity-based 1096 selections using recombinant Lgt-biotin immobilized on streptavidin magnetic beads. As discussed 1097 in the Methods, Lgt-DDM was incubated with the macrocycle library and Lgt binders were eluted, 1098 amplified and translated to generate new libraries enriched for Lgt binders. Iterative rounds of 1099 affinity selection and washing were performed against recombinant Lgt and macrocycles that bound

Inhibition of Lgt in Gram-negative bacteria

1100	to Lgt were identified using next generation sequencing. (d) Structure of the macrocyclic peptides
1101	G9066, G2823 and G2824 identified in this study. (e) Development of the in vitro Lgt biochemical
1102	assay. Lgt-DDM was incubated with phosphatidylglycerol and the Pal-IAAC peptide substrate
1103	derived from the Pal lipoprotein (MQLNKVLKGLMIALPVMAIAACSSNKN) for 60 minutes at
1104	RT, as described in the Methods. After Lgt catalyzes the transfer of diacylglyceryl from
1105	phosphatidylglycerol to the Pal substrate (Pal-IAAC), glycerol-1-phosphophate (G1P) is released
1106	from phosphatidylglycerol. Given the phosphatidylglycerol substrate used in our biochemical assay
1107	contains a racemic glycerol moiety at the end of phosphatidyl group, both G1P and G3P are
1108	released. G3P is quantitatively converted to Dihydroxyacetone phosphate (DHAP) with
1109	concomitant formation of an equivalent amount of NADH by the action of glycerol 3-phosphate
1110	dehydrogenase (G3PDH). Newly formed NADH will in turn quantitatively react with
1111	proluciferin to generate equivalent amounts of luciferin, which ultimately results in
1112	luminescence by luciferase that is proportional to the amount of luciferin available. (f) Dose-
1113	dependent inhibition of Lgt biochemical activity. Lgt was incubated with phosphatidylglycerol and
1114	the Pal-IAAC substrate in the presence of absence of by G9066 (red), G2823 (green) or G2824
1115	(blue). Luminescence values were normalized to DMSO controls (0% inhibition) and no enzyme
1116	controls (100% inhibition). As a control, we incubated the Lgt reactions with a mutant substrate
1117	peptide also derived from the Pal lipoprotein which has the conserved cysteine mutated to alanine
1118	(Pal-IAAA, black). While the Pal-IAAA peptide binds to Lgt, it cannot be modified by Lgt and acts
1119	as a non-modifiable, competitive peptide. Negative control reactions for each inhibitor were run in
1120	the absence of Lgt enzymes (open symbols). Data are representative of at least two independent
1121	experiments each performed in triplicate.

Inhibition of Lgt in Gram-negative bacteria

1124isolation of PAP and non-PAP fractions. Bacterial cultures were resuspended in 6 mL of PAP1125extraction buffer and centrifuged at 100,000 × g for 60 minutes. 6 mL of supernatants were1126collected and pellets were resuspended in 200 µL of PAP extraction buffer. PG-linked Lpp forms1127were more readily detected with the concentrated PAP fractions. (b) SDS fractionation of WT1128CFT073 cells to distinguish PG-associated versus non-PG-associated forms of Lpp.1129CFT073 <i>imp4213</i> cells were treated with SDS to enrich for PAP and non-PAP fractions as discussed1131in the Methods and Western blot analysis was performed to detect levels of Lpp. GroEL was used1131as a control for enrichment of the PAP fraction. While triacylated free Lpp (*) is enriched in the1132SDS-soluble non-PAP fraction, higher molecular weight Lpp species (§, *) are enriched in the SDS-1133insoluble PAP fraction (§ = PG-linked diacylglyceryl pro-Lpp, DGPLP; † = other PG-linked Lpp1134forms). Molecular weight markers (kDa) are denoted on the left of the blots. (c) Detection of Lpp1135intermediates in MG1655Algr, MG1655Alsp:A and MG1655AloICDE inducible deletion strains by1136Western blot analysis. WT or inducible deletion strains were treated with 2% arabinose (A) or1139accumulated after LspA depletion. (d) Accumulation of pro-Lpp in cells treated with Lgti.1140CFT073 <i>imp4213</i> cells expressing an arabinose inducible form of Lpp (CFT073 <i>imp4213Alpp:lpp^Am</i>)1141were incubated with arabinose for 30 minutes prior to treatment with 0.5×MIC concentrations of the1142inhibitors for another 30 minutes. L	1123	Figure 4: Lgti inhibit Lgt enzymatic activity in bacterial cells. (a) Schematic representing the
collected and pellets were resuspended in 200 µL of PAP extraction buffer. PG-linked Lpp forms were more readily detected with the concentrated PAP fractions. (b) SDS fractionation of WT CFT073 cells to distinguish PG-associated versus non-PG-associated forms of Lpp. CFT073 <i>imp4213</i> cells were treated with SDS to enrich for PAP and non-PAP fractions as discussed in the Methods and Western blot analysis was performed to detect levels of Lpp. GroEL was used as a control for enrichment of the PAP fraction. While triacylated free Lpp (*) is enriched in the SDS-soluble non-PAP fraction, higher molecular weight Lpp species (§, †) are enriched in the SDS- insoluble PAP fraction (§ = PG-linked diacylglyceryl pro-Lpp, DGPLP; † = other PG-linked Lpp forms). Molecular weight markers (kDa) are denoted on the left of the blots. (c) Detection of Lpp intermediates in MG1655 <i>Algt</i> , MG1655 <i>Algt</i> and MG1655 <i>AlolCDE</i> inducible deletion strains by Western blot analysis. WT or inducible deletion strains were treated with 2% arabinose (A) or 0.2% glucose (G) and total cell lysates were harvested at 3 hours post treatment (Ø = unmodified pro-Lpp, UPLP). PG-linked DGPLP (§) and other higher molecular weight Lpp species (†) accumulated after LspA depletion. (d) Accumulation of pro-Lpp in cells treated with Lgti. CFT073 <i>imp4213</i> cells expressing an arabinose inducible form of Lpp (<i>CFT073imp4213Alpp:lppAra</i>) were incubated with arabinose for 30 minutes prior to treatment with 0.5×MIC concentrations of the inhibitors for another 30 minutes. Lpp forms are denoted as described above. (e) Lgti treatment leads to cell morphology changes and membrane blebs. CFT073 <i>imp4213</i> cells were left untreated or treated with Lgti at 1×MIC for 30 minutes, fixed and incubated with FM-64 dyc (red) and DAPI	1124	isolation of PAP and non-PAP fractions. Bacterial cultures were resuspended in 6 mL of PAP
1127were more readily detected with the concentrated PAP fractions. (b) SDS fractionation of WT1128CFT073 cells to distinguish PG-associated versus non-PG-associated forms of Lpp.1129CFT073 <i>imp4213</i> cells were treated with SDS to enrich for PAP and non-PAP fractions as discussed1130in the Methods and Western blot analysis was performed to detect levels of Lpp. GroEL was used1131as a control for enrichment of the PAP fraction. While triacylated free Lpp (*) is enriched in the1132SDS-soluble non-PAP fraction, higher molecular weight Lpp species (§, †) are enriched in the SDS-1133insoluble PAP fraction (§ = PG-linked diacylglyceryl pro-Lpp, DGPLP; † = other PG-linked Lpp1134forms). Molecular weight markers (kDa) are denoted on the left of the blots. (c) Detection of Lpp1135intermediates in MG1655A <i>lgt</i> , MG1655A <i>lspA</i> and MG1655A <i>lolCDE</i> inducible deletion strains by1136Western blot analysis. WT or inducible deletion strains were treated with 2% arabinose (A) or11370.2% glucose (G) and total cell lysates were harvested at 3 hours post treatment (Ø = unmodified1138pro-Lpp, UPLP). PG-linked DGPLP (§) and other higher molecular weight Lpp species (†)1139accumulated after LspA depletion. (d) Accumulation of pro-Lpp in cells treated with Lgti.1140CFT073 <i>imp4213</i> cells expressing an arabinose inducible form of Lpp (<i>CFT073imp4213</i> Acl <i>pp</i> . <i>lpp</i> A tm)1141were incubated with arabinose for 30 minutes prior to treatment with 0.5×MIC concentrations of the1142inhibitors for another 30 minutes. Lpp forms are denoted as described above. (e) Lgti treatment1143leads to cell morphol	1125	extraction buffer and centrifuged at $100,000 \times g$ for 60 minutes. 6 mL of supernatants were
1128CFT073 cells to distinguish PG-associated versus non-PG-associated forms of Lpp.1129CFT073 <i>imp4213</i> cells were treated with SDS to enrich for PAP and non-PAP fractions as discussed1130in the Methods and Western blot analysis was performed to detect levels of Lpp. GroEL was used1131as a control for enrichment of the PAP fraction. While triacylated free Lpp (*) is enriched in the1132SDS-soluble non-PAP fraction, higher molecular weight Lpp species (§, †) are enriched in the SDS-1133insoluble PAP fraction (§ = PG-linked diacylglyceryl pro-Lpp, DGPLP; † = other PG-linked Lpp1134forms). Molecular weight markers (kDa) are denoted on the left of the blots. (c) Detection of Lpp1135intermediates in MG1655A/gr, MG1655A/sp.4 and MG1655A/o/CDE inducible deletion strains by1136Western blot analysis. WT or inducible deletion strains were treated with 2% arabinose (A) or11370.2% glucose (G) and total cell lysates were harvested at 3 hours post treatment (Ø = unmodified1138pro-Lpp, UPLP). PG-linked DGPLP (§) and other higher molecular weight Lpp species (†)1139accumulated after LspA depletion. (d) Accumulation of pro-Lpp in cells treated with Lgti.1140CFT073 <i>imp4213</i> cells expressing an arabinose inducible form of Lpp (<i>CFT073imp4213\Dep^Arra</i>)1141were incubated with arabinose for 30 minutes prior to treatment with 0.5×MIC concentrations of the1142inhibitors for another 30 minutes. Lpp forms are denoted as described above. (e) Lgti treatment1143leads to cell morphology changes and membrane blebs. CFT073 <i>imp4213</i> cells were left untreated1144or treated with Lgti at 1×MIC for	1126	collected and pellets were resuspended in 200 μ L of PAP extraction buffer. PG-linked Lpp forms
1129 CFT073 <i>imp4213</i> cells were treated with SDS to enrich for PAP and non-PAP fractions as discussed 1130 in the Methods and Western blot analysis was performed to detect levels of Lpp. GroEL was used 1131 as a control for enrichment of the PAP fraction. While triacylated free Lpp (*) is enriched in the 1132 SDS-soluble non-PAP fraction, higher molecular weight Lpp species (§, †) are enriched in the SDS- 1133 insoluble PAP fraction (§ = PG-linked diacylglyceryl pro-Lpp, DGPLP; † = other PG-linked Lpp 1134 forms). Molecular weight markers (kDa) are denoted on the left of the blots. (c) Detection of Lpp 1135 intermediates in MG1655 Δ <i>lgt</i> , MG1655 Δ <i>lspA</i> and MG1655 Δ <i>lolCDE</i> inducible deletion strains by 1136 Western blot analysis. WT or inducible deletion strains were treated with 2% arabinose (A) or 1137 0.2% glucose (G) and total cell lysates were harvested at 3 hours post treatment (O = unmodified 1138 pro-Lpp, UPLP). PG-linked DGPLP (§) and other higher molecular weight Lpp species (†) 1139 accumulated after LspA depletion. (d) Accumulation of pro-Lpp in cells treated with Lgti. 1140 CFT073 <i>imp4213</i> cells expressing an arabinose inducible form of Lpp (<i>CFT073imp4213</i> Δ <i>lpp:lpp</i> ^{Ara}) 1141 were incubated with arabinose for 30 minutes prior to treatment with 0.5×MIC concentrations of the 1142 inhibitors for another 30 minutes. Lpp forms are denoted as described above. (e) Lgti treatment 1143 leads to cell morphology changes and membrane blebs. CFT073 <i>imp4213</i> cells were left untreated 1144 or treated with Lgti at 1×MIC for 30 minutes, fixed and incubated with FM-64 dye (red) and DAPI	1127	were more readily detected with the concentrated PAP fractions. (b) SDS fractionation of WT
1130in the Methods and Western blot analysis was performed to detect levels of Lpp. GroEL was used1131as a control for enrichment of the PAP fraction. While triacylated free Lpp (*) is enriched in the1132SDS-soluble non-PAP fraction, higher molecular weight Lpp species (§, †) are enriched in the SDS-1133insoluble PAP fraction (§ = PG-linked diacylglyceryl pro-Lpp, DGPLP; † = other PG-linked Lpp1134forms). Molecular weight markers (kDa) are denoted on the left of the blots. (c) Detection of Lpp1135intermediates in MG1655 Δ <i>lgt</i> , MG1655 Δ <i>lspA</i> and MG1655 Δ <i>lolCDE</i> inducible deletion strains by1136Western blot analysis. WT or inducible deletion strains were treated with 2% arabinose (A) or11370.2% glucose (G) and total cell lysates were harvested at 3 hours post treatment (Ø = unmodified1139accumulated after LspA depletion. (d) Accumulation of pro-Lpp in cells treated with Lgti.1140CFT073 <i>imp4213</i> cells expressing an arabinose inducible form of Lpp (<i>CFT073imp4213</i> Δ <i>lpp:lpp</i> ^{Arn})1141were incubated with arabinose for 30 minutes prior to treatment with 0.5×MIC concentrations of the1142inhibitors for another 30 minutes. Lpp forms are denoted as described above. (e) Lgti treatment1143leads to cell morphology changes and membrane blebs. CFT073 <i>imp4213</i> cells were left untreated1144or treated with Lgti at 1×MIC for 30 minutes, fixed and incubated with FM-64 dye (red) and DAPI	1128	CFT073 cells to distinguish PG-associated versus non-PG-associated forms of Lpp.
1131as a control for enrichment of the PAP fraction. While triacylated free Lpp (*) is enriched in the1132SDS-soluble non-PAP fraction, higher molecular weight Lpp species (§, †) are enriched in the SDS-1133insoluble PAP fraction (§ = PG-linked diacylglyceryl pro-Lpp, DGPLP; † = other PG-linked Lpp1134forms). Molecular weight markers (kDa) are denoted on the left of the blots. (c) Detection of Lpp1135intermediates in MG1655 Δ <i>lgt</i> , MG1655 Δ <i>lspA</i> and MG1655 Δ <i>lolCDE</i> inducible deletion strains by1136Western blot analysis. WT or inducible deletion strains were treated with 2% arabinose (A) or11370.2% glucose (G) and total cell lysates were harvested at 3 hours post treatment (Ø = unmodified1138pro-Lpp, UPLP). PG-linked DGPLP (§) and other higher molecular weight Lpp species (†)1139accumulated after LspA depletion. (d) Accumulation of pro-Lpp in cells treated with Lgti.1140CFT073 <i>imp4213</i> cells expressing an arabinose inducible form of Lpp (<i>CFT073imp4213</i> Δ <i>lpp</i> . <i>lpp</i> ^{Ara})1141were incubated with arabinose for 30 minutes prior to treatment with 0.5×MIC concentrations of the1142inhibitors for another 30 minutes. Lpp forms are denoted as described above. (c) Lgti treatment1143leads to cell morphology changes and membrane blebs. CFT073 <i>imp4213</i> cells were left untreated1144or treated with Lgti at 1×MIC for 30 minutes, fixed and incubated with FM-64 dye (red) and DAPI	1129	CFT073 <i>imp4213</i> cells were treated with SDS to enrich for PAP and non-PAP fractions as discussed
1132SDS-soluble non-PAP fraction, higher molecular weight Lpp species ($\$$, $†$) are enriched in the SDS-1133insoluble PAP fraction ($\$ = PG$ -linked diacylglyceryl pro-Lpp, DGPLP; $† =$ other PG-linked Lpp1134forms). Molecular weight markers (kDa) are denoted on the left of the blots. (c) Detection of Lpp1135intermediates in MG1655 Δ <i>lgt</i> , MG1655 Δ <i>lspA</i> and MG1655 Δ <i>lolCDE</i> inducible deletion strains by1136Western blot analysis. WT or inducible deletion strains were treated with 2% arabinose (A) or11370.2% glucose (G) and total cell lysates were harvested at 3 hours post treatment (\emptyset = unmodified1138pro-Lpp, UPLP). PG-linked DGPLP ($\$$) and other higher molecular weight Lpp species ($†$)1139accumulated after LspA depletion. (d) Accumulation of pro-Lpp in cells treated with Lgti.1140CFT073 <i>imp4213</i> cells expressing an arabinose inducible form of Lpp (<i>CFT073imp4213Δlpp:lpp^{Ara}</i>)1141were incubated with arabinose for 30 minutes prior to treatment with 0.5×MIC concentrations of the1142inhibitors for another 30 minutes. Lpp forms are denoted as described above. (e) Lgti treatment1143leads to cell morphology changes and membrane blebs. CFT073 <i>imp4213</i> cells were left untreated1144or treated with Lgti at 1×MIC for 30 minutes, fixed and incubated with FM-64 dye (red) and DAPI	1130	in the Methods and Western blot analysis was performed to detect levels of Lpp. GroEL was used
1133insoluble PAP fraction (\S = PG-linked diacylglyceryl pro-Lpp, DGPLP; \dagger = other PG-linked Lpp1134forms). Molecular weight markers (kDa) are denoted on the left of the blots. (c) Detection of Lpp1135intermediates in MG1655 Δ <i>lgt</i> , MG1655 Δ <i>lsp.4</i> and MG1655 Δ <i>lolCDE</i> inducible deletion strains by1136Western blot analysis. WT or inducible deletion strains were treated with 2% arabinose (A) or11370.2% glucose (G) and total cell lysates were harvested at 3 hours post treatment (\emptyset = unmodified1138pro-Lpp, UPLP). PG-linked DGPLP (\S) and other higher molecular weight Lpp species (\dagger)1139accumulated after LspA depletion. (d) Accumulation of pro-Lpp in cells treated with Lgti.1140CFT073 <i>imp4213</i> cells expressing an arabinose inducible form of Lpp (<i>CFT073imp4213</i> Δ <i>lpp:lpp</i> ^{Ara})1141were incubated with arabinose for 30 minutes prior to treatment with 0.5×MIC concentrations of the1143leads to cell morphology changes and membrane blebs. CFT073 <i>imp4213</i> cells were left untreated1144or treated with Lgti at 1×MIC for 30 minutes, fixed and incubated with FM-64 dye (red) and DAPI	1131	as a control for enrichment of the PAP fraction. While triacylated free Lpp (*) is enriched in the
forms). Molecular weight markers (kDa) are denoted on the left of the blots. (c) Detection of Lpp intermediates in MG1655 Δ <i>lgt</i> , MG1655 Δ <i>lspA</i> and MG1655 Δ <i>lolCDE</i> inducible deletion strains by Western blot analysis. WT or inducible deletion strains were treated with 2% arabinose (A) or 0.2% glucose (G) and total cell lysates were harvested at 3 hours post treatment (\emptyset = unmodified pro-Lpp, UPLP). PG-linked DGPLP (§) and other higher molecular weight Lpp species (†) accumulated after LspA depletion. (d) Accumulation of pro-Lpp in cells treated with Lgti. CFT073 <i>imp4213</i> cells expressing an arabinose inducible form of Lpp (<i>CFT073imp4213</i> Δ <i>lpp:lpp</i> ^{Arg}) were incubated with arabinose for 30 minutes prior to treatment with 0.5×MIC concentrations of the inhibitors for another 30 minutes. Lpp forms are denoted as described above. (e) Lgti treatment leads to cell morphology changes and membrane blebs. CFT073 <i>imp4213</i> cells were left untreated or treated with Lgti at 1×MIC for 30 minutes, fixed and incubated with FM-64 dye (red) and DAPI	1132	SDS-soluble non-PAP fraction, higher molecular weight Lpp species (,) are enriched in the SDS-
intermediates in MG1655 Δlgt , MG1655 $\Delta lspA$ and MG1655 $\Delta lolCDE$ inducible deletion strains by Western blot analysis. WT or inducible deletion strains were treated with 2% arabinose (A) or 0.2% glucose (G) and total cell lysates were harvested at 3 hours post treatment (\emptyset = unmodified pro-Lpp, UPLP). PG-linked DGPLP (§) and other higher molecular weight Lpp species (†) accumulated after LspA depletion. (d) Accumulation of pro-Lpp in cells treated with Lgti. CFT073 <i>imp4213</i> cells expressing an arabinose inducible form of Lpp (<i>CFT073imp4213</i> $\Delta lpp:lpp^{Ara}$) were incubated with arabinose for 30 minutes prior to treatment with 0.5×MIC concentrations of the inhibitors for another 30 minutes. Lpp forms are denoted as described above. (e) Lgti treatment leads to cell morphology changes and membrane blebs. CFT073 <i>imp4213</i> cells were left untreated or treated with Lgti at 1×MIC for 30 minutes, fixed and incubated with FM-64 dye (red) and DAPI	1133	insoluble PAP fraction (§ = PG-linked diacylglyceryl pro-Lpp, DGPLP; † = other PG-linked Lpp
1136Western blot analysis. WT or inducible deletion strains were treated with 2% arabinose (A) or11370.2% glucose (G) and total cell lysates were harvested at 3 hours post treatment (\emptyset = unmodified1138pro-Lpp, UPLP). PG-linked DGPLP (§) and other higher molecular weight Lpp species (†)1139accumulated after LspA depletion. (d) Accumulation of pro-Lpp in cells treated with Lgti.1140CFT073 <i>imp4213</i> cells expressing an arabinose inducible form of Lpp (<i>CFT073imp4213</i> Δ <i>lpp:lpp</i> ^{Ara})1141were incubated with arabinose for 30 minutes prior to treatment with 0.5×MIC concentrations of the1142inhibitors for another 30 minutes. Lpp forms are denoted as described above. (e) Lgti treatment1143leads to cell morphology changes and membrane blebs. CFT073 <i>imp4213</i> cells were left untreated1144or treated with Lgti at 1×MIC for 30 minutes, fixed and incubated with FM-64 dye (red) and DAPI	1134	forms). Molecular weight markers (kDa) are denoted on the left of the blots. (c) Detection of Lpp
1137 0.2% glucose (G) and total cell lysates were harvested at 3 hours post treatment (\emptyset = unmodified 1138 pro-Lpp, UPLP). PG-linked DGPLP (§) and other higher molecular weight Lpp species (†) 1139 accumulated after LspA depletion. (d) Accumulation of pro-Lpp in cells treated with Lgti. 1140 CFT073 <i>imp4213</i> cells expressing an arabinose inducible form of Lpp (<i>CFT073imp4213</i> Δ <i>lpp:lpp</i> ^{Ara}) 1141 were incubated with arabinose for 30 minutes prior to treatment with 0.5×MIC concentrations of the 1142 inhibitors for another 30 minutes. Lpp forms are denoted as described above. (e) Lgti treatment 1143 leads to cell morphology changes and membrane blebs. CFT073 <i>imp4213</i> cells were left untreated 1144 or treated with Lgti at 1×MIC for 30 minutes, fixed and incubated with FM-64 dye (red) and DAPI	1135	intermediates in MG1655 Δlgt , MG1655 $\Delta lspA$ and MG1655 $\Delta lolCDE$ inducible deletion strains by
1138pro-Lpp, UPLP). PG-linked DGPLP (§) and other higher molecular weight Lpp species (†)1139accumulated after LspA depletion. (d) Accumulation of pro-Lpp in cells treated with Lgti.1140CFT073 <i>imp4213</i> cells expressing an arabinose inducible form of Lpp (<i>CFT073imp4213</i> Δ <i>lpp:lpp</i> ^{Ara})1141were incubated with arabinose for 30 minutes prior to treatment with 0.5×MIC concentrations of the1142inhibitors for another 30 minutes. Lpp forms are denoted as described above. (e) Lgti treatment1143leads to cell morphology changes and membrane blebs. CFT073 <i>imp4213</i> cells were left untreated1144or treated with Lgti at 1×MIC for 30 minutes, fixed and incubated with FM-64 dye (red) and DAPI	1136	Western blot analysis. WT or inducible deletion strains were treated with 2% arabinose (A) or
1139accumulated after LspA depletion. (d) Accumulation of pro-Lpp in cells treated with Lgti.1140CFT073 <i>imp4213</i> cells expressing an arabinose inducible form of Lpp (<i>CFT073imp4213</i> Δ <i>lpp:lpp</i> ^{Ara})1141were incubated with arabinose for 30 minutes prior to treatment with 0.5×MIC concentrations of the1142inhibitors for another 30 minutes. Lpp forms are denoted as described above. (e) Lgti treatment1143leads to cell morphology changes and membrane blebs. CFT073 <i>imp4213</i> cells were left untreated1144or treated with Lgti at 1×MIC for 30 minutes, fixed and incubated with FM-64 dye (red) and DAPI	1137	0.2% glucose (G) and total cell lysates were harvested at 3 hours post treatment (\emptyset = unmodified
1140 CFT073 <i>imp4213</i> cells expressing an arabinose inducible form of Lpp (<i>CFT073imp4213</i> Δ <i>lpp:lpp</i> ^{Ara}) 1141 were incubated with arabinose for 30 minutes prior to treatment with 0.5×MIC concentrations of the 1142 inhibitors for another 30 minutes. Lpp forms are denoted as described above. (e) Lgti treatment 1143 leads to cell morphology changes and membrane blebs. CFT073 <i>imp4213</i> cells were left untreated 1144 or treated with Lgti at 1×MIC for 30 minutes, fixed and incubated with FM-64 dye (red) and DAPI	1138	pro-Lpp, UPLP). PG-linked DGPLP (§) and other higher molecular weight Lpp species (\dagger)
1141 were incubated with arabinose for 30 minutes prior to treatment with 0.5×MIC concentrations of the 1142 inhibitors for another 30 minutes. Lpp forms are denoted as described above. (e) Lgti treatment 1143 leads to cell morphology changes and membrane blebs. CFT073 <i>imp4213</i> cells were left untreated 1144 or treated with Lgti at 1×MIC for 30 minutes, fixed and incubated with FM-64 dye (red) and DAPI	1139	accumulated after LspA depletion. (d) Accumulation of pro-Lpp in cells treated with Lgti.
 inhibitors for another 30 minutes. Lpp forms are denoted as described above. (e) Lgti treatment leads to cell morphology changes and membrane blebs. CFT073<i>imp4213</i> cells were left untreated or treated with Lgti at 1×MIC for 30 minutes, fixed and incubated with FM-64 dye (red) and DAPI 	1140	CFT073 <i>imp4213</i> cells expressing an arabinose inducible form of Lpp (<i>CFT073imp</i> 4213∆ <i>lpp:lpp</i> ^{Ara})
1143 leads to cell morphology changes and membrane blebs. CFT073 <i>imp4213</i> cells were left untreated 1144 or treated with Lgti at 1×MIC for 30 minutes, fixed and incubated with FM-64 dye (red) and DAPI	1141	were incubated with arabinose for 30 minutes prior to treatment with 0.5×MIC concentrations of the
or treated with Lgti at 1×MIC for 30 minutes, fixed and incubated with FM-64 dye (red) and DAPI	1142	inhibitors for another 30 minutes. Lpp forms are denoted as described above. (e) Lgti treatment
	1143	leads to cell morphology changes and membrane blebs. CFT073imp4213 cells were left untreated
solution (blue) to stain membranes and nucleic acid, respectively, and visualized by confocal	1144	or treated with Lgti at 1×MIC for 30 minutes, fixed and incubated with FM-64 dye (red) and DAPI
	1145	solution (blue) to stain membranes and nucleic acid, respectively, and visualized by confocal

Inhibition of Lgt in Gram-negative bacteria

1146	microscopy. Arrows represent membrane blebs and scale bars represent 3 μ m. (f) Quantitation of
1147	cell size after treatment Lgti. A total of 104 ± 4 cells per treatment were quantitated using ImageJ
1148	(*p = 0.04; ***p = 0.002). (g) CRISPRi knock-down of lgt gene expression sensitizes cells to Lgti
1149	but not LspAi and LolCDEi. E. coli BW25113 cells expressing dCas9 and gRNAs specific to lgt,
1150	<i>lspA</i> or <i>lolC</i> were untreated (black bars) or treated (white bars) with 2 µM Lgti (G2823 and G2824),
1151	0.05 µM LspAi (globomycin) or 0.8 µM LolCDEi (C1). A scrambled (scr) gRNA and gRNA
1152	specific to <i>folA</i> (dihydrofolate reductase) were used as negative controls. Bacterial growth was
1153	measured by OD_{600} and values were normalized to the untreated sample for each gRNA, which was
1154	set at 100% (*** $p < 0.001$). Data are representative of at least two independent experiments each
1155	performed in triplicate.
1150	

1157 Figure 5: *lpp* deletion does not rescue growth after Lgti treatment. CFT073*imp*4213 (black), 1158 CFT073*imp*4213 Δ *lpp* (blue) or CFT073*imp*4213 Δ *lpp* complemented with pBAD24 plasmids 1159 encoding WT *lpp* (red) or *lpp* ΔK (green) were untreated (filled symbols) or treated (open symbols) 1160 with 12.5 µM Lgti G2824 (a), 3.2 µM LspAi (GBM) (b), 6.3 µM LolCDEi (C1) (c) and 1.6 µM 1161 vancomycin (d). G2823 was not be tested due to limitations in compound availability. CFUs were 1162 enumerated at various times post treatment. (e) CFT073*imp*4213, CFT073*imp*4213∆*lpp* or 1163 CFT073*imp*4213 Δ *lpp* complemented with WT *lpp* or *lpp* Δ *K* were treated with SDS to enrich for 1164 PAP and non-PAP fractions. As the PAP fraction is 30-fold more concentrated than the non-PAP 1165 fraction, it is more appropriate to compare different mutants within the same fraction. Lpp forms 1166 are denoted as previously described (* = Triacylated free Lpp; \S = PG-linked DGPLP; \emptyset = UPLP; \dagger = other PG-linked Lpp forms; Δ = putative Lpp dimer). The identity of the band in Figure 5e 1167

Inhibition of Lgt in Gram-negative bacteria

1168	below the putative Lpp dimer (Δ) is unknown and could represent a degradation product. The
1169	$Lpp\Delta K$ is his-tagged and hence migrates slower on SDS-PAGE relative to the mature triacylated
1170	Lpp. Data are representative of three independent experiments. (f) Lgt depletion leads to loss of
1171	PG-linked Lpp and Pal. CFT073 Δlgt inducible deletion cells were grown in arabinose (Ara) or
1172	glucose (Glu) and Lpp and Pal expression was determined in total cell lysates (TL), SDS-insoluble
1173	(PAP) and SDS-soluble (non-PAP) fractions at 3 and 5 hours post treatment. GroEL was used as a
1174	control for fractionation. Lpp forms are denoted by symbols as described in Figure 5e. (g) Lgti
1175	treatment leads to loss of PG-associated Lpp and Pal. CFT073imp4213 cells were treated with Lgti
1176	(G2823 and G2824), LspAi (GBM) or LolCDEi (C1) for 30 minutes at 0.5×MIC and levels of Lpp
1177	and Pal were measured in total cell lysates, PAP and non-PAP fractions. Lpp forms are denoted by
1178	symbols as described above.

1179

1180 Figure 6: Inhibition of Lgt leads to depletion of essential OM lipoproteins and OMPs and

1181 **minimal IM accumulation of PG-linked DGPLP.** (a) CFT073*imp*4213 cells were treated with

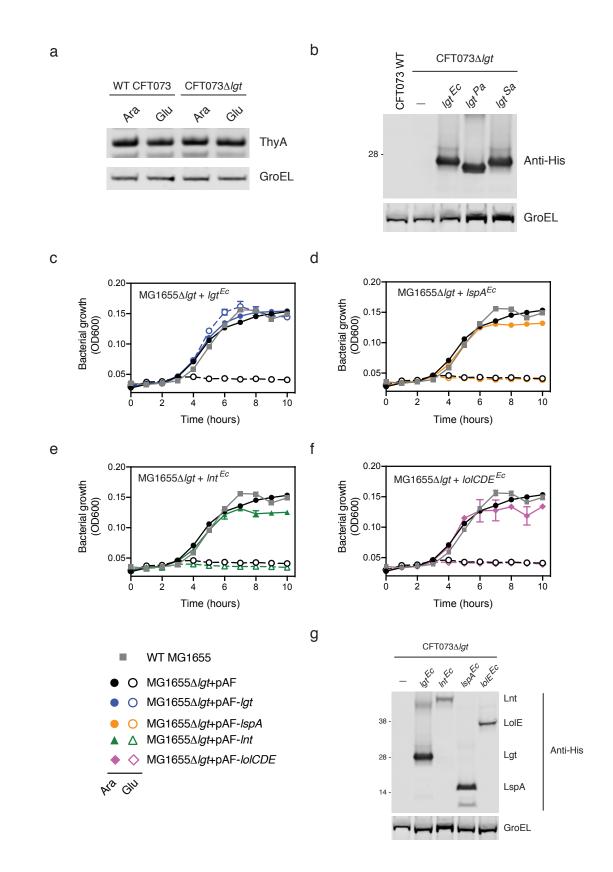
1182 Lgti (G2823 and G2824), LspAi (GBM) or LolCDEi (C1) for 60 minutes at 1×MIC and subjected

1183 to sucrose gradient ultracentrifugation as described in the Methods. IM and OM fractions were

assigned based on the expression of MsbA and OmpA, respectively. These data re representative of

at least three independent experiments. (b) CFT073*imp*4213 cells were treated with Lgti (G2823

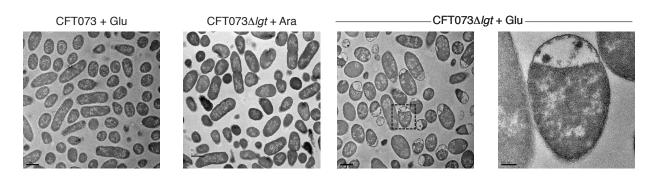
and G2824), LspAi (GBM) or LolCDEi (C1) and IM were solubilized using sarkosyl. Lpp and Pal


- 1187 levels were probed using Western blot analyses. Lpp forms denoted in the figure are as follows (* =
- 1188 triacylated free Lpp; \$ = PG-linked DGPLP; $\emptyset = UPLP$; $\dagger = other PG$ -linked Lpp forms; $\Delta =$
- 1189 putative Lpp dimer). IM fractions were probed for MsbA and BamA as controls. Levels of

Inhibition of Lgt in Gram-negative bacteria

- 1190 triacylated free Lpp (*), UPLP (Ø) and DGPLP (§) were quantitated by normalizing to MsbA and
- 1191 levels detected in untreated cells (-) were set at 1.

Diao et al. Supplementary Information


Figure 2-supplement 1

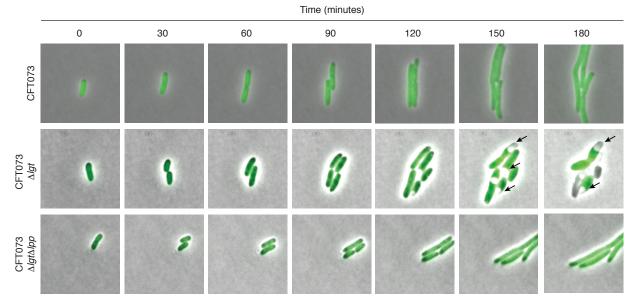
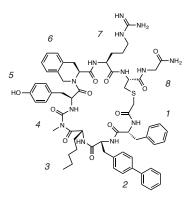
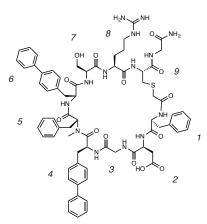

Diao et al. Supplementary Information

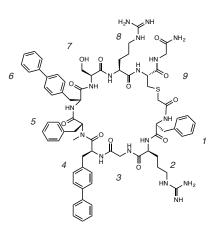
Figure 2-figure supplement 2

а

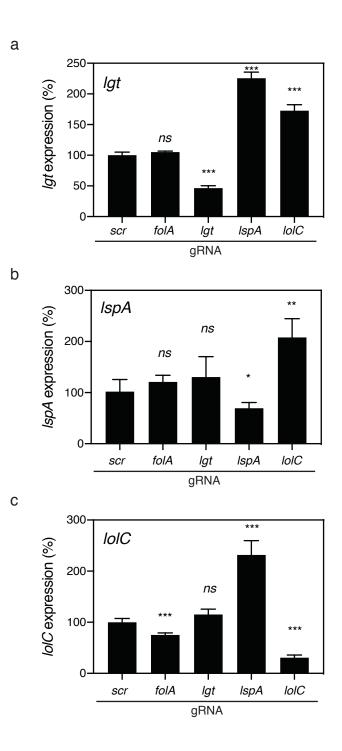

b


7

Diao et al. Supplementary Information

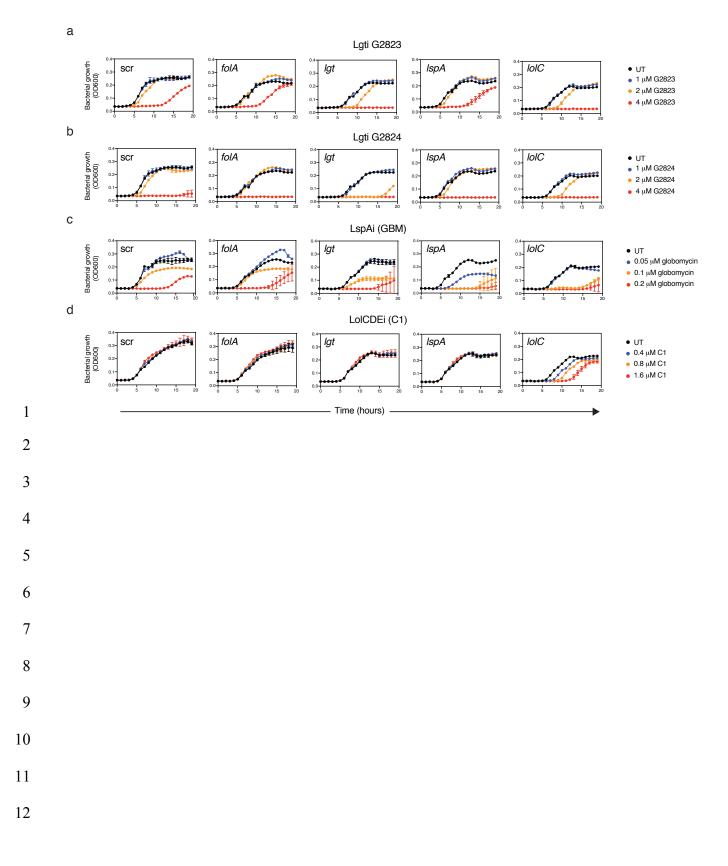

Figure 3-supplement 1

508: CIAcf-Bph-Ahp-MeG-Tyr-Tic-Arg-Cys-Gly-NH2



692: CIAcf-Arg-Gly-Bph-MeF-Bph-Ser-Arg-Cys-Gly-NH2

Diao et al. Supplementary Information


Figure 4-supplement 1

1

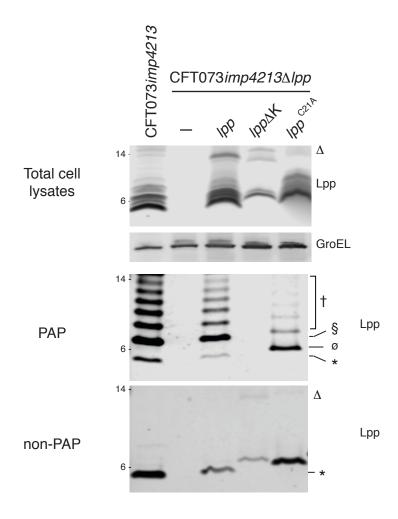
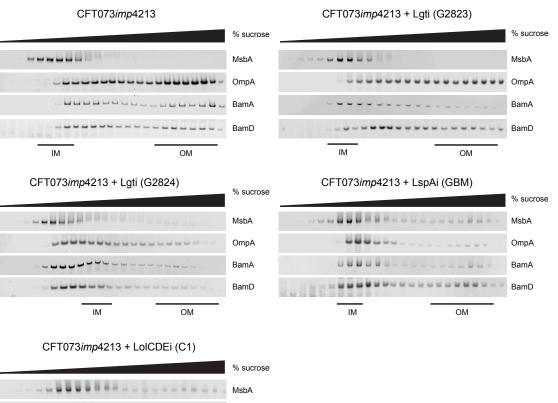

Diao et al. Supplementary Information

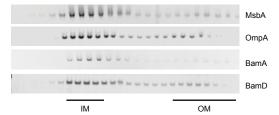
Figure 4-supplement 2

Diao et al. Supplementary Information

Figure 5-supplement 1

† = Other PG-linked Lpp forms


- Δ = putative Lpp dimer
 - § = PG-linked diacylglyceryl pro-Lpp (DGPLP)
 - ϕ = Unmodified pro-lpp (UPLP)
 - * = Triacylated free Lpp


1 2

- 3

Diao et al. Supplementary Information

Figure 6-supplement 1

- 1 2
- 3
- 4
- .
- 5

Diao et al. Supplementary Information

1 Figure supplement legends

2	Figure 2-figure supplement 1: (a) Normal expression of thymidylate synthase (ThyA) after
3	depletion of Lgt. WT CFT073 and CFT073 Δlgt were grown under wild-type (4% arabinose, Ara)
4	or depleted (0.2% glucose, Glu) conditions for 4 hours and total cell lysates were subjected to
5	Western blot analyses using an anti-ThyA antibody. GroEL was used as a loading control. (b)
6	Western blot analyses confirming protein expression after complementation with pLMG18
7	expressing <i>lgt</i> from <i>E. coli</i> (<i>lgt</i> ^{Ec}), <i>P. aeruginosa</i> (<i>lgt</i> ^{Pa}) or <i>S. aureus</i> (<i>lgt</i> ^{Sa}). All complemented <i>lpp</i>
8	contain a c-terminal His-tag. (c-f) Loss of <i>E. coli</i> MG1655∆ <i>lgt</i> viability after Lgt depletion is
9	rescued after complementing with E. coli lgt (lgt^{Ec}) but not E. coli lspA $(lspA^{Ec})$, lnt (lnt^{Ec}) or
10	<i>lolCDE</i> (<i>lolCDE</i> ^{Ec}). 2.5 mM IPTG was used to induce expression of <i>E. coli lspA</i> , <i>lnt</i> or <i>lolCDE</i> .
11	Cells were grown in arabinose (filled symbols, Ara) or glucose (open symbols, Glu) and bacterial
12	growth was measured by OD ₆₀₀ . (g) Anti-His Western blot analyses demonstrating protein
13	expression of <i>E. coli</i> Lgt, LspA, Lnt and LolE in CFT073∆ <i>lgt</i> cells complemented with His-tagged
14	versions of the respective genes.

15

Figure 2-figure supplement 2: Lgt depletion results in IM contraction and the expected globular cellular phenotype. (a) CFT073 and CFT073 Δ *lgt* deletion strains were treated for 2 hours with 4% arabinose (Ara) or 0.2% glucose (Glu) and samples were processed for imaging by Transmission electron microscopy. Bars represent 1 µm (200 nm for last panel). (b) Live cell imaging of WT CFT073, CFT073 Δ *lgt* and CFT073 Δ *lgt* Δ *lpp* inducible deletion strains containing a plasmid expressing *gfp* (pGFP) were grown in the presence of 0.2% glucose. Phase contrast and

Diao et al. Supplementary Information

fluorescence microscopy images were overlayed at various times post treatment. Arrows denote IM
 contraction which is not observed in the strain containing the *lpp* deletion.

3

4	Figure 3-figure supplement 1: Chemical structures of original hit macrocycles 508, 692 and 693
5	identified in the library screen. The sequences of the macrocycles are represented in a linear format
6	using the three letter amino acid codes. Non-natural amino acids are as follows: N- α -Methyl-L-
7	phenylalanine (MeF), N-α-Methyl-L-glycine (MeG, Sarcosine), (S)-2-Aminoheptanoic acid (Ahp),
8	4-Phenyl-L-phenylalanine (Bph) and (S)-1,2,3,4-Tetrahydroisoquinoline-3-carboxylic acid (Tic).
9	CIAcf was fixed at the first position and used for cyclization.
10	
11	Figure 4-figure supplement 1: Efficiency of CRISPRi-mediated downregulation of target genes.
12	Total RNA was harvested from <i>E. coli</i> BW25113 cells transformed with scrambled (scr) gRNA or
13	gRNA specific for <i>folA</i> , <i>lgt</i> , <i>lspA</i> , and <i>lolC</i> and gene expression of <i>lgt</i> (a), <i>lspA</i> (b) and <i>lolC</i> (c) was

14 measured by RT-qPCR. Relative gene expression of *lgt*, *lspA* and *lolC* were calculated by

15 normalizing to *rpoB* levels using the $2^{-\Delta\Delta CT}$ method. Expression levels are graphed after

16 comparison to "scr" gRNA, which was set at 100%. Data are representative of two independent

17 experiments each performed in duplicate (ns = not significant, *p < 0.05, **p < 0.01, ***p < 0.001).

18

19 Figure 4-figure supplement 2: Kinetics of growth inhibition after CRISPRi gRNA induction in *E*.

20 coli BW25113. BW25113 cells expressing either scrambled (scr) gRNA or gRNAs specific to folA,

21 *lgt, lspA* or *lolC* were treated with (a) Lgti G2823, (b) Lgti G2824, (c) LspAi (GBM) and (d)

Diao et al. Supplementary Information

1	LolCDEi (C1) and bacterial growth was measured by OD ₆₀₀ . For all inhibitors, three concentrations
2	were tested based on the MIC of each molecule and compared to untreated cells (UT, black) (Lgti =
3	4, 2 and 1 μ M; LspAi = 0.2, 0.1 and 0.05 μ M and LolCDEi = 1.6, 0.8 and 0.4 μ M). Data are
4	representative of three independent experiments each performed in triplicate.
5	
6	Figure 5-figure supplement 1: Determination of PG-linkage of WT Lpp, Lpp Δ K and Lpp ^{C21A} .
7	CFT073 <i>imp</i> 4213, CFT073 <i>imp</i> 4213 Δ <i>lpp</i> or CFT073 <i>imp</i> 4213 Δ <i>lpp</i> complemented with WT <i>lpp</i> ,
8	$lpp\Delta K$ or lpp^{C21A} were treated with SDS to isolate PAP and non-PAP fractions. Lpp levels were
9	detected by Western blot analyses in total cell lysates, PAP and non-PAP fractions. The Lpp ^{C21A}
10	mutant contains an alanine in place of the conserved cysteine in the lipobox. The $lpp\Delta K$ construct
11	is His-tagged and hence migrates slower on SDS-PAGE. Lpp forms are denoted in the figure (* =
12	triacylated free Lpp; $\$ = PG$ -linked DGPLP; $\emptyset = UPLP$; $\dagger = other PG$ -linked Lpp forms; $\Delta =$
13	putative Lpp dimer).

14

Figure 6-figure supplement 1: Membrane localization of BamA and BamD in CFT073*imp*4213
cells treated with Lgti (G2823 and G2824), LspAi (GBM) or LolCDEi (C1) for 60 minutes at
1×MIC and subjected to sucrose gradient ultracentrifugation as described in the Methods. Levels of
BamA and BamD were detected by Western blot analyses. IM and OM fractions were assigned
based on the expression of MsbA and OmpA, respectively, as presented in Figure 6.

20

Diao et al. Supplementary Information

Table S1: Lgti minimal inhibitory concentrations (MIC) against LolCDE-resistant E. coli isolates

	ΜΙС (μΜ)					
MG1655 <i>imp4213</i>	Lgti (G9066)	Lgti (G2823)	Lgti (G2824)	LspAi (GBM)	LolCDEi (C2)	Vancomycin
WT	3.1	4.7	3.1	0.2	2.4	0.8
LolC (Q258K)	6.3	3.1	3.1	0.3	75	0.8
LolC (N265K)	3.1	6.3	3.1	0.2	37.5	1.2
LolD (S43R)	6.3	4.7	3.1	0.2	37.5	0.8
LolE (F367L)	6.3	3.1	3.1	0.3	25	1.2
LolE (P372L)	3.1	6.3	3.1	0.2	50	1.2

Diao et al. Supplementary Information

1 **Table S2:** Bacterial strains and plasmids used in this study

Bacterial strains	Description	Reference
E. coli		
BW25113	rrnB3 DElacZ4787 hsdR514 DE(araBAD)567 DE(rhaBAD)568 rph-1	(Baba et al., 2006)
MG1655	<i>E. coli</i> K-12 F- lambda- <i>ilvG</i> negative, <i>rfb-50 rph-1</i>	ATCC 700926
MG1655∆ <i>lgt</i>	MG1655 Δlgt ::kan with an arabinose-inducible integrated <i>lgt</i> copy	This study
MG1655∆ <i>lgt</i> ∆ <i>lpp</i>	MG1655 Δlpp , Δlgt ::kan containing an arabinose- inducible integrated <i>lgt</i> copy	This study
MG1655∆ <i>lspA</i>	Arabinose-inducible conditional knockout of <i>lspA</i>	(Pantua et al., 2020)
$MG1655\Delta lspA\Delta lpp$	MG1655 Δlpp , $\Delta lspA$::kan containing an arabinose- inducible integrated <i>lspA</i> copy	This study
MG1655∆lolCDE	Arabinose-inducible conditional knockout of <i>lolCDE</i>	This study
MG1655Δ <i>lolCDE</i> Δlpp	MG1655 Δlpp , $\Delta lolCDE$::kan containing an arabinose-inducible integrated <i>lolCDE</i> copy	This study
CFT073	Bacteremia isolate, wild-type (O6:K2:H1)	ATCC 700928
CFT073 Δlgt	CFT073 Δlgt ::kan containing an arabinose-	This study
CFT073imp4213	inducible integrated <i>lgt</i> copy CFT073 carrying the <i>imp4213</i> allele in <i>lptD</i>	(Ho et al., 2018)
CFT073 <i>imp4213</i> ∆lgt	CFT073 Δlgt ::kan containing an arabinose- inducible integrated <i>lgt</i> copy and carrying the <i>imp4213</i> allele in <i>lptD</i>	This study
CFT073 <i>imp4213</i> ∆ <i>lpp</i>	CFT073 Δlpp ::kan carrying the <i>imp4213</i> allele in <i>lptD</i>	This study
$CFT073imp4213\Delta lpp:lpp$	<i>CFT073imp</i> 4213∆ <i>lpp</i> ∷kan containing pBAD24 expressing <i>lpp</i>	This study
TOP10	pWQ601, general cloning strain	Invitrogen
S. aureus USA300	USA300 FPR3757	Center for Staphylococcal Research, Nebraska
A. baumannii 19606	Acinetobacter baumannii strain isolated in a patient urine sample	ATCC
P. aeruginosa PA14	<i>Pseudomonas aeruginosa</i> strain UCBPP-PA14 originally isolated from a burn wound	ATCC
PA14imp4213	<i>Pseudomonas aeruginosa</i> UCBPP-PA14 containing the imp4213 mutation in <i>lptD</i>	This study
Plasmids		
pKD4	Kanamycin resistance (Kan ^R) cassette flanked by FRT (FLP recognition target) sites, oriR γ	(Silhavy, Kahne, & Walker, 2010)
pKD46	Expresses the phage λ Red recombinase, Amp ^R , temperature sensitive, oriR γ	(Cowles, Li, Semmelhack, Cristea, & Silhavy, 2011; Wilson & Bernstein, 2015)
pCP20	Thermal induction of FLP recombinase expression,	(Kovacs-Simon, Titball, & Michell, 2011)
pLDR8 pLDR9	Amp [*] , temperature sensitive Lambda integrase expression vector Lambda att site integration vector	ATCC 77357 ATCC 77358

Diao et al. Supplementary Information

pBAD24 pBAD24- <i>lpp</i> pBAD24- <i>lpp</i> ΔK pBAD24- <i>lpp</i> ^{C1A} pdCas9-bacteria_GNE pgRNA-bacteria_GNE pLMG18	Arabinose inducible expression vector pBad24 expressing <i>E. coli lpp</i> pBad24 expressing <i>E. coli lpp</i> ΔK pBad24 expressing <i>E. coli lpp</i> ^{C21A} Based on AddGene plasmid 44249 Based on AddGene plasmid 44251 Low-copy IPTG-inducible expression plasmid, Cm ^e	ATCC 87399 This study This study This study This study This study (M. Tokunaga, Tokunaga, & Wu, 1982)
pLMG18- <i>lgt</i> ^{Ec}	pLMG18 expressing <i>E. coli lgt</i>	This study
$pLMG18-lgt^{s_a}$	pLMG18 expressing <i>S. aureus lgt</i>	This study
pLMG18- lgt^{p_a}	pLMG18 expressing <i>P. aeruginosa lgt</i>	This study
pLMG18-lspA ^{Ec}	pLMG18 expressing <i>E. coli lspA</i>	This study
pLMG18- <i>lnt</i> ^{Ec}	pLMG18 expressing E. coli lnt	This study
pLMG18-lolCDE ^{Ec}	pLMG18 expressing E. coli lolCDE	This study
pGFP	pBla_Short encoding sfGFP	(Storek et al., 2018)

1

2 **References**

- Baba, T., Ara, T., Hasegawa, M., Takai, Y., Okumura, Y., Baba, M., et al. (2006). Construction of
 Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. *Molecular Systems Biology*, 2(1), 2006.0008. http://doi.org/10.1038/msb4100050
- *Biology*, 2(1), 2006.0008. http://doi.org/10.1038/msb4100050
 Cowles, C. E., Li, Y., Semmelhack, M. F., Cristea, I. M., & Silhavy, T. J. (2011). The free and bound forms of Lpp occupy distinct subcellular locations in Escherichia coli. *Molecular Microbiology*, 79(5), 1168– 1181. http://doi.org/10.1111/j.1365-2958.2011.07539.x
- Ho, H., Miu, A., Alexander, M. K., Garcia, N. K., Oh, A., Zilberleyb, I., et al. (2018). Structural basis for
 dual-mode inhibition of the ABC transporter MsbA. *Nature*, 557(7704), 196–201.
 http://doi.org/10.1038/s41586-018-0083-5
- Kovacs-Simon, A., Titball, R. W., & Michell, S. L. (2011). Lipoproteins of bacterial pathogens. *Infection and Immunity*, 79(2), 548–561. http://doi.org/10.1128/IAI.00682-10
- Pantua, H., Skippington, E., Braun, M.-G., Noland, C. L., Diao, J., Peng, Y., et al. (2020). Unstable
 Mechanisms of Resistance to Inhibitors of Escherichia coli Lipoprotein Signal Peptidase. *mBio*, 11(5),
 VMBF–0016–2015. http://doi.org/10.1128/mBio.02018-20
- Silhavy, T. J., Kahne, D., & Walker, S. (2010). The bacterial cell envelope. *Cold Spring Harbor Perspectives in Biology*, 2(5), a000414–a000414. http://doi.org/10.1101/cshperspect.a000414
- Storek, K. M., Auerbach, M. R., Shi, H., Garcia, N. K., Sun, D., Nickerson, N. N., et al. (2018). Monoclonal antibody targeting the β-barrel assembly machine of Escherichia coli is bactericidal. *Proceedings of the National Academy of Sciences of the United States of America*, 115(14), 3692–3697. http://doi.org/10.1073/pnas.1800043115
- Tokunaga, M., Tokunaga, H., & Wu, H. C. (1982). Post-translational modification and processing of
 Escherichia coli prolipoprotein in vitro. *Proceedings of the National Academy of Sciences of the United States of America*, 79(7), 2255–2259. http://doi.org/10.1073/pnas.79.7.2255
- Wilson, M. M., & Bernstein, H. D. (2015). Surface-Exposed Lipoproteins: An Emerging Secretion
 Phenomenon in Gram-Negative Bacteria. *Trends in Microbiology*. http://doi.org/10.1016/j.tim.2015.11.006
- 29

Diao et al. Supplementary Information

Primer	Sequence (5' to 3')	
Strain generation		
CFT073∆lgt.F	TTTCAATCGCTGTTCTCTTTCAGCGAAATAACAAGAACTTGTGGTGACAG GTGTAGGCTGGAGCTGCTTC	
CFT073∆lgt. R	CCTTCGTCGAGCACTTTTTGCATCAGTTCTAAATACTGTTTCATGGTTCC CATATGAATATCCTCCTTAGTTCCTATTC	
MG1655∆ <i>lolCDE</i> .F	CGGGGGCTTTTCAGATTAGCCCTGACGATCACTTACAGTTCAGACGTTTACCCAT CTTGCTTTCGCTTATATACTCGTGTCTTTGCTACAGCAACCAGACGGATTTCGTG AGGCTGGAGCTGCTTC	
MG1655∆ <i>lolCDE</i> .R	CCCACTGCAACTGCCGACCGCTATCAAACACGCCAAGCGCAATTTTTGTTCCACG AATATCAAACCCGTAATACATTGCCGCTCCTTGTTTTAATGTACTGCCCATATGA ATATCCTCCTTAGTTCCTATTC	
Quantitative PCR		
lgt.F	CTCGGTGGACGTATTGGTTATG	
lgt.R	TCACCACGATAACGCCAATC	
lgt.PRB	/ <u>56-FAM</u> / ACAATTTCC /ZEN/ CGCAGTTTATGGCCG / <u>31ABkFQ</u> /	
lspA.F	TCGATCTGGGCAGCAAATAC	
lspA.R	CGCTATCGGCAAGGAAACTAA	
lspA.PRB	/ <u>56-FAM</u> / TGCAGATTA /ZEN/ AGCGACGGGAACAGC / <u>3IABkFQ</u> /	
lolC.F	CCACAGGCAATTCTCTCTTCT	
lolC.R	TAGGTGCGACGCGATTAAC	
lolC.PRB	/ <u>56-FAM</u> / CTCTCTTAA /ZEN/ CCCGCAGCAACTCCC / <u>3IABkFO</u> /	

Table S3: Primers used in this study for strain generation and quantitative PCR 1